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Pseudomagnetic fields in graphene nanobubbles of constrained geometry:
A molecular dynamics study
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Analysis of the strain-induced pseudomagnetic fields generated in graphene nanobulges under three different
substrate scenarios shows that, in addition to the shape, the graphene-substrate interaction can crucially determine
the overall distribution and magnitude of strain and those fields, in and outside the bulge region. We utilize
a combination of classical molecular dynamics, continuum mechanics, and tight-binding electronic structure
calculations as an unbiased means of studying pressure-induced deformations and the resulting pseudomagnetic
field distribution in graphene nanobubbles of various geometries. The geometry is defined by inflating graphene
against a rigid aperture of a specified shape in the substrate. The interplay among substrate aperture geometry,
lattice orientation, internal gas pressure, and substrate type is analyzed in view of the prospect of using strain-
engineered graphene nanostructures capable of confining and/or guiding electrons at low energies. Except in
highly anisotropic geometries, the magnitude of the pseudomagnetic field is generally significant only near the
boundaries of the aperture and rapidly decays towards the center of the bubble because under gas pressure at the
scales considered here there is considerable bending at the edges and the central region of the nanobubble displays
nearly isotropic strain. When the deflection conditions lead to sharp bends at the edges of the bubble, curvature
and the tilting of the pz orbitals cannot be ignored and contributes substantially to the total field. The strong and
localized nature of the pseudomagnetic field at the boundaries and its polarity-changing profile can be exploited
as a means of trapping electrons inside the bubble region or of guiding them in channellike geometries defined
by nanoblister edges. However, we establish that slippage of graphene against the substrate is an important factor
in determining the degree of concentration of pseudomagnetic fields in or around the bulge since it can lead to
considerable softening of the strain gradients there. The nature of the substrate emerges thus as a decisive factor
determining the effectiveness of nanoscale pseudomagnetic field tailoring in graphene.
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I. INTRODUCTION

Since the discovery of a facile method for its isolation,
graphene [1], the simplest two-dimensional crystal, has at-
tracted intense attention not only for its unusual physical
properties [2–5], but also for its potential as the basic building
block for a wealth of device applications. There exist key
limitations that appear to restrict the application of graphene
for all-carbon electronic circuits: One such limitation is that
graphene, in its pristine form, is well known to be a semimetal
with no band gap [3]. A highly active field of study has
recently emerged based on the idea of applying mechanical
strain to modify the intrinsic response of electrons to external
fields in graphene [6–8]. This includes the strain-induced
generation of spectral (band) gaps and transport gaps, which
suppress conduction at small densities. In this context, several
groups [6,9–19] have employed continuum mechanics coupled
with effective models of the electronic dynamics to study
the generation of pseudomagnetic fields (PMFs) in different
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graphene geometries and subject to different deformations.
The potential impact of strain engineering beyond the genera-
tion of band gaps has also attracted tremendous interest [10,20–
22].

Pereira et al. [23] showed that a band gap will not emerge
under simple uniaxial strain unless the strain is larger than
roughly 20%. This theoretical prediction, based on an effective
tight-binding model for the electronic structure, has been
subsequently confirmed by various more elaborate ab initio
calculations [24–26]. The robustness of the gapless state arises
because simple deformations of the lattice lead only to local
changes of the position of the Dirac point with respect to the
undeformed lattice configuration [27,28] and to anisotropies
in the Fermi surface and Fermi velocity [29]. The shift in the
position of the Dirac point is captured, in the low-energy, two-
valley, Dirac approximation, by a so-called pseudomagnetic
vector potential and resulting PMF that arises from the strain-
induced perturbation of the tight-binding hoppings [28]. As a
result, electrons react to mechanical deformations in a way that
is analogous to their behavior under a real external magnetic
field, except that overall time-reversal symmetry is preserved,
since the PMF has opposite signs in the two time-reversal
related valleys [3].

Guinea et al. [6] found that nearly homogeneous PMFs
could be generated in graphene through triaxial stretching,
but the resulting fields were found to be moderate, unless
relatively large (i.e., >10%) tensile strains could be applied.
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Unfortunately, such large planar tensile strains have not been
experimentally realized in graphene to date. This is arguably
attributed to the record-high tensile modulus of graphene
and the unavoidable difficulty in effectively transferring the
required stresses from substrates to this monolayer crystal [30].

It is thus remarkable that recent experiments report the
detection of nonuniform strain distributions in bubblelike
corrugations that generate PMFs locally homogeneous enough
to allow the observation of Landau quantization by local
tunneling spectroscopy. The magnitude of the PMFs reported
from the measured Landau level spectrum reaches hundreds
(300–600) of Teslas [31,32], providing a striking glimpse
of the impact that local strain can potentially have on the
electronic properties. A difficulty with these experiments
is that, up to now, such structures have been seen and/or
generated only in contact with the metallic substrates that are
used in the synthesis of the sample. This is an obstacle, for
example, to transport measurements, since this would require
the transfer of the graphene sheet to another substrate, thereby
destroying the favorable local strain distribution. In addition, a
systematic study of different graphene bubble geometries and
substrate types, which could reveal the subtleties that different
geometries bring to the related strain-induced PMFs has not
been reported. Furthermore, most previous studies of the
interplay between strain and electronic structure in graphene
have addressed the deformation problem from an analytic
continuum mechanics point of view, with the exception of
a few recent computational studies [33,34].

It is in this context that we report here results from classical
molecular dynamics (MD) simulations of strained graphene
nanobubbles induced by gas pressure. The MD simulations
are used to complement and compare continuum mechanics
approaches to calculating strain, in order to examine the
pressure-induced PMFs in ultrasmall graphene nanobubbles
of diameters on the order of 5 nm. Controlled synthesis of
such small strained nanobubbles has gained impetus following
the recent experiments by Lu et al. [32]. Our aim is to use an
unbiased calculation for the mechanical response of graphene
at the atomistic level, on the basis of which we can (i) extract
the relaxed lattice configurations without any assumptions;
(ii) calculate the PMF distribution associated with different
nanobubble geometries; (iii) discuss the influence of substrate
and aperture shape on PMF distribution; and (iv) identify
conditions under which explicit consideration of the curvature
is needed for a proper account of the PMFs.

We first describe the simulation methodology that was
employed to determine the atomic displacements from which
the strain tensor, modified electronic hopping amplitudes, and
PMFs can be obtained. This is followed by numerical results
of the strain-induced PMFs for different graphene nanobubble
geometries in a simply clamped scenario. We next discuss
the considerable importance of the substrate interaction and,
finally, analyze the relative contributions of orbital bending
and bond stretching to the total PMF.

II. SIMULATION METHODOLOGY

Recent experiments have shown that graphene nanobubbles
smaller than 10 nm can be prepared on metallic substrates,
and that large PMFs in the hundreds of Tesla result from

the locally induced nonhomogeneous strain [31,32]. Because
such small nanobubbles can be directly studied using classical
MD simulations, we employ MD to obtain the deformed
graphene bubble configurations due to an externally applied
pressure. The atomistic potentials that describe the carbon-
carbon interactions have been extensively investigated and,
hence, graphene’s nanomechanics can be simulated without
any particular bias, and to a large accuracy within MD. Once
the deformation field is known from the simulations, we
obtain the strain distribution in the inflated nanobubble, finally
followed by a continuum gauge field approach to extract the
resulting PMF distribution [3,6,9,11–13].

A. Details of the MD simulations

Our MD simulations were done with the Sandia-developed
open source code LAMMPS [36,37]. The graphene nanobubble
system consisted of three parts, as illustrated in Fig. 1: a
graphene monolayer, the hexagonal (111) surface of an fcc
gold substrate, and argon gas which was used to inflate the
graphene bubble. We used the AIREBO potential [38] to
describe the C-C interactions, as this potential has been shown
to accurately describe the various carbon interactions including
bond breaking and reforming [39,40]. The substrate-graphene
and gas-graphene interactions were modeled by a standard
12-6 Lennard-Jones potential:

V (rij ) = 4 εij

[(
σij

rij

)12

−
(

σij

rij

)6]
, (1)

where rij represents the distance between the ith carbon and
the j th gold atom.

The dimension of the simulation box was 20 × 20 × 8 nm3,
and the substrate was comprised of Au atoms with a thickness
of 2 nm, or about 2.5 times the cutoff distance of the
interatomic potential [41]. Apertures of different shapes (viz.,
triangle, rectangle, square, pentagon, hexagon, and circle)

FIG. 1. (Color online) Illustration of the strategy employed in our
studies to generate nanobubbles by pressurizing graphene through a
predefined substrate aperture. The picture shows one of the actual
simulation cells used in our MD computations. In gold, gray, and red
colors are represented, respectively, the Au substrate, the graphene
sheet, and the Ar atoms. A hole is carved in the Au substrate
(perimeter outlined), and its perimeter geometry determines the shape
of the resulting graphene bubble. Visualization is performed using
VMD [35].
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were “etched” in the center of the substrate to allow the
graphene membrane to bulge inwards due to the pressure
exerted by the Ar gas. The whole system was first relaxed
for 50 ps, at which time the Ar gas was pushed downward
(as in a piston) to exert pressure on the graphene monolayer,
causing it to bulge inward in the shape cut-out from the gold
substrate. The system is then allowed to equilibrate again
under the increased gas pressure. All simulations were carried
out at room temperature (300 K) using the Nose-Hoover
thermostat [42]. The choice of Ar in our calculations is not
mandatory. Substitution with other molecular species should
pose no difficulty, the same being true regarding the substrate,
as shown previously in Refs. [34,41].

To elucidate the effect of different substrates on the PMF
distributions in the nanobubbles, we perform MD simulations
with two different substrates, in addition to performing the
simulations with fixed edges and no substrate. Specifically,
we used both Au and Cu (111) substrates, where the detailed
parameters and descriptions will be discussed in later sections.

After obtaining the graphene bubble, we held the pressure
constant for 10 ps to achieve thermal equilibrium. We note
that during the entire simulation no gas molecules leaked
away from the system, which again demonstrates the ex-
perimentally observed atomic impermeability of monolayer
graphene [43,44].

Our simulations are close in spirit to the experiments
reported in Ref. [45], but targeting smaller hole apertures due
to computation limitation. We note that this method of using
gas pressure to generate the graphene nanobubbles is different
from the situations explored in the recent experiments that
focus on the PMF distribution [31,32]. However, it is in some
ways more controllable due to the utilization of a substrate with
a distinct pattern coupled with externally applied pressure to
force graphene through the patterned substrate to form a bubble
with controllable shape and height.

The final (inflated bubble) configuration gives us the basic
ingredients needed to extract the strain distribution in the
system, as well as the perturbed electronic hopping amplitudes.
To calculate the strain directly from the displaced atomic
positions we employ what we shall designate as the displace-
ment approach. We note that a previous study [46] used a
stress approach for a similar calculation. However, the stress
approach fails to predict reasonable results in our case, which
we attribute to the inability of the virial stresses to properly
convey the total stress at each atom of the graphene sheet
when the load results from interaction with gas molecules.
Furthermore, in the stress approach one assumes a planar (and,
in addition, usually linear) stress-strain constitutive relation
which leads to errors when large out-of-plane deformations
arise, as in the case of the nanobubbles. Further details on the
strain calculation are given in Appendix D.

B. Displacement approach to calculate strain

In continuum mechanics the infinitesimal strain tensor is
written in Cartesian material coordinates (Xi) as

εij = 1

2

(
∂ui

∂Xj

+ ∂uj

∂Xi

)
+ 1

2

(
∂uk

∂Xi

∂uk

∂Xj

)
. (2)

To utilize Eq. (2), it is clear that the displacement field
must be obtained such that its derivative can be evaluated
to obtain the strain. In order to form a linear interpolation
scheme using finite elements [47], we exploit the geometry
of the lattice and mesh the results of our MD simulation
of the deformed graphene bubble using tetrahedral finite
elements defined by the positions of four atoms: the atom
of interest (with undeformed coordinates R0), and its three
neighbors (with undeformed coordinates R1, R2, and R3).
After deformation, the new positions of the atoms are r0, r1, r2,
and r3, respectively. To remove spurious rigid body translation
and rotation modes, we took the atom of interest (R0) as
the reference position, i.e., r0 = R0. The displacement of its
three neighbors could then be calculated, and subsequently
the components of the strain tensor εij were obtained by
numerically evaluating the derivative of the displacement
inside the element.

C. Pseudomagnetic fields

Nonzero PMFs arise from the nonuniform displacement in
the inflated state. These PMFs reflect the physical perturbation
that the electrons near the Fermi energy in graphene feel
as a result of the local changes in bond length. It emerges
straightforwardly in the following manner. Nearly all low-
energy electronic properties and phenomenology of graphene
are captured by a simple single orbital nearest-neighbor tight-
binding (TB) description of the π bands in graphene [3]. In
second quantized form this tight-binding Hamiltonian reads

H = −
∑
i,n

t(ri ,ri + n) a†
ri
bri+n + H.c., (3)

where t(ri ,ri + n) represents the hopping integral between two
neighboring π orbitals, n runs over the three nearest unit cells,
and ari

(bri
) are the destruction operators at the unit cell ri and

sublattice A (B). In the undeformed lattice the hopping integral
is a constant: t(ri ,ri + n) = t(Ri ,Ri + n) = t = 2.7 eV. The
deformations of the graphene lattice caused by the gas pressure
impact the hopping amplitudes in two main ways. One arises
from the local stretch that generically tends to move atoms
farther apart from each other and, consequently, directly affects
the magnitude of the hopping tij between neighboring atoms
i and j , which is exponentially sensitive to the interatomic
distance. The other effect is caused by the curvature induced
by the out-of-plane deflection, which means that the hopping
amplitude is no longer a purely Vppπ overlap (in Slater-Koster
notation) but a mixture of Vppπ and Vppσ . More precisely, one
can straightforwardly show that the hopping between two pz

orbitals oriented along the unit vectors ni and nj and a distance
d apart is given by [20,48]

− tij = Vppπ (d) ni · nj

+ Vppσ (d) − Vppπ (d)

d2
(ni · d)(nj · d). (4)

To capture the exponential sensitivity of the overlap integrals
to the interatomic distance d we model them by

Vppπ (d) = −te−β(d/a−1), (5a)

Vppσ (d) = +1.7 te−β(d/a−1), (5b)

125419-3



QI, KITT, PARK, PEREIRA, CAMPBELL, AND CASTRO NETO PHYSICAL REVIEW B 90, 125419 (2014)

with a � 1.42 Å the equilibrium bond length in graphene.
For static deformations a value β ≈ 3 is seen to capture
the distance dependence of Vppπ (d) in agreement with first-
principles calculations [23,29]; we use the same decay constant
β for both overlaps, which is justified from a Mülliken
perspective since the principal quantum numbers of the orbitals
involved is the same [49].

In the undeformed state Eq. (4) reduces to −tij =
Vppπ (a) ≡ −t and is, of course, constant in the entire system.
But local lattice deformations cause t(ri ,ri + n) to fluctuate,
which we can describe by suggestively writing t(ri ,ri + n) =
t + δt(ri ,ri + n). In the low-energy (Dirac) approximation,
the effective Hamiltonian around the point ±K in the Brillouin
zone can then be written as [27,28]

H±K
eff = vF σ · (p ∓ qA), (6)

where �vF = 3ta/2, q represents the charge of the current
carriers (q > 0 for holes and q < 0 for electrons), and the
Cartesian components of the pseudomagnetic vector potential
A = Axex + Ayey are given explicitly in terms of the hopping
perturbation by

Ax(R) − iAy(R) = 1

qvF

∑
n

δt(r,r + n)ei K ·n. (7)

For nearly planar deformations (small out-of-plane vs in-plane
displacement ratios and thus neglecting bending effects) δt

can be expanded in terms of the local displacement field and,
consequently, can be cast in terms of the strain components.
Orienting the lattice so that the zigzag direction is parallel to
ex leads to

Ax(R) − iAy(R) � �β

2qa
(εxx − εyy + 2i εxy), (8)

Since we are ultimately interested in the PMF, only the
contributions to A(R) arising from the hopping modification
are considered here, as they are the ones that survive after
the curl operation [17,18,50–52]; we also do not consider
contributions beyond second-order smallness (∼kε, ∼k2,
etc.). In the planar strain situation the whole information
about the electronic structure is reduced to the parameter
β = −∂ log t(r)/∂ log r|r=a .

From the coupling in Eq. (6) where the effects of strain are
captured by replacing p → p − qA it is clear that the local
strain is felt by the electrons in the K valley in the same way
as an external magnetic field would be. In particular, we can
quantify this effect in terms of the PMF, which is defined as

B = ∂xAy(R) − ∂yAx(R). (9)

This is the central quantity of interest in this work; in the
subsequent sections the combined effects of gas pressure, hole
geometry, and substrate interaction will be analyzed from the
point of view of the resulting magnitude and space distribution
of the PMF, B, obtained in this way. For definiteness we set
q = e, e being the elementary charge, which means that we
shall be analyzing the PMF from the perspective of holes
(q > 0). From an operational perspective, B can be calculated
directly from Eq. (7) by computing the hopping between all
pairs of neighboring atoms in the deformed state, or from
Eq. (8) by calculating the strain components throughout the

entire system as described in the previous section. The former
strategy is here referred to as the TB approach, and the latter as
the displacement approach, as per the definitions in Sec. II B.
Our PMF calculations in the following sections are done by
following the TB approach, except when we want to explicitly
compare the results obtained with the two approaches. In those
cases, such as in the next section or in Appendix C, that will
be explicitly stated.

III. CLAMPED GRAPHENE NANOBUBBLES

We first simulated an idealized system consisting only of
Ar gas molecules and graphene, neglecting the interaction
with the underlying substrate, and where we strictly fixed all
carbon atoms outside the aperture region during simulation.
This provides a good starting point to understand how the
shape of the substrate aperture affects the PMF distribution.
A similar system has been used in previous work [53],
as this corresponds to a continuum model with clamped
edges [12,14].

We start with the most symmetric geometry, a circular
graphene bubble, and compare the atomistic result with
the continuum Hencky solution [54]. In contrast to small
deformation continuum models [14], the Hencky model is
valid for large in-plane (stretching) deformations, which
lead to a different PMF distribution. To compute the PMFs
associated with this analytical solution we used Eq. (8).
Figures 2(c) and 2(d) show that the PMF distribution is
dominated by very large magnitudes at the edges followed
by a rapid decay towards the inside region of the nanobubble.
Both the MD and Hencky results show the sixfold symmetry
expected for a cylindrically symmetric strain distribution;
this agreement demonstrates the MD simulation successfully
captures the strain distribution underlining the computed PMF.
There are, however, two quite clear discrepancies between
the PMF in these two figures: (i) Hencky’s solution [panel
(d)] yields values considerably smaller in magnitude than the
calculation based on the MD deformations combined with
Eqs. (4) and (7) [panel (c)]; (ii) the sign of the PMF in panel
(d) is apparently reversed with respect to the sign of panel
(c). These discrepancies stem from the substantial bending
present in graphene near the hole perimeter, and deserve a
more detailed inspection in terms of the relative magnitude of
the two contributions to the hopping variation: bond stretching
and bond bending.

Since Hencky’s result of Fig. 2(d) hinges on Eq. (8) that
expresses the vector potential directly in terms of the strain
tensor components, let us start by analyzing the predictions
obtained by applying it to the atomistic case as well; to do
that one computes the strain from the MD simulations using
the displacement approach discussed earlier. The result of that
is shown in Fig. 2(f), where the most important difference in
comparison with Fig. 2(c) is the significant reduction of the
maximal fields obtained near and at the edges; this reflects the
error incurred in the quantitative estimate of B when the effect
of bending is neglected. Note that, by construction, Eq. (8)
accounts only for the bond stretching, and is accurate only to
linear order in strain because it is based on a linear expansion
of the hopping in the interatomic distances. Hence, in order
to correctly extract from the atomistic simulations the total
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FIG. 2. (Color online) Results for a circular graphene bubble with 4 nm radius and pressurized up to ∼1 nm deflection; in this case graphene
was clamped at the edge of the substrate aperture. (a) Radial strain, (b) tangential strain, (c) PMF by TB method with both in-plane and bending
components, (d) PMF arising from Hencky’s analytic model [54] with the axes scaled in units of the circle radius, (e) PMF by TB method with
in-plane component only, and (f) PMF by displacement method. Note that, except for (d), all the panels refer to the same atomistic configuration.
PMF in shown in units of Tesla. The edge of the substrate aperture used in the MD simulation is outlined (gray line) for reference.

stretching contribution beyond linear order while still ignoring
bending effects, we should calculate the PMF with the hopping
as defined in Eq. (4) (TB approach), but explicitly setting
ni · nj = 1 and ni · d = 0 (i.e., assuming local flatness). The
outcome of this calculation is shown in Fig. 2(e) which, in
practical terms, is the counterpart of Fig. 2(c) with bending
effects artificially suppressed. In comparison with panel (f),
it leads to slightly smaller PMF magnitudes. The linear
expansion in strain of Eq. (7) thus slightly overestimates the
field magnitudes, something expected because the hopping
is exponentially sensitive to the interatomic distance and, by
expanding linearly, one overestimates its rate of change with
distance, overestimating the field magnitude as a result. One
key message from Fig. 2 and the comparison between panel (c)
and any of the subsequent ones is that the effects of curvature
are significant at these scales of deflection and bubble size,
particularly at the edge, where they clearly overwhelm the
“in-plane” stretching contribution. We will revisit this in more
detail in Sec. VI.

The second key message gleaned from Fig. 2 pertains to
the importance of properly considering the boundary and
loading conditions when analytically modeling the strain
and deflection of graphene. This is related to the apparent
opposite sign in the PMF at the edge obtained from Hencky’s

solution in panel (d) when compared with all the other panels
(containing the MD-derived results). To elucidate the origin
of the difference we show in Fig. 3(a) the PMF divided by the
angular factor sin(3θ ), and averaged over all the angles (details
discussed in Appendix A). This plot provides a summary of
the data in Figs. 2(d)–2(f) and allows a cross-sectional view
of the variation of the field magnitude with distance from
the center of the nanobubble. Direct inspection shows that
the averaged MD data follows Hencky’s prediction inside the
bubble nearly all the way to the edge, at which point the
PMF derived from the atomistic simulations swerves sharply
upwards, changes sign, and returns rapidly to zero within one
lattice spacing beyond the bubble edge (the curve derived
from Hencky’s model terminates at the edge, by construction).
This effective sectional view explains why the density plots
in Figs. 2(c) and 2(d) seem to have an overall sign mismatch:
In the MD-derived data, the plots of the PMF distribution
are dominated by the large values at the edge which have
an opposite sign to the field in the inner region. Figure 3(a)
shows that, rather than a discrepancy, there is a very good
agreement between the strain field predicted by Hencky’s
solution and a fully atomistic simulation throughout most of
the inner region of the nanobubble. However, since Hencky’s
solution assumes fixed boundary conditions at the edge (zero
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FIG. 3. (Color online) (a) Angular-averaged values of B/ sin(3θ )
for the circular nanobubble with R = 4 nm considered in Fig. 2. The
different data sets correspond to different strategies discussed in the
main text to obtain the PMF. The vertical line at r = R ≈ 40 Å
marks the radius of the circular aperture in the substrate. For r < R

the results extracted from MD closely follow the analytical curve, but
there is a sharp sign change and increase at r ≈ R (see Appendix A
for details of the averaging procedure, as well as for the TB data
including the full hopping perturbation). (b) Comparison between
the pressure-induced deflection and maximum PMF magnitude at the
edge, | B(R ≈ 40 Å) |, obtained with the different approximations
discussed in the text. The points corresponding to the complete TB
hopping are scaled by 0.1 for better visualization. (c) A section of
the simulated nanobubble (MD) at ∼19 kbar and the corresponding
Hencky’s solution. (The inset shows a three-dimensional perspective
of the former with the color scale reflecting the vertical displacement.)

deflection, zero bending moment) [54], it cannot capture the
sharp bends expected at the atomic scale generated by the
clamping imposed in these particular MD simulations (in
effect, corresponding to zero deflection and its derivative).
The finite bending stiffness of graphene [55] comes into play
in that region, generating additional strain gradients which
explain the profile and large magnitude of the PMF seen in the
atomistic simulations.

In Fig. 3(b) we plot the evolution of the deflection and
maximum PMF with increasing gas pressure. The maximum
PMF is obtained around the edge of the aperture, and the values
shown in the figure correspond to an angular average of the
PMF amplitude there (see Appendix A for details). The MD
and analytical (Hencky’s) solutions give comparable results
for the deflection in the pressure range below <1 × 104 bars
[Fig. 3(b), right vertical scale]. At higher pressures, Figs. 3(b)
and 3(c) show that the analytical solution yields a slightly
smaller deflection, as the underlying model does not capture
the nonlinear elastic softening that has been observed in
graphene in both experiments [56] and previous MD sim-
ulations [57]. Figure 3(b) includes also the maximum PMFs
occurring at the bubble edge, when computed with the different
approaches discussed above in connection with Figs. 2(c)–
2(f). We highlight that Hencky’s solution cannot generate
significant PMFs even at the largest deflections, whereas
experiments in similarly sized and deflected nanobubbles
easily reveal PMFs in the hundreds of Teslas [31,32]. This
raises questions about the applicability of the Hencky solution
at these small scales and large deflections.

The pressure required to rupture this graphene bubble
was determined to be around 1.9 × 105 bars from our MD
simulations. Such a large value is required because of the
small dimensions of the bubble. We can calculate the fracture
stress by adopting a simple model for a circular bulge
test, i.e., σ ∼ RδP

2w
, where σ , δP , R, and w are the stress,

pressure difference, radius, and thickness of the membrane,
respectively. Assuming w to be 3.42 Å, we obtain a fracture
strength of about 80 GPa, which is in agreement with previous
theoretical [39] and experimental [39,56] results. Note that the
plot in Fig. 3 shows very large pressures (up to near the rupture
limit of the bubble) and correspondingly large deflections
since we wish to highlight the points of departure between
the elastic model and the simulation results. Pressures and
deflections considered in the specific cases discussed below
are considerably smaller.

With the good performance of the atomistic model on
the circular graphene bubble established, we next extend the
analysis to nanobubbles with different shapes. The bubbles
are similarly obtained by inflation of graphene under gas
pressure against a target hole in the substrate with the desired
shape. Figure 4 shows results of a study of different shapes to
which the displacement interpolation approach was applied to
obtain the strain field and, thus, the PMFs. The shapes are a
square, a rectangle (aspect ratio of 1:2), a pentagon, a hexagon,
and a circle, and are presented in order of approximately
decreasing symmetry. Those geometries are chosen because
they are sufficiently simple that they can be readily fabricated
experimentally with conventional etching techniques. The
dimensions of the different bubbles were chosen such that
their areas were approximately ∼50 nm2. The pressure was
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FIG. 4. (Color online) Top views of PMF patterns for graphene bubbles of different geometries without substrate. (a) Circle, (b) hexagon,
(c) pentagon, (d) rectangle (aspect ratio 1:2), (e) square, and (f) triangle. All the bubble areas are ∼50 nm2, and side lengths and pressures can
be found in the main text. In all cases, the graphene lattice is oriented with the zigzag direction along the horizontal. The same color scale (in
Tesla) is used in all panels. The edge of the substrate apertures used in the MD simulations is outlined (gray line) for reference.

19 000 bars and side lengths for the bubble geometries shown
in Figs. 4(a)–4(f) were, respectively, 4 nm (circle), 4.4 nm
(hexagon), 5.7 nm (pentagon), 5 nm (rectangle, short edge),
7.1 nm (square), and 10.6 nm (triangle).

It is worth emphasizing that these features depend on
the orientation of the graphene lattice with respect to the
substrate aperture, as we would expect. This is clearly visible
in the case of the square bubble in Fig. 4(e), for which the
sharp magnetic field along the boundary is present along
the horizontal (zigzag) edges of the bubble but not along the
vertical ones (armchair). This is also the reason why only the
triangular aperture shown in Fig. 4(f) leads to a strong PMF
that is nearly uniform as one goes around the boundary of the
nanobubble. This is an important consideration for the prospect
of engineering strained graphene nanostructures capable of
guiding or confining electrons within, much like a quantum
dot [7]. The sharp PMF at the boundary acts effectively as a
strong magnetic barrier, which might be tailored to confine
some of the low-energy electronic states [46,58,59].

The resulting PMF patterns in Fig. 4 show that the highest
values are found at the corners and edges of the different bubble
shapes. To illustrate more clearly the PMF patterns, we inflated
the bubbles to large deflections (∼1 nm) with strains reaching
10% and the corresponding pressure exceeding 1 × 104 bars.

These large deflections explain why the PMF magnitudes in
Fig. 4 may reach over 500 T. Given that the gas pressures used
to achieve the results shown in this figure are rather high, some
comments are in order.

First, we emphasize that the relevant parameter is the
deflection, rather than the pressure itself. In other words,
gas pressure was employed here as one way of generating
graphene nanobubbles with predefined boundary geometries
and target deflections, but other loading conditions might be
used to achieve the same parameters. Our choice is moti-
vated by the desire to constrain graphene and its interaction
with the substrate as little as possible. Since we intend to
reproduce bubbles with lateral size and deflections matching
the magnitude of the values observed experimentally [31,32]
this requires large pressures (for a given target deflection
P is naturally smaller for larger apertures). Secondly, Lu
et al. [32] reported that experimental bond elongations,
estimated from direct STM mapping of the atomic positions
and deflections, can exceed 10% in graphene nanobubbles on
Ru. The high pressures considered in our MD simulations
allow us to reach bond elongations of this order of magnitude.
Thirdly, pressures of the order of 10 kbar (1 GPa) have been
recently estimated to occur within nanobubbles of similar
dimensions and deflections to the ones considered here, formed
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FIG. 5. (Color online) (a) Strain components εrr and εθθ of a graphene bubble pressurized to a deflection of ∼1 nm against a circular hole
with 4 nm radius on a Au(111) substrate. (b) The corresponding PMF along the radial direction from the bubble center computed according to
the extended Hencky model [61] (solid line) and from MD simulations within the TB (blue) or displacement (red) approach. Panel (d) shows
the angular dependence of the PMF for selected radii.

upon annealing of graphene-diamond interfaces [60]. Thus,
pressures of this magnitude are not unrealistic in the context
of nanoscale graphene blisters.

IV. SUBSTRATE INTERACTION: GRAPHENE ON AU(111)

Having considered the ideal case of graphene without
a substrate, we move forward to study the more realistic
case of graphene lying on a Au(111) substrate. The main
difference is that the carbon atoms are not rigidly attached
to the substrate anymore outside the aperture, meaning that
graphene can slide into the aperture during inflation, subject
to the interaction with the substrate. This is an important qual-
itative difference, and reflects more closely the experimental
situation, as recently reported in Ref. [61]. The interatomic
interactions were parametrized with εC-Au = 0.029 36 eV,
σC-Au = 2.9943 Å [62]; εC-Ar = 0.0123 eV, σC-Ar = 3.573
Å [63]; and εAr-Ar = 0.0123 eV, σAr-Ar = 3.573 Å [64]; the
Ar-Au (gas-substrate) interactions were neglected to save
computational time, and the substrate layer was held fixed
for the entire simulation process. Most of the graphene layer
was unconstrained, except for a 0.5 nm region around the
outer edges of the simulation box where it remained pinned.
Since the interaction with the substrate is explicitly taken into
consideration, this approach realistically describes the sliding
and sticking of graphene on the substrate as the gas pressure is
increased, as well as details of the interaction with the substrate
in and near the hole perimeter.

We start the discussion with a direct comparison of the
deformation state of a circular bubble obtained from our
simulations with the predictions of a recently developed and
experimentally verified “extended-Hencky” model [61] that
accounts for the same sliding and friction effects. As can be

seen in Fig. 5(a), after fitting the friction in the continuum
model to the MD simulation there is a very good agreement
between the MD and extended Hencky results for the radial
and tangential strains, εrr and εθθ , both in the inner and outer
regions with respect to the substrate aperture. The same good
agreement is seen in the PMF profile extracted from the MD
and analytical approaches, which is presented in Fig. 5(b).
The numerical data points shown in this panel represent an
angular average over an annulus centered at different radii.
An important message from Fig. 5(b) is that the maximum
magnitude of the PMF occurs around the edge of the aperture,
but on the outside of the bubble. Whereas one expects the
maximal PMFs to occur around the edge where the strain
gradients are larger, the fact that the magnitude is considerably
higher right outside rather than inside is not so obvious.
This has important implications for the study of PMFs in
graphene nanostructures but has been ignored by previous
studies. It implies that models where only the deflection inside
the aperture is considered (such as the simple Hencky model)
can miss important quantitative and qualitative features. They
are captured here because the friction and sliding effects
due to graphene-substrate interactions are naturally taken into
account from the outset. One consequence is the “leakage” of
strain outside the bubble region and the concurrent emergence
of PMFs outside the aperture. This should be an important
consideration in designing nanoscale graphene devices with
functionalities that rely on the local strain or PMF distribution.

The other shapes studied on the Au (111) substrate are
shown in Fig. 6. The dimensions are the same as in Fig. 4,
with an applied pressure of ∼30 kbar. In addition to the
appearance of non-negligible PMF outside the aperture region,
a comparison with the data for bubbles clamped to the hole
perimeter shows that now the PMF distribution inside is
noticeably perturbed, and that the large field magnitudes
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FIG. 6. (Color online) Top views of PMF patterns for graphene bubbles of different geometries on Au(111) substrates. (a) circle,
(b) hexagon, (c) pentagon, (d) rectangle (aspect ratio 1:2), (e) square, and (f) triangle. All the bubble areas are ∼50 nm2, and side lengths and
pressures can be found in the main text. In all cases, the graphene lattice is oriented with the zigzag direction along the horizontal. The same
color scale (in Tesla) is used in all panels. The edge of the substrate apertures used in the MD simulations is outlined (gray line) for reference.

observed in Fig. 4 along the perimeter are considerably reduced
and smoother.

To understand the origin of this difference, let us analyze
in detail the representative case of a triangular nanobubble, as
previous experiments have shown that such nanobubbles can
exhibit PMFs in excess of 300 T [31]. Using our MD-based
simulation approach, we calculate the PMFs for triangular
graphene bubbles by inflating a graphene monolayer through
a triangular hole in the substrate. The setup is as illustrated
in Fig. 1, but with the circular hole replaced by a triangular
one. The triangular hole in the substrate had a side length of
10.6 nm, and the graphene sheet was inflated to a deflection of
∼1 nm. The resulting PMF distribution when one artificially
clamps graphene outside the hole region has been shown in
Fig. 4(f); the underlying strain components can be seen in
Figs. 7(c) and 7(d). Upon inflation under the gas pressure,
the geometry and the clamped conditions enforce an effective
triaxial stretching in the graphene surface that is clearly
visible in the strain distribution. As pointed out by Guinea
et al. [6], this triaxial symmetry is crucial for the experimental
observation of Landau levels in Ref. [31] because it leads
to a quasiuniform PMF inside the nanobubble. Inspection
of Fig. 4(f) confirms that the field is indeed of significant
magnitude and roughly uniform within the bubble.

When the full interaction with the substrate is included
and the graphene sheet is allowed to slip and slide towards the
aperture under the inflation pressure, the geometry is no longer
as effective as before in generating a clear triaxial symmetry:
A comparison of the top and bottom rows of Fig. 7 shows that
the triaxial symmetry of the strain distribution is not so sharply
defined in this case. Therefore, the finite and roughly uniform
PMF inside the triangular boundary that is seen clearly in
Fig. 4(f) [and also Fig. 16(f)] is largely lost here. To understand
the difference we start by pointing out that the orientation of
the triangular hole with respect to the crystallographic axes
used here is already the optimum orientation in terms of PMF
magnitude, with its edges perpendicular to the 〈100〉 directions
(i.e., parallel to the zigzag directions). Secondly, since the
graphene sheet is allowed to slide, the strain distribution in
the central region of the inflated bubble tends to be more
isotropic, as we expect for an inflated membrane because of the
out-of-plane displacement, and as can be seen in Fig. 7. This
means that the trigonal symmetry imposed on the overall strain
distribution by the boundaries of the hole is less pronounced
near the center. As a result, even though strain increases as
one moves from the edge towards the center (as measured,
for example, by looking at the bond elongation directly from
our MD simulations), the magnitude of the PMF decreases
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FIG. 7. (Color online) Spatial patterns of the strain tensor components εrr and εθθ for a triangular bubble with a 10.6 nm side. (a) and
(b) pertain to graphene on a Au(111) substrate whose PMF profile has been shown in Fig. 4(f), while (c) and (d) correspond to the graphene
bubble with an artificially fixed boundary condition whose PMF is shown in Fig. 6(f). The edge of the substrate aperture used in the MD
simulation is outlined (gray line) for reference.

because the trigonal symmetry and strain gradients become
increasingly less pronounced, and we know that the isotropic
(circular) hole yields zero PMF at the apex (Fig. 2).

The differences in trend and the sensitivity of the PMF
distribution to the details of the interaction with the substrate
highlight the importance of the latter in determining the final
distribution and magnitude of the PMF, in addition to the load-
ing, hole shape, and boundary conditions. In order to stress this
aspect, and to make the role of the substrate interaction even
more evident, we shall consider next a different metal surface.

V. SUBSTRATE INTERACTION: GRAPHENE ON CU(111)

To gain further insight into the important effects of
substrate interactions, we carried out simulations for a Cu(111)
substrate, in addition to the Au(111) case considered above.
This is in part motivated by a recent experimental study [65]
showing that graphene grown by chemical vapor deposition on
a Cu(111) substrate is under a nonuniform strain distribution.
This nonuniform strain suggests that there might be interesting
PMFs in the region of graphene surrounding the bubble.
To analyze that we studied the PMF profile generated by
the inflation of a graphene bubble constrained by a circular
aperture with a radius of 4 nm on a Cu(111) substrate. The
Cu-C interactions were modeled using a Morse potential with
parameters D0 = 0.1 eV, α = 1.7 Å, r0 = 2.2 Å, and a cutoff
radius of 6 Å [66]. Figure 8 shows the PMF distributions
for differently shaped bubbles with deflection of ∼1 nm
on Cu(111) substrate. Despite the similarity between the

geometry, dimensions, and deflections of this system and the
one studied in Fig. 6, this one shows a much more pronounced
modulation of PMF in the regions outside the aperture. In the
same way that the Moiré patterns seen experimentally by He
et al. [65] reflect a non-negligible graphene-Cu interaction,
the PMF distributions in Figs. 8(a)–8(f) are much richer
than in Figs. 6(a)–6(f). That our simulation strategy involves
pressing graphene against the substrate certainly enhances
the interaction and promotes increased adhesion. This, in
turn, adds a nonisotropic constraint for the longitudinal
displacement and deformation of the graphene sheet which
will affect the overall magnitude and spatial dependence of
the PMF in the central region in such a way that, for this case,
the PMF magnitude is higher outside the inflated portion of
graphene, rather than inside or in close vicinity of the boundary.
This shows that the strain and PMF patterns in graphene can
be strongly influenced by the chemical nature of the substrate
and not just its topography.

To reveal the PMF that is induced by the substrate alone,
we show in Fig. 9 a side-by-side comparison of the PMFs
that result when graphene is let to relax on Au(111) and
Cu(111), respectively. The plotted data were obtained from
energy minimization without pressure or aperture to show
the intrinsic effect of the two substrates. Several interesting
features emerge from these results, the first of which being
the spontaneous development of a superlattice structure with
a characteristic and well-defined periodicity that is different
in the two substrates. This Moiré pattern in the PMF is the
result of a corresponding pattern in the strain field throughout
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FIG. 8. (Color online) Top views of PMF patterns for graphene bubbles of different geometries on Cu(111) substrate. (a) Circle,
(b) hexagon, (c) pentagon, (d) rectangle (aspect ratio 1:2), (e) square, and (f) triangle. All the bubble areas are ∼50 nm2, and side lengths and
pressures can be found in the main text. In all cases, the graphene lattice is oriented with the zigzag direction along the horizontal. The same
color scale (in Tesla) is used in all panels. The edge of the substrate apertures used in the MD simulations is outlined (gray line) for reference.

the graphene sheet, which is caused by the need of the system
to release strain buildup due to the mismatch in the lattice
parameters of graphene and the substrate. A second important
aspect is the considerable magnitude of the PMFs that can

locally reach a few hundreds of Tesla just by letting graphene
reach the minimum energy configuration in contact with the
flat metal substrate. Another detail clearly illustrated by these
two examples is the sensitivity to the details of the substrate

FIG. 9. (Color online) PMF distributions of graphene on perfect (a) Cu(111) substrate and (b) Au(111) substrate without apertures or gas
pressure. The superlattice structure arises naturally from the need of the system to release strain buildup because of the mismatch in the lattice
parameters of graphene and the underlying substrate. The PMF scale is in units of Tesla.
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FIG. 10. (Color online) Density plot of the bending contribution to the pseudomagnetic field B (c) for a circular graphene bubble with radius
of 4 nm and a deflection of ∼1 nm calculated by the TB method (a) and Hencky’s model (b). The axes in (b) are scaled in units of the circle
radius. The PMF scale is in units of Tesla. The edge of the substrate aperture used in the MD simulation is outlined (gray line) for reference.

interaction: The substrate-induced PMF on Cu can be many
times larger than that on Au, and the Moiré period is also
different. These superperiodicities are expected to perturb the
intrinsic electronic structure of flat graphene whose electrons
now feel the influence of this additional periodic potential.
That leads, for example, to the appearance of band gaps at the
edges of the folded Brillouin zone. Such effects are currently
a topic of interest in the context of transport and spectroscopic
properties of graphene deposited on boron nitride, where this
type of epitaxial strain is conjectured to play a crucial role in
determining the metallic or insulator character [67–70].

Since Fig. 9 reveals a strong graphene-substrate interaction,
it is not surprising that the PMF patterns in Fig. 8 are still
strongly dominated by the substrate-induced PMF. Unlike
the cases discussed in Fig. 4, a significant structure remains
in the PMF distribution outside the hole region due to the
tendency of the lattice to relax towards the characteristic Moiré
periodicity of Fig. 9(a) when in contact with a flat portion of
substrate. In contrast, Au(111) has a larger lattice spacing and
generates considerably less epitaxial strain in the graphene
film, implying comparatively weaker PMFs. It is then natural
that in the presence of the nanobubbles the geometry of the
aperture dominates the final PMF distribution over the entire
system when pressed against Au(111) (Fig. 6), whereas for
Cu(111) the epitaxial contribution is the one that dominates
(Fig. 8).

VI. BENDING EFFECTS

The large deflection-to-linear dimension ratio in the inflated
graphene bubbles analyzed so far calls for an analysis of
the relative importance of the contribution to the PMF from
bending in comparison with that from the local stretching of
the distance between carbon atoms.

When full account of stretching and bending is taken
by replacing the hopping (4) in the definition of the vector
potential A given in Eq. (7) the resulting PMF can have
considerably higher magnitudes, as was already seen in
Fig. 2(f). To isolate the effect of bending alone one can split the
full hopping (4) in two contributions, tij = t

(xy)
ij + t

(c)
ij , where

the “in-plane” stretching term is simply

−t
(xy)
ij = Vppπ (d). (10)

Since the gauge field A is a linear function of the hopping (7),
it can be likewise split into the respective stretching and
bending contributions so that A = A(xy) + A(c). When the PMF
associated with A(c) is thus calculated for the circular bubble of
Fig. 2 we obtain the result shown in Fig. 10(a). As was already
seen when comparing the different PMF curves in Fig. 3, the
effect of the curvature at the edges is quite remarkable and
overwhelmingly dominant in that region.

More importantly, this fact could have been underappre-
ciated if the stretching and bending contributions had been
extracted only on the basis of an analytical solution of the
elastic problem such as Hencky’s model. To be definite in this
regard let us consider the magnitude of the contribution to the
PMF that comes from bending in the continuum limit. If a
gradient expansion of the full hopping (4) is performed, the
vector potential (7) can be expressed in terms of quadratic
combinations of the second derivatives of the deflection
h(x,y) [20]. For example, the term Vppπ (d) ni · nj in (4) leads
to

A(c)
x = −3a2V 0

ppπ

8qvF

[(
∂2h

∂y2

)2

−
(

∂2h

∂x2

)2]
, (11a)

A(c)
y = −3a2V 0

ppπ

4qvF

[
∂2h

∂x∂y

(
∂2h

∂y2
+ ∂2h

∂x2

)]
. (11b)

This particular contribution was previously discussed by Kim
and Castro Neto [71] and, since all the bending terms have the
same scaling ∼a2h2/R4, where h and R are the characteristic
height and radius, respectively, consideration of this one alone
suffices for our purpose of establishing the magnitude of
the bending terms in comparison with the stretching one.
Replacing the deflection h(x,y) provided by Hencky’s solution
in Eqs. (11) leads to the result shown in Fig. 10(b); it is clear
that the maximum Bc so obtained at the edges is much smaller
than the one derived from the atomistic simulation with the
full hopping. It is not surprising that the PMF coming from
bending at the level of Hencky’s model is so small. A simple
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FIG. 11. Ratio of the maximum PMF induced by bending and
stretching (Bc/Bxy) for circular graphene bubbles as a function of the
graphene radius R, according to Hencky’s solution.

scaling analysis of the vector potentials in the continuum limit
shows that, from Eq. (8), Axy scales with strain as Axy ∼ ε

and strain itself scales with deflection as ε ∼ (h/R)2 for a
characteristic linear dimension R of the bubble. On the other
hand, from (11) Ac scales like Ac ∼ (ah)2/R4. Therefore, the
ratio Bc/Bxy will scale as ∼(a/R)2. Since the bubble under
analysis has a/R ≈ 0.04 the bending contribution is indeed
expected to be much smaller than the stretching one. We can
even be more quantitative and extract the maximum values
of Bc and Bxy from Hencky’s solution and compare their
relative magnitudes as a function of circle radius, as shown in
Fig. 11. Hencky’s solution predicts that only when the radius
of the circular bubble decreases below about 1 nm does the
contribution of the curvature-induced pseudomagnetic field
become of the same order as that due to in-plane stretching.
This situation is equivalent to the need to account for the
curvature and orbital rehybridization when describing the
electronic structure of carbon nanotubes with diameters below
length scales of this same magnitude at the tight-binding

level [27,72]; the neglect of these effects in the nanotube case
leads to incorrect estimation of the band gaps and even of their
metallic or insulating character.

The problem with these considerations is that they fail to
anticipate the large effect at the edges, particularly the scaling
analysis which tells us only about the relative magnitude of
bending vs stretching in the central region. But, because we
are inflating graphene under very high pressures in order to
achieve deflections of the order of 1 nm, a sharp bend results
at the edge of the substrate aperture through which graphene
can bulge outwards; it is this curvature effect that dominates
the PMF plot in Fig. 10, not the overall curvature of the
bubble on the large scale. Hencky’s solution cannot capture
this since it is built assuming zero radial bending moment at
the edge [54]. Moreover, since this happens within a distance
of the order of the lattice constant itself, the details of the
displacements at the atomistic level including nonlinearity
and softening at large strains and curvatures become crucial.
This further highlights the importance of accurate atomistic
descriptions of the deformation fields in small structures such
as the sub-5-nm graphene bubbles we have considered in this
paper, and which have been shown experimentally to lead to
significant pseudomagnetic fields [31,32]; at this level models
based on continuum elasticity theory can become increasingly
limited for accurate quantitative predictions and should be
applied with caution.

Finally, when realistic substrate conditions are considered,
one can see that the slippage effects contribute very differently
for the PMFs arising from stretching and from bending. A
general feature of the PMF distribution obtained with realistic
Au and Cu substrates is its smaller overall magnitude in
comparison with the artificially clamped nanobubbles. This is
easy to understand because the ability to slide in contact with
the substrate allows graphene to stretch not only in the bubble
region, but essentially everywhere, thereby reducing the strain
concentration around the edge of the aperture; and with smaller
strain gradients one gets smaller PMFs. The bending effects,
on the other hand, are not expected to be much affected by
the sliding, especially when comparing nanobubbles with the

FIG. 12. (Color online) Density plot of the bending contribution to the pseudomagnetic field B (c) for a graphene bubble deflected to ∼1 nm
upon pressuring through a circular aperture of radius 4 nm in a Au (a) and a Cu (b) substrate. The PMF scale is in units of Tesla. The edge of
the substrate apertures used in the MD simulations is outlined (gray line) for reference.
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same amount of vertical deflection, because the sharpness of
the bend at the edge of the aperture is constrained mostly by
the geometry alone. Direct inspection of the contribution to
the PMF arising from curvature in the Au and Cu substrates
directly confirms this intuitive expectation, as shown in Fig. 12.
Just as in the clamped case where graphene is pinned to the
substrate and cannot slide, the PMF associated with bending is
seen to dominate the field distribution, with magnitudes similar
to the registered in Fig. 10, and much larger than the PMF in
the center of the bubble or the substrate region (cf. Figs. 6
and 8). This not only shows how crucial the PMF associated
with bending can be in certain approaches to generate graphene
nanobubbles, but also that it is an effect largely insensitive to
the details of the substrate.

VII. DISCUSSION AND CONCLUSIONS

We have evaluated the strain-induced pseudomagnetic
fields in pressure-inflated graphene nanobubbles of different
geometries and on different substrates whose configurations
under pressure were obtained by classical MD simulations.
The geometry of the nanobubbles is established by an
aperture of prescribed shape in the substrate against which
a graphene monolayer is pressed under gas pressure. Our
results provide new insights into the nature of pseudomagnetic
fields determined by the interplay of the bubble shape and
the degree of interaction with the underlying substrate. On a
technical level, if bending is (or can be) neglected, we have
established that an approximate displacement-based approach
is adequate to obtain the strain tensor and accurate values
of the pseudomagnetic fields from MD simulations when
compared with a direct tight-binding approach where the
modified hoppings are considered explicitly.

By comparing nanobubbles inflated in three different
substrate scenarios—namely, an arguably artificial, simply
clamped graphene sheet with no substrate coupling and more
realistic conditions where the full interaction with Au (111)
and Cu (111) substrates is included from the outset in the MD
simulations—we demonstrated that the graphene-substrate
interaction is an essential aspect in determining the overall
distribution and magnitude of strain and the PMFs both inside
and outside the aperture region. For example, Secs. IV and V
demonstrate that graphene can adhere substantially to the
substrate in atomically flat regions leading to sizable PMFs
stemming only from epitaxial strain, even in the absence of
any pressure or substrate patterning. This adhesion varies from
substrate to substrate and, in the presence of an aperture or
other substrate patