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Abstract

Electroactive polymers such as dielectric elastomers (DEs) have attracted significant attention in recent years. Computational
techniques to solve the coupled electromechanical system of equations for this class of materials have universally centered
around fully coupled monolithic formulations, which while generating good accuracy requires significant computational expense.
However, this has significantly hindered the ability to solve large scale, fully three-dimensional problems involving complex
deformations and electromechanical instabilities of DEs. In this work, we provide theoretical basis for the effectiveness and
accuracy of staggered explicit–implicit finite element formulations for this class of electromechanically coupled materials, and
elicit the simplicity of the resulting staggered formulation. We demonstrate the stability and accuracy of the staggered approach by
solving complex electromechanically coupled problems involving electroactive polymers, where we focus on problems involving
electromechanical instabilities such as creasing, wrinkling, and bursting drops. In all examples, essentially identical results to the
fully monolithic solution are obtained, showing the accuracy of the staggered approach at a significantly reduced computational
cost.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Dielectric elastomers (DEs) have attracted significant attention in recent years as a soft and flexible actuation
material [1–4]. They have been found to provide excellent overall performance in actuation-based applications,
including high specific elastic energy density, good efficiency and high speed of response. Furthermore, DEs are
typically lightweight, flexible and inexpensive materials which makes them ideal candidates for high performance,
low cost applications where fabrication of the DEs into a wide range of shapes and structures can easily be realized [5].
While DEs have been found to exhibit good performance with respect to a variety of actuation-relevant properties,
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including strain, actuation pressure, efficiency, response speed, and density [6], the key source of the technological
excitement surrounding DEs stems from the fact that if sandwiched between two compliant electrodes that apply
voltage to the elastomer, the DE can exhibit both significant thinning and in-plane expansion, where the in-plane
expansion can often exceed several hundred percent [7]. The ability to undergo such large deformations has led to
DEs being studied for both actuation-based applications, including artificial muscles and flexible electronics, and also
for generation-based applications and energy harvesting [1,2,8].

Various computational formulations for DEs based on the finite element method (FEM) have emerged in the
past decade [9–23]. While these differ depending on various factors, including the field theory they are formulated
on, whether they account for material effects such as viscoelasticity, or whether they are quasi-static or dynamic,
nearly all of them have been solved using a fully coupled, monolithic formulation. While the monolithic formulation
ensures the correct electromechanical coupling, it comes with significant computational expense, and as such nearly
all computational examples involving DEs have been on two-dimensional (2D) problems because of the additional
degree of freedom the electrostatic problem adds to the structural problem for each spatial dimension.

We mention a related work by Zhang and co-workers [24] that simply applied an explicit–implicit computational
procedure to an analysis of DEs. However, no reference or discussion on the stability and accuracy aspects of
partitioned explicit–implicit procedures [25–27] was provided; hence, they offered no rationale for its stability
restrictions and accuracy analysis. Moreover, they did not report any comparison of their work to a series of
reported benchmark monolithic solutions obtained by fully implicit–implicit procedures [10,11,22]. As a result, it
is unclear as to the applicability ranges, effectiveness, and overall potential for staggered methods in addressing
electromechanically coupled phenomena in electroactive polymers like DEs. In passing, we also note that the
possibility of uncoupling the electrostatic and structural fields has also been discussed in multiple works [14,21].
Nevertheless, a staggered solution methodology in general and a corresponding investigation of its robustness, stability
and accuracy, particularly for electromechanical instabilities, remains lacking.

In the present work, we present a staggered explicit–implicit finite element formulation for DEs, complete with
a criterion for selecting stable step sizes and an accuracy assessment. Specifically, the structural problem is solved
explicitly, while the electrostatic problem is solved implicitly. From a historical perspective, our algorithm may be
akin to a node-by-node partition of Belytschko and Mullen [25], although both the structural system and the dielectric
field equations occupy the same spatial domain. We demonstrate the robustness of the present algorithm in solving
problems involving complex electromechanical instabilities, including creasing and wrinkling [11,22,28,29], bursting
drops in dielectric solids [10,30], and 3D problems. In all cases, the staggered methodology provides effectively
identical results as a previous dynamic, fully coupled monolithic formulation [11], though for a significantly reduced
computational cost.

2. Fully coupled, monolithic formulation

2.1. Field and constitutive equations

The numerical results we present in this work are based upon a FE discretization of the electromechanical field
theory proposed by Suo and co-workers [31,32]. This fully coupled, monolithic FE formulation has been described
in previous works [9–11], and so we will briefly outline the relevant background here while referring the interested
reader to previous works for further details.

In this field theory at mechanical equilibrium, the nominal stress Si J satisfies the following (weak) equation:∫
V

Si J
∂ξi

∂ X J
dV =

∫
V

(
Bi − ρ

∂2xi

∂t2

)
ξi dV +

∫
A

Tiξi d A, (1)

where ξi is an arbitrary vector test function, Bi is the body force per unit reference volume V , ρ is the mass density
of the material and Ti is the force per unit area that is applied on the surface A in the reference configuration.

For the electrostatic problem, the nominal electric displacement D̃I satisfies the following (weak) equation:

−

∫
V

D̃I
∂η

∂ X I
dV =

∫
V

qηdV +
∫

A
ωηd A, (2)

where η is an arbitrary scalar test function, q is the volumetric charge density and ω is the surface charge density, both
with respect to the reference configuration. It can be seen that the strong form of the mechanical weak form in (1) is
the momentum equation, while the strong form of the electrostatic weak form in (2) is Gauss’s law.
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As the governing field equations in (1) and (2) are decoupled, the electromechanical coupling occurs through the
material laws. The hyperelastic material law we adopt here has been utilized in the literature to study the nonlinear
deformations of electrostatically actuated polymers; see the works of Vu et al. [14], and Zhao and Suo [13]. Due to
the fact that the DE is a rubber-like polymer, phenomenological free energy expressions are typically used to model
the deformation of the polymer chains. In the present work, we will utilize the form [14,13]

W (C, Ẽ) = µW0 +
1
2
λ(ln J )2

− 2µW ′0(3) ln J −
ϵ

2
JC−1

I J Ẽ I Ẽ J , (3)

where W0 is the mechanical free energy density in the absence of an electric field, W ′0 is the derivative of W0 with
respect to the invariant I1, ϵ is the permittivity, J = det(F), where F is the continuum deformation gradient, C−1

I J are
the components of the inverse of the right Cauchy–Green tensor C, λ is the bulk modulus and µ is the shear modulus.
The second and third terms in (3) are used to enforce material incompressibility by taking a large ratio of the bulk to
the shear modulus λ/µ.

We model the mechanical behavior of the DE using the Arruda–Boyce rubber hyperelastic function [33], where
the mechanical free energy W0 in (3) is approximated by the following truncated series expansion,

W0(I1) =
1
2

(I1 − 3)+
1

20N
(I 2

1 − 9)+
11

1050N 2 (I 3
1 − 27) (4)

+
19

7000N 3 (I 4
1 − 81)+

519
673750N 4 (I 5

1 − 243),

where N is a measure of the cross link density, I1 is the trace of C, and where the Arruda–Boyce model reduces
to a Neo-Hookean model if N → ∞. We note that previous experimental studies of Wissler and Mazza [34] have
validated the Arruda–Boyce model as being accurate for modeling the large deformation of DEs.

2.2. Nonlinear, monolithic finite element model

The FE model we use was previously developed in [9–11]. In that work, the corresponding author and collaborators
developed a nonlinear, dynamic FEM formulation of the governing electromechanical field equations of Suo et al.
[31] in (1) and (2). By using a standard Galerkin FE approximation to both the mechanical displacement and electric
potential fields, both static and dynamic FE formulations were obtained. The static formulation results in the following
FE equations [9]{

∆u
∆Φ

}
= −

[
Kmm Kme

Kem Kee

]−1 {
Rm

Re

}
(5)

If inertial effects in the mechanical momentum are accounted for, an implicit, fully coupled, monolithic nonlinear
dynamic FE formulation was obtained with the governing equations [9]{

∆a
∆Φ

}
= −

[
M+ β∆t2Kmm Kme

β∆t2Kem Kee

]−1 {
Rm

Re

}
(6)

where ∆a is the increment in mechanical acceleration, ∆u is the increment in displacement, ∆Φ is the increment
in electrostatic potential, β = 0.25 is the standard Newmark time integrator parameter, Rm is the mechanical
residual, Re is the electrical residual, and the various stiffness matrices K include the purely mechanical (Kmm), mixed
electromechanical (Kme = Kem), and purely electrostatic (Kee) contributions. Details regarding the residual vectors
and the various mechanical, electromechanical and electrostatic stiffnesses can be found in previous work [9], and
where volumetric locking due to incompressible material behavior was alleviated using the Q1P0 method of Simo
et al. [35]. We note, as shown in Simo et al. [35], that no additional degrees of freedom or changes in quadrature
points are needed as a result of the Q1P0 formulation. The dynamic formulation was primarily used in previous works
[9–11,22,36] due to its ability to capture the evolution and post-instability response for electromechanical instabilities.

3. Staggered formulation

Multiphysics problems may be classified into two categories. In the first case, each field occupies separate spatial
domains as in fluid–structure interaction, where coupling occurs along the spatial boundaries. In the second case, the
coupled interaction fields occupy the same spatial domain, as in electrodynamics and flexible solids, and thermoelastic
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problems. Staggered solution methods [37,38] were initially developed for implicit–implicit staggered solutions
of fluid–structure interaction problems, then extended to staggered implicit–implicit solutions of thermoelastic
problems [39] and electrodynamics interacting with flexible structures [40].

However, those problems are characterized as stiff problems with mild nonlinearities. For problems undergoing
local/global bifurcation and rapidly varying severe nonlinearities, it is generally agreed that explicit integration is
preferred in order to capture the rapidly varying nonlinearities. It is for this reason that we will employ the explicit
integration method for advancing the solid equations while implicitly solving the electrostatic field equation, viz., an
explicit–implicit staggered procedure.

3.1. Explicit–implicit staggered formulation

We begin with the momentum equation for the mechanical problem in (1). The FE discretization of the momentum
equation in (1) leads to the following nonlinear dynamical equations

Mü = fext − fint

fext =

∫
Bi Na dV +

∫
Ti Na d A

fint =

∫
S̄i J (u, Ẽ)

∂ Na

∂ X J
dV

(7)

where Bi is the body force, Ti is the traction, and S̄i j is the nominal stress, which is a function of both the mechanical
displacements un and the electric field Ẽn at timestep n, and which is obtained as

S̄ =
∂W̃ (C, Ẽ)

∂C
|C=Θ2/3Ĉ (8)

where Ĉ = J−2/3C and with this modification the energy density function is written W̃ (Θ2/3Ĉ, Ẽ) = W and in the
continuous case Θ(X, t) = J (X, t) is a new kinematic variable due to the Q1P0 approach to relieving volumetric
locking by Simo et al. [35]

The FE-discretized mechanical equation in (7) can be integrated explicitly in time using the standard central
difference time integration algorithm [41,42]. Specifically, ü is obtained from Eq. (7), at which point the velocity
u̇n+ 1

2 and then updated displacement un+1 can be obtained. This time marching procedure can be written as

ün
=M−1

uu fn
m

u̇n+ 1
2 = u̇n− 1

2 +∆t ün

un+1
= un

+∆t u̇n+ 1
2

(9)

where Muu is the mass matrix for the structural problem, fn
m is the difference between the external and internal

mechanical forces at timestep n, and ün is the acceleration at timestep n. Once the FE displacements have been
updated to un+1 through the central difference time integration in (9), the updated voltage Φn+1 is obtained by solving
the following FE discretization of the electrostatic equations in (2):

Kn+1
ee Φn+1

= f̂e, f̂e =

∫
q Na dV +

∫
ωNa d A (10)

where q is the volumetric charge density, ω is the surface charge density, and where the fully nonlinear deformation-
dependent electrostatic stiffness matrix Kn+1

ee is used to solve the electrostatic equations (10). Kn+1
ee is dependent on

the updated displacement un+1 as

Kn+1
ee =

∫
∂ Na

∂ X J
ϵ JC−1(un+1)

∂ Nb

∂ X L
dV (11)

Once the converged voltage Φn+1 has been obtained at timestep n + 1, the staggered procedure begins again with
the solution of the mechanical momentum equation. The entire staggered explicit–implicit procedure is detailed in
Algorithm 1.
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Algorithm 1 Flowchart of Staggered Explicit–implicit Formulation
1: procedure INITIALIZATION
2: Set the initial conditions u0, u̇0,Φ0 and compute M
3: Compute F0

= I+∇Xu0 and Ẽ0
= −∇XΦ

0

4: end procedure
5: F = Fnew and Ẽ = Ẽnew

6: Compute the energy density W (C, Ẽ)
7: Compute stress: S̄ = ∂W̃ (C, Ẽ)/∂C|C=Θ2/3Ĉ
8: procedure SOLVE MECHANICAL(S̄, Ẽ)
9: Compute fn

m (Eq. (7))
10: Obtain accelerations: ün

=M−1fn
m

11: u̇n+ 1
2 = u̇n− 1

2 +∆t ün

12: un+1
= un

+∆t u̇n+ 1
2

13: return un+1

14: end procedure
15: procedure SOLVE ELECTRICAL(un+1)
16: Compute ϵ JC−1(un+1)
17: Compute Kn+1

ee and f̂e (Eqs. (11) and (10))
18: Solving Kn+1

ee Φn+1
= f̂e

19: return Φn+1

20: end procedure
21: Update field variables unew

= un+1 and Φnew
= Φn+1

22: Update counter n← n + 1
23: go to 5 if the simulation is not ended

3.2. Discussion on explicit–implicit staggered formulation

We now discuss and elaborate upon various aspects of the explicit–implicit staggered formulation. First, we
note that this formulation does not require the calculation of the complex electromechanical coupling stiffnesses
Kme = KT

em as in the monolithic formulation shown in (6). We also note that the right hand side of (7) is not a residual
as in an implicit–implicit procedure, but the actual difference in external and internal forces. Thus, the proposed
staggered explicit–implicit procedure achieves a full second-order accuracy at each integration step without having to
perform iterations whereas full-Newton or modified Newton iterations are essential in an implicit–implicit procedure.

Second, because second variations in the free energy are not required, i.e. only mechanical stresses, and not
stiffnesses, are needed, the incompressibility constraint λ has a smaller effect on the stable step size in the explicit
integration of the structural equations. Specifically, it was demonstrated in Park and Underwood [43] that for nonlinear
problems it is the apparent frequency

(
ωap

)
max

that dictates the maximum stable integration step size in explicit
integration defined as(

ω2
ap

)
i
=

∆ui ·∆üi

∆u2
i

, i = 1, 2, . . . , Nnd . (12)(
ωap

)
max = max

1≤i≤Nnd
{
(
ωap

)
i }

where Nnd represents the number of FE nodes in the system.
Note that the dominant term in the mechanical stiffness operator (see Eq. 27 of Park et al. [9]) is given by λC−1

I J C−1
K J

whereas in the mechanical stress the incompressibility term is manifested in λ log JC−1
I J . To this end, we first identify

the λ-term contributing to fint as follows:

∆ü = ün+1
− ün, ü =M−1

uu (fext − fint )

fint =

∫
S̄i J

∂ Na

∂ X J
dV
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S̄i J = 2Fi L
∂W (C, Ẽ)

∂CJ L

2
∂W (C, Ẽ)

∂CJ L
= λ log JC−1

J L

+ 2µ[W ′0(I )δJ L −W ′0(3)C−1
J L ]

+ ϵ J ẼK Ẽ I (C−1
K J C−1

I L −
1
2

C−1
K I C−1

J L )

(13)

The contribution to the i th apparent frequency by the incompressible parameter (λ) is given by[(
ω2

ap

)
i

]
λ
=

∆ui ·m−1
i

[
(∆fint )i

]
λ

∆u2
i

[fint ]λ =
∫

λ log J g(u) dV, g(u) = Fi LC−1
I J

∂ Na

∂ X J

⇓

[∆fint ]λ =
∫

λ log J n+1 g(un+1) dV −
∫

λ log J n g(un) dV, J → 1

(14)

where for brevity in explaining the contribution of the incompressible parameter (λ), we assumed a diagonal mass
matrix (mi , i = 1, 2, . . . Nnd ).

Hence, while the incompressible parameter λ plays a major role in implicit integration as it is the major material
parameter, it plays a minor role in contributing to the apparent frequency magnitude (ωap) because, as shown in
Eq. (14), ∆λ log J → 0. This means that the integration step size for explicit integration cases is dominated by the
second term of 2 ∂W̃ (C,Ẽ)

∂CJ L
, i.e. the 2µ[W ′0(I )δJ L −W ′0(3)C−1

J L ] term.
Third, while the equations for the mechanical and electrostatic domains are no longer solved simultaneously as in

the monolithic approach in Eq. (6), the correct coupling effects are accounted for. This is enabled because the free
energy in (3) is electromechanically coupled through the− ϵ

2 JC−1
I J Ẽ I Ẽ J term. Therefore, for the mechanical problem,

the dielectric contribution to the internal force (fint ) is accounted for in the third term of 2 ∂W̃ (C,Ẽ)
∂CJ L

in Eq. (13). For the
electrostatic problem, the stiffness matrix Kee in Eq. (11) depends on the structural deformation through the inverse
of the stretch tensor C−1(un+1).

As a final note, one may argue to adopt one of four existing approaches to model the DEs: a fractional step
method [44], an operator splitting method [45], an adiabatic partial integration algorithm splitting method [46], and
an augmented stabilization method [39]. These methods are appropriate when the evolution of the coupled governing
equations is explicitly time-dependent. However, for DEs only the evolution of the structural system is explicitly
time-dependent, whereas the governing electrostatic equations are not explicitly time-dependent. This fact makes an
adoption of fractional step integration a moot point, viz., no advantage is accrued by taking two half-step integration
advances to arrive at the full step integration. This is because at each fractional step, the solution vectors are not of
intermediate incomplete values but the correct vectors at that time step. Instead, only the updated displacement un+1

is required to satisfy the solution of the electrostatic equations in (11). This observation plus the simplicity of explicit
integration of the structural evolution equation enables the simple staggered approach described above for the analysis
of DEs.

3.3. Stability and accuracy analysis

It is well known that the computational stability limit of integrating the structural dynamics equations by the central
difference method is given by

ωmax∆t ≤ 2 (15)

where ωmax is the highest discrete frequency of the uncoupled structural dynamical equation, and ∆t is the integration
timestep size.
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Fig. 1. Schematic of the computational model showing a 2D film with electro-elasto-capillary boundary conditions based on experiment by Wang
et al. [28].

Employing the linearized coupled dynamical form from (6), one has the following eigenvalue problem:[
(µKmm − ω2M) ϵKme

ϵKT
me ϵKee

] {
∆u
∆Φ

}
=

{
0
0

}
(16)

When specialized to a two-degree of freedom model case, one has the following eigenvalue problem:[
(µkmm − ω2m) ϵkme

ϵkT
me ϵkee

] {
∆u
∆Φ

}
=

{
0
0

}
(17)

from which we find

ω2
coupled =

µkmm − ϵk2
me/kee

m
<

µkmm

m
= ω2

structure (18)

Eq. (18) demonstrates that the frequency of the electromechanically coupled system is smaller than the frequency
of the mechanical-only system, which implies that ∆tstructure < ∆tcoupled . Therefore, explicit integration of the
electromechanically coupled structural equation by the central difference method employing the step size determined
by the highest frequency of the uncoupled structural dynamics equation ensures computational stability.

As for accuracy considerations, the proposed explicit integration of the coupled structural dynamics equations
through Eq. (7) and implicit solution of the electrostatic equation in Eq. (10) yields second-order accuracy due to the
second-order accuracy properties of the central difference integrator [41].

The numerical experiments to be discussed in the following section will serve to corroborate the computational
stability, accuracy assessments as well as the justification for the explicit–implicit staggered methodology discussed
in the present section.

4. Numerical examples

We now present 2D and 3D numerical examples verifying the accuracy and efficiency of the proposed staggered
methodology as compared to previously developed monolithic approaches [9,11,22] for electroactive polymers. The
staggered explicit–implicit formulation was implemented into the open source simulation code Tahoe [47], which was
previously where the monolithic approach was implemented. All examples involve electromechanical instabilities,
i.e. wrinkling, creasing and bursting drops, to demonstrate the robustness of the proposed approach.

4.1. Surface tension-driven creasing to wrinkling transition in a 2D film

Our first numerical example considers a 2D, plane strain DE film as shown in Fig. 1. Previous experiments [28],
and numerical simulations [22] have demonstrated that as the surface tension γ on the top surface increases, the
electromechanical surface instability that occurs transitions from creasing to wrinkling. This instability transition is
driven by the surface tension driving force reduced surface area, leading to a smoother, longer wavelength surface
instability.

The film was fixed mechanically at the bottom surface (y = 0), with rollers on both the left and right sides. The
electrostatic boundary conditions were that the voltage on the bottom surface was kept at zero, i.e. Φ = 0, while the
voltage on the top surface was subject to a linearly increasing voltage with time, i.e. Φ = Φ(t). Additionally in order
to account for elastocapillary effects, the top surface was also subject to the Young–Laplace equations σ · n = 2κγ n,
where κ = −(1/2)∇s ·N is the mean curvature, γ is the surface tension and n is the normal vector to the surface. The
elastocapillary force resulting from the surface tension augments the right hand side of (7) as

fs = −

∫
γ∇sNda (19)
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Fig. 2. Creasing to wrinkling transition using staggered explicit–implicit method for a DE film with dimensions L = 160 and H = 4 for three
different elasto-capillary numbers γ̄ = γ /(µH ): (a) γ̄ = 0.25; (b) γ̄ = 2; (c) γ̄ = 16. ∥u∥ denotes the displacement magnitude.

Fig. 3. Creasing to wrinkling transition using fully coupled, monolithic method for a DE film with dimensions L = 160 and H = 4 for three
different elasto-capillary numbers γ̄ = γ /(µH ): (a) γ̄ = 0.25; (b) γ̄ = 2; (c) γ̄ = 16. ∥u∥ denotes the displacement magnitude.

where ∇s = (I − n ⊗ n)∇ is the surface gradient operator. The dimensions of the film were L = 160 and H = 4,
where the film was discretized with standard 4-node bilinear quadrilateral finite elements. For both the staggered and
monolithic solutions, 640 4-node elements were utilized, while a time step of ∆t = 0.01 was chosen for both models.
The same time step was chosen for both models so that we could, as close as possible, provide an apples to apples
comparison with regards to the computational expense of the staggered and monolithic formulations. For this and all
subsequent examples, the Q1P0 approach of Simo et al. [35] was used for both the staggered and monolithic methods
to mitigate the effects of volumetric locking.

Figs. 2 and 3 show the surface creasing to wrinkling transition for the staggered explicit–implicit and monolithic
methods, respectively. In both Figs. 2(a) and 3(a), a short wavelength surface creasing instability is observed
for elastocapillary numbers γ̄ = γ /(µH ) that are smaller than unity, where µ is the shear modulus. As the
elastocapillary number increases beyond unity in Figs. 2(b–c) and 3(b–c), a transition to a smoother, longer wavelength
wrinkling instability is observed, where the wrinkling wavelength increases with increasing elastocapillary number.
A comparison between Figs. 2 and 3 demonstrates the similarity between the staggered and monolithic solutions.
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Fig. 4. Elasto-capillary number γ /(µH ) vs. critical electric field Ec
√

ϵ/µ for both monolithic and staggered explicit–implicit schemes.

Fig. 5. Elasto-capillary number vs. wavelength ℓ/H for both monolithic and staggered explicit–implicit schemes.

Furthermore, the creasing to wrinkling transition shown here is consistent with previous experimental [28] and
computational [22] studies.

To provide a more precise comparison between the monolithic and staggered results, we also measured the
normalized critical electric field Ec

√
ϵ/µ at the onset of surface instability as a function of the elasto-capillary number

γ /(µH ) for both the monolithic and staggered models, where ϵ is the dielectric constant. The results show excellent
agreement with one another, as shown in Fig. 4. Finally, we measured the wavelength ℓ = l/H of the creases and
wrinkles formed on the surface, where l is the distance between creases or wrinkles, and H is the film thickness. Fig. 5
demonstrates that there is excellent agreement on the wavelength as a function of elastocapillary number between the
monolithic and staggered approaches, where the accuracy of the monolithic model was previously shown in the work
of Seifi and Park [22].
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Fig. 6. Axisymmetric computational model for bursting drop in a dielectric solid based on experiment by Wang et al. [30].

4.2. Bursting drops in a 2D plane strain film

Our second numerical example in 2D considers the case of a bursting drop, as shown in Fig. 6. In this problem, the
electromechanical instability of interest revolves around a small droplet of conductive fluid contained within a DE,
which elongates in a crack-like fashion towards the boundaries of the DE where the voltage is applied. This example
has also been studied experimentally [30], and computationally [10,22].

We performed numerical simulations using both the monolithic and staggered models by utilizing the one quarter
computational domain with the electromechanical boundary conditions shown in Fig. 6. This model had dimensions
20 × 20 with the radius of the quarter circular hole being R◦ = 2. This axisymmetric domain was again discretized
using standard 4-node bilinear quadrilateral finite elements with a mesh size of unity. The voltage was prescribed to
be zero along the hole perimeter and along the bottom surface, while the top surface was subject to a voltage that
increased linearly in time.

The time evolution of the drop for both the monolithic and staggered methods is shown in Fig. 7. The figure shows
three stages of deformation of the droplet subjected to the applied electric field, starting at the point where the drop
elongation has just begun in Fig. 7(a) and (d), along with two other comparisons between the monolithic and staggered
formulations in Fig. 7(b) and (e) and also Fig. 7(c) and (f). In all cases, the drop configuration compares well between
the monolithic and staggered solutions.

Besides the pictorial comparison of the time evolution of the bursting drop configuration in Fig. 7, we also plot the
position of the bursting drop tip as a function of applied electric field in Fig. 8, which demonstrates that the position
of the bursting drop tip as a function of the applied electric field is captured nearly identically between the monolithic
and staggered methods.

4.3. 3D example

In our final example, we demonstrate the computational efficiency of the staggered methodology by examining
a problem involving creasing electromechanical instability in 3D. Some previous studies have considered 3D
problems [14,21], but only for simple geometries without complex electromechanical instabilities.

Here, we modeled the problem involving creasing of a 3D DE film that we showed in the first numerical example
through the 2D, plane strain approximation. The computational domain with dimensions H × L ×W = 4× 25× 25
shown in Fig. 10(a) is modeled using standard 8-node hexahedral finite elements with a mesh spacing of 0.5, giving
20 000 finite elements in total, while the same time step of ∆t = 0.005 was used for both the staggered and monolithic
solutions. The boundary conditions are an extension of the 2D problem as the bottom surface is fixed, while all
transverse surfaces are on rollers. The electrostatic boundary conditions are specified similar to the 2D problem,
i.e. with a zero voltage prescribed on the bottom surface while the top surface is subject to a voltage that linearly
increases with time as shown in Fig. 9.

The result of this simulation is shown in Fig. 10(b). The surface creasing instability occurs when the electric
field is Ec = 1.08

√
µ/ϵ, which is in good agreement with previous theoretical predictions [29]. Furthermore, we

found that the creasing wavelength is about ℓ = l/H ≈ 1.46 which is quite close to the creasing wavelength of
ℓ = l/H ≈ 1.5 found for the 2D problem. For both the 2D and 3D problems, the creasing wavelengths found are very
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Fig. 7. Fully coupled, monolithic solution on the left side (a)–(c) vs. staggered, explicit–implicit solution on the right side (d)–(f) for the bursting
drop problem. (a) and (d) at t = 0, (b) and (e) at t = tmid and (c) and (f) at t = t f inal . ∥u∥ denotes the displacement magnitude.

Fig. 8. Normalized position of the bursting drop tip b/R◦ as a function of applied electric field Etop , where R◦ is the initial radius of the drop, and
b is the long axis of the bursting drop.
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Fig. 9. 3D computational model for creasing of DE plate with dimensions H × W × L . The plate is fixed at the bottom with rollers on all sides,
while a monolithically increasing voltage Φ = Φ(t) is applied to the top surface while the bottom surface remains voltage-free.

Fig. 10. 3D simulations of creasing of a DE film. (a) initial undeformed configuration; (b) the deformed configuration shows the creased surface
with normalized wavelength ℓ = l/H ≈ 1.46 where the critical electric field is Ec

√
ϵ/µ ≈ 1.08.

close to the experimental and analytic solution of ℓ = l/H = 1.5 [29], demonstrating the accuracy of the staggered
formulation.

We finally discuss the benefits in computational expense reduction that may be gained through utilization of the
staggered approach. Specifically, we show in Fig. 11 a comparison of the normalized computational time tm/ts , where
tm represents the total simulation time for the monolithic approach, and where ts represents the total simulation time for
the staggered approach, with both numbers taken for different mesh sizes for the 3D creasing problem. As expected,
there is a significant decrease in computational expense for the staggered method, particularly when the number of
degrees of freedom exceeds about 1000.

5. Conclusions

In conclusion, we have provided theoretical justification for the stability and accuracy of a simple staggered,
explicit–implicit finite element formulation for systems, such as electroactive polymers, that are governed by a
coupling between Gauss’s law for electrostatics and the momentum equation for the mechanical domain. The full
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Fig. 11. Ratio of elapsed time for monolithic model over elapsed time for staggered model (tm/ts ) as a function of the total numbers of
unconstrained degrees of freedoms ndof for the 3D creasing problem.

electromechanical coupling is enabled through the free energy, which enables the correct coupling to enter into both
the finite element-discretized momentum and electrostatic equations.

The staggered formulation was shown to give identical solutions to the monolithic formulation for a range of
problems involving electromechanical instabilities, though obviously at a significant reduction in computational
expense. While the monolithic formulation has enabled significant insights into the electromechanics of dielectric
elastomers for 2D, plane strain problems [11,10,22,36], very few studies on such instabilities have been performed
in 3D. We anticipate this is where the presently proposed staggered formulation will enable the most significant new
insights into the electromechanical behavior of dielectric elastomers. We also note that while we did not perform any
parallel computations, the explicit solution of the structural problem opens up standard parallel computing capabilities
that can be used to solve larger problems with significantly more mechanical and electrostatic degrees of freedom.

Finally, we anticipate that the staggered formulation presented here may have applicability to a different class
of electromechanical coupling in soft materials that has recently emerged, that of flexoelectricity [48–50]. In
computational formulations of flexoelectricity, all approaches to-date have also followed a monolithic formulation
involving complex electromechanical coupling tensors [23,51–54]. It is possible that staggered formulations following
the approach proposed here may be similarly effective for problems involving flexoelectricity; such investigations are
currently underway.
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