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Rashba-like dispersion in buckled square lattices
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The band structure of a general class of buckled square lattice materials is investigated using ab initio
calculations along with tight-binding modeling. We show that buckling and spin-orbit interaction give rise to a
large Rashba-like splitting in the absence of an external electric field. The generality and the robustness of the
effect make this class of materials promising candidates for spintronic applications.
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I. INTRODUCTION

The spin-orbit interaction (SOI) occupies a special place
in physics, where even its simplest manifestation is highly
nontrivial, being relativistic in nature. In solid-state systems,
SOI can be either extrinsic or intrinsic. Extrinsic systemwide
SOI is generally described using the Rashba formalism, where
a perpendicular electric field is applied to the system, leading
to a lifting of band degeneracy.

Intrinsic SOI in two dimensions is only detected in
materials with heavy elements, like some transition-metal
dichalcogenides, or graphene-like buckled “X”enes. For both
classes of materials, SOI results in band splitting, opening
a gap [1–6]. In addition, a recent paper [7] used symmetry
arguments to predict the properties of nodal materials arising
from strong spin-orbit coupling.

In this work, we focus our attention on buckled square
lattices with strong spin-orbit coupling. We show that unlike
hexagonal lattices where SOC leads to level splitting and/or
gap opening the K point, here, spin-orbit effects result in a
Rashba-like dispersion even without an external electric field.
It is worth noting that while this work is theoretical, the class
of systems considered has very simple structures and can be
constructed using existing technology [8,9]. In addition, we
have performed ab initio calculations to show that the system
in question is amenable to being grown on top of metallic
substrates.

The paper is organized as follows. In Sec. II, we construct
a tight binding model for a general buckled square lattice.
Following this, we focus on two high-symmetry points of the
Brillouin zone in Sec. III to show the appearance of the Rashba-
like dispersion. Our results demonstrate that this dispersion is
found at the M point even when the lattice is composed of a
single atomic species with no dipole moment perpendicular to
the system. At the � point, on the other hand, the Rashba-like
bands arise only if the lattice contains two different types of
atoms. We provide a numerical confirmation of our results
in Sec. IV. Discussion and conclusions can be found in
Sec. V.

II. TIGHT BINDING

In this section, we construct a tight-binding Hamiltonian
for a general buckled square lattice involving s and p orbitals.

The purpose of the tight-binding model is to provide an
intuitive platform for understanding the microscopic origins
of the Rashba-like dispersion. In the following section, we
will consider � and M points of the Brillouin zone using a
low-momentum expansion of the full Hamiltonian we obtain
here.

To keep the number of hopping parameters to a minimum,
we include only nearest neighbor hopping. We proceed by first
neglecting spin-orbit effects in order to simplify the problem
by focusing on a single spin.

A buckled square lattice is composed of two inequivalent
shifted square sublattices A and B, as seen in Fig. 1. We
set the bond length to a and the (buckling) angle that it
makes with the horizontal to θ . This yields the unit cell
size of 2αa × 2αa, where α = cos θ/

√
2. From this, the

dimensions of the Brillouin zone are − π
2αa

� qx,qy � π
2αa

.
As a concrete example of such a lattice, Fig. 1 shows a
buckled square lattice of lead atoms on top of bulk copper [100]
surface.

Since we allow hopping only between nearest neighbors,
in the absence of spin-orbit interaction, there is no coupling
between different orbitals of the same sublattice. This means
that in the basis of (s, px, py, pz), the onsite energies are given
by

�i =

⎛
⎜⎜⎜⎝

Si 0 0 0

0 Pi 0 0

0 0 Pi 0

0 0 0 Pi

⎞
⎟⎟⎟⎠ , (1)

where Si and Pi are s- and p-orbital energies for sublattice i.
To write down the hopping matrix, we use the following

Slater-Koster matrix elements for the orbitals of neighboring
atoms [10]:

s-s : Vssσ ,

s-p : Vspσ d̂ · ôj ,

p-p : (ôi · ôj )Vppπ + (ôi · d̂)(ôj · d̂)(Vppσ − Vppπ ) . (2)

Here, ôi is the orientation of the ith orbital and d̂ is the unit
vector pointing from atom 1 to atom 2. This leads to the
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following A → B hopping matrix:

K = 4 cos(kx) cos(ky)

⎛
⎜⎜⎝

Vssσ 0 0 −βV (1)
spσ

0 Vppπ + α2	 0 0
0 0 Vppπ + α2	 0

βV (2)
spσ 0 0 Vppπ + β2	

⎞
⎟⎟⎠ − 4α2	 sin(kx) sin(ky)

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠

+ 4α cos(kx) sin(ky)

⎛
⎜⎜⎝

0 0 iV (1)
spσ 0

0 0 0 0
−iV (2)

spσ 0 0 −iβ	

0 0 −iβ	 0

⎞
⎟⎟⎠ + 4α cos(ky) sin(kx)

⎛
⎜⎜⎝

0 iV (1)
spσ 0 0

−iV (2)
spσ 0 0 −iβ	

0 0 0 0
0 −iβ	 0 0

⎞
⎟⎟⎠ . (3)

The dimensionless momentum kx/y = αaqx/y and β = sin θ . To keep the expression more compact, we have introduced
	 = Vppσ − Vppπ . In addition, since A and B species are not necessarily the same, we have two quantities of the Vspσ form.

While it is convenient to use s and p orbitals to write down the hopping matrix, since we are interested in including SOI in
our model, it is helpful to go to a basis which is more natural for the angular momentum operators:

|0,0〉 = |s〉 , |1,±1〉 = ∓|px〉 − i|py〉√
2

, |1,0〉 = |pz〉 , (4)

where the first number represents the orbital momentum quantum number and the second one is its projection along the ẑ direction.
This basis change does not alter the � matrices. The interlattice hopping portion of the Hamiltonian, on the other hand, becomes

K̃ = 4 cos(kx) cos(ky)

⎛
⎜⎜⎝

Vssσ 0 0 −βV (1)
spσ

0 Vppπ + α2	 0 0
0 0 Vppπ + α2	 0

βV (2)
spσ 0 0 Vppπ + β2	

⎞
⎟⎟⎠ + 4α2	 sin(kx) sin(ky)

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠

+ 2
√

2α sin(kx) cos(ky)

⎛
⎜⎜⎜⎝

0 −iV (1)
spσ iV (1)

spσ 0
iV (2)

spσ 0 0 iβ	

−iV (2)
spσ 0 0 −iβ	

0 iβ	 −iβ	 0

⎞
⎟⎟⎟⎠ + 2

√
2α sin(ky) cos(kx)

⎛
⎜⎜⎜⎝

0 V (1)
spσ V (1)

spσ 0

V (2)
spσ 0 0 β	

V (2)
spσ 0 0 β	

0 −β	 −β	 0

⎞
⎟⎟⎟⎠ .

(5)

In the following section, we will obtain simplified Hamil-
tonians for high-symmetry points of the Brillouin zone and
include the atomic spin-orbit interaction in them.

III. EFFECTIVE HAMILTONIAN

Having constructed a tight-binding Hamiltonian for a
general buckled system, we show how spin orbit coupling
gives rise to the Rashba-like dispersion at the high-symmetry
points of the Brillouin zone.

For the square Brillouin zone of our system, there are two
particular points of interest: � and M . We will address them
individually using a simplified version of K̃ from Eq. (5).
Before we proceed, however, let us introduce the atomic spin-
orbit coupling Hamiltonian:

Hi
SOC = Ti

(
L+ ⊗ s− + L− ⊗ s+

2
+ Lz ⊗ sz

)
, (6)

where L± and s± are the ladder operators for orbital and spin
angular momenta, and Lz and sz are the angular momentum
operators in ẑ. The index i labels the sublattice.

The orbital angular momentum ladder operators are well
suited for our new basis as they operate on the second quantum
number in Eq. (4) to change it by one. Thus, the term of Hi

SOC
with the ladder operators couples |1,1〉 ⊗ |↓〉 with |1,0〉 ⊗ |↑〉
and |1,−1〉 ⊗ |↑〉 with |1,0〉 ⊗ |↓〉 of the same sublattice with
the coupling strength TSO/

√
2. The second term, one the other

hand, modifies the diagonal elements of the self-energy for
|1,±1〉 by adding (subtracting) TSO/2 if Lz and sz point in the
same (opposite) direction.

A. M point

We start by turning our attention to the M point, located
at the corner of the Brillouin zone at kx = ky = π/2. As was
stated earlier, we can show that the Rashba-like bands at the
M point require only buckling and sufficiently strong SOI.
In other words, this dispersion explicitly does not require a
transverse electric field.

To the leading order in k, the hopping matrix K̃ becomes

K̃ = 4α2	

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠

− 2
√

2αk

⎛
⎜⎜⎜⎜⎝

0 V (1)
spσ e−iφ V (1)

spσ eiφ 0

V (2)
spσ eiφ 0 0 β	eiφ

V (2)
spσ e−iφ 0 0 β	e−iφ

0 −β	e−iφ −β	eiφ 0

⎞
⎟⎟⎟⎟⎠ ,

(7)

where φ is the angle measured from the x̂ direction. At k = 0,
the Hamiltonian decomposes into several uncoupled blocks
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FIG. 1. (Top) Buckled square lattice with the two sublattices
represented by the two different colors. The dashed square marks the
unit cell. (Bottom) Pb buckled square lattice on top of bulk copper.

with the corresponding bases:

Hm,±
s = Sm : |0,0〉 ⊗ |±〉 ⊗ |m〉 ,

Hmn,±
p =

⎛
⎜⎝

Pm − Tm

2
Tm√

2
∓4iα2	

Tm√
2

Pm 0

±4iα2	 0 Pn + Tn

2

⎞
⎟⎠ :

⎛
⎜⎝

|1,±1〉 ⊗ |∓〉 ⊗ |m〉
|1,0〉 ⊗ |±〉 ⊗ |m〉
|1,∓1〉 ⊗ |∓〉 ⊗ |n〉

⎞
⎟⎠ , (8)

where m 	= n label the sublattices and the middle |±〉 ket
denotes the spin state. Using the direct sum notation, we can
write down the total Hamiltonian as H = HA,+

s ⊕ HA,−
s ⊕

HB,+
s ⊕ HB,−

s ⊕ HAB,+
p ⊕ HAB,−

p ⊕ HBA,+
p ⊕ HBA,−

p .
From Hs , we see that for a given m, the eigenstates are spin

degenerate. The degeneracy becomes fourfold if the atoms of
sublattices A and B are the same, leading to SA = SB. Equation
(7) shows that at finite k there is no coupling between the
degenerate |0,0〉 states that is linear in momentum. This means
that the bands composed of s orbitals have local extrema at the
M point.

Next, we turn to Hp from Eq. (8). Just as for Hs , the bands
are doubly or fourfold degenerate depending on whether the
sublattices are composed of the same atomic species. Without
making assumptions about the lattice composition, the general
form of the degenerate states is

|�±〉mn = a|1,±1〉 ⊗ |∓〉 ⊗ |m〉 + b|1,0〉 ⊗ |±〉 ⊗ |m〉
± ic|1,∓1〉 ⊗ |∓〉 ⊗ |n〉 , (9)

with a, b, and c real. At finite k,

mn〈�+|H |�−〉mn = −2 sin 2θbc
(
	ike−iφ

)
εmn , (10)

where εAB = −εBA = 1 is the two-dimensional Levi-Civita
symbol. This coupling between the degenerate states leads to
an effective Rashba-like Hamiltonian:

Hmn
eff = 2 sin 2θbc	εmn[(k × σ ) · ẑ] :

(|�+〉mn

|�−〉mn

)
. (11)

It is important to keep in mind that the product bc in
the Eq. (11) depends on the identities of the m and n

sublattices and swapping them leads to a different bc. The
Hamiltonian in Eq. (11) results in a linear dispersion which,
when superimposed on the underlying curvature of the band at
the M point, leads to a Rashba-like dispersion. The presence
of sin 2θ explicitly shows that for a flat lattice with θ = 0, the
prefactor of the Hamiltonian in Eq. (11) goes to zero, leading to
a vanishing Hamiltonian. The upper and lower linear branches
of Eq. (11) are given by

|U/L〉mn = 1√
2

(
1

±εmnie
iφ

)
. (12)

Just as with traditional Rashba states, the wave functions in
Eq. (12) have spins pointing perpendicular to the momentum
with the upper and lower branches manifesting opposite spins.
In addition, it is straightforward to see that because of the
Levi-Civita term in Eq. (11), the spin texture of the upper and
lower branches of Hmn

eff is opposite to that of Hnm
eff . Generally,

the energies of the |U/L〉mn and |U/L〉nm are not equal,
resulting in a nonvanishing spin texture. If, however, the lattice
is composed of a single atomic species, the bands of Hmn

eff and
Hnm

eff become degenerate and their opposite spin orientation
leads to the overall cancellation of the spin texture while
retaining the linear dispersion.

B. � point

Next, we move to the � point at the center of the Brillouin
zone. Unlike the M point, the Rashba-like dispersion appears
only for heterogeneous lattices. Moreover, because of the
band composition and the required coupling between different
orbitals, the splitting here will generally be weaker than at the
M point.

As before, we start by obtaining the simplified effective
Hamiltonian. Here, K̃ does not undergo such a drastic
simplification as at the corner of the Brillouin zone:

K̃ = 4

⎛
⎜⎜⎜⎜⎜⎝

Vssσ 0 0 −βV (1)
spσ

0 Vppπ + α2	 0 0

0 0 Vppπ + α2	 0

βV (2)
spσ 0 0 Vppπ + β2	

⎞
⎟⎟⎟⎟⎟⎠

− 2
√

2iαk

⎛
⎜⎜⎜⎜⎜⎝

0 V (1)
spσ eiφ −V (1)

spσ e−iφ 0

−V (2)
spσ e−iφ 0 0 −β	e−iφ

V (2)
spσ eiφ 0 0 β	eiφ

0 −β	eiφ β	e−iφ 0

⎞
⎟⎟⎟⎟⎟⎠ .

(13)
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For k = 0, we get the following uncoupled Hamiltonian blocks:

H±
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

SA 0 0 4Vssσ 0 −4βV (1)
spσ

0 PA − TA
2

TA√
2

0 4Vppπ + 4α2	 0

0 TA√
2

PA 4βV (2)
spσ 0 4Vppπ + 4β2	

4Vssσ 0 4βV (2)
spσ SB 0 0

0 4Vppπ + 4α2	 0 0 PB − TB
2

TB√
2

−4βV (1)
spσ 0 4Vppπ + 4β2	 0 TB√

2
PB

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0,0〉 ⊗ |±〉 ⊗ |A〉
|1,±1〉 ⊗ |∓〉 ⊗ |A〉
|1,0〉 ⊗ |±〉 ⊗ |A〉
|0,0〉 ⊗ |±〉 ⊗ |B〉

|1,±1〉 ⊗ |∓〉 ⊗ |B〉
|1,0〉 ⊗ |±〉 ⊗ |B〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H±
2 =

(
PA + TA

2 4Vppπ + 4α2	

4Vppπ + 4α2	 PB + TB
2

)
:

(
|1,±1〉 ⊗ |±〉 ⊗ |A〉
|1,±1〉 ⊗ |±〉 ⊗ |B〉

)
. (14)

Just as before, the blocks are doubly degenerate. The total
Hamiltonian can be written as H = H+

1 ⊕ H−
1 ⊕ H+

2 ⊕ H−
2 .

From Eq. (13), one can see that at finite k, only Lz = 0 and
Lz 	= 0 are coupled. This means that the degenerate eigenstates
of H2 blocks remain uncoupled since they are composed
exclusively of Lz 	= 0 states.

The case of H2 is slightly more complicated. The general
form of the degenerate wave functions is

|�±〉 = aA|0,0〉 ⊗ |±〉 ⊗ |A〉 + bA|1,±1〉 ⊗ |∓〉 ⊗ |A〉
+ cA|1,0〉 ⊗ |±〉 ⊗ |A〉 + aB|0,0〉 ⊗ |±〉 ⊗ |B〉
+ bB|1,±1〉 ⊗ |∓〉 ⊗ |B〉 + cB|1,0〉 ⊗ |±〉 ⊗ |B〉 .

(15)

Similarly to the M point, here we get

〈�+|H |�−〉 = 4
√

2iαke−iφ
[
aAbBV (1)

spσ + aBbAV (2)
spσ

+β	(cBbA − cAbB)
]
. (16)

Despite being somewhat more elaborate compared to Eq. (10),
Eq. (16) has the same form. The main difference between
the two points of the Brillouin zone appears when the atoms
of both sublattices are the same. In this case, V (1)

spσ = V (2)
spσ .

Additionally, aA = −aB, bA = bB, and cA = cB, leading to a
vanishing matrix element in Eq. (16). Thus, unlike the M

point, where having a lattice composed of a single atomic
type eliminates the spin texture while preserving the linear
dispersion, Rashba-like dispersion at the � point requires two
different atomic species.

IV. AB INITIO CALCULATIONS

We performed density functional theory (DFT) calcula-
tions implemented in QUANTUM ESPRESSO package [11] to
simulate heavy elements BI, Pb, and Sn in a square lattice
geometry. We employed projector augmeneted-wave (PAW)
pseudopotential with Perdew-Burke-Ernzerhof (PBE) for the
exchange and correlation functional within the generalized
gradient approximation (GGA) [12]. The Kohn-Sham orbitals
were expanded in a plane-wave basis with a cutoff energy
of 70 Ry, and for the charge density a cutoff of 280 Ry
was used. A k-point grid sampling grid was generated using
the Monkhorst-Pack scheme with 16 × 16 × 1 points [13].
For electronic band structure calculations, the spin-orbit
interaction was included using noncollinear calculations with

fully relativistic pseudopotentials. In Table I, we tabulate the
optimized geometrical parameters of buckled heavy metal
monolayers.

We use Rashba-like dispersion near the M point which is
consistent with our TB prediction, shown in Fig. 2. In addition,
since the A and B sublattices are composed of the same atomic
species, there is no Rashba-like splitting at the � point.

In addition, we provide band structures of two lattices
composed of two atomic species; see Fig. 2. As expected,
breaking the species symmetry lifts the band degeneracy and
introduces a Rashba-like dispersion at �.

V. DISCUSSION AND CONCLUSIONS

Having shown that buckled square lattices can give rise to
Rashba-like bands, we now explain why the buckling of the
system is a vital component. To keep the discussion as simple
as possible, we focus on the M point.

Revisiting Eq. (9), we see that |�±〉mn contains the state
|1,0〉 ⊗ |m〉 with the spin given by the superscript of �. The
fact that these two states are coupled to give rise to the
linear dispersion means that there is a finite amplitude for
spin-flipping processes for |1,0〉. The mechanism that allows
the change of spin is spin-orbit interaction. To understand
why buckling is required in addition to SOC, consider Fig. 3.
This figure shows a set of steps describing a spin-flipping
process. The path involves a transition between in-plane and
out-of-plane orbitals of different atoms. From this illustration,
it is clear why the lattice has to be buckled: In a flat lattice,
pz orbitals decouple from px and py , making the first hop
impossible.

From our cartoon illustration in Fig. 3, it might appear
that we have done unnecessary work by considering a square
lattice because one only needs a zigzag 1D chain, similar to

TABLE I. Lattice constant a, buckling angle θ , buckling height
dz, and nearest-neighbor bond distance d .

2αa (Å) θ (◦) dz (Å) d (Å)

BiBi 3.89 30.3 3.04 3.19
PbPb 3.44 44.3 4.49 3.40
PbBi 3.63 38.4 3.84 3.26
PbSn 3.36 44.7 4.45 3.34
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FIG. 2. Top row: band structures of Pb (a) and Bi (b). Fermi energy is set to be zero. Red lines indicate when spin-orbit interaction is
included. Bottom row: Band structures for PbSn (c) and PbBi (d). Note the appearance of Rashba-like splitting at the � point and lifted
degeneracy at the M point.

polyacetylene. It is possible to show that 1D chains are not
sufficient by performing a full tight-binding analysis. However,
an easier way to see that 1D chain is insufficient involves
rotating it 90◦ around the longitudinal axis so that the zigzags
are in the xy plane. In this orientation, pz orbitals are decoupled
and, as we determined above, one needs coupling between
in-plane and out-of-plane orbitals to observe the SOI-induced
band splitting.

z

y

x

FIG. 3. Hopping path, leading to a spin-flip for an out-of-plane
orbital. The first and third atoms belong to the same sublattice, and
the middle one is a part of the other sublattice. The transition between
the out-of-plane and in-plane orbitals is only allowed if the lattice is
buckled. The transitions on the right-hand side of the dashed line take
place within one eigenstate (e.g., |�+〉mn). The hop across the dashed
line is the transition between the two degenerate eigenstates of the
Hamiltonian.

To summarize, we have shown that Rashba-like dispersion
can arise in the absence of an external electric field in
buckled materials with a strong spin-orbital coupling. The
magnitude of the band splitting depends on the strength of
the spin-orbit interaction and can reach the scale of electron
volts for heavier atoms, making the spin texture separation
stable against thermal fluctuations. This, along with the fact
that the materials possess a fairly simple structure, makes them
suitable candidates for spintronic applications.
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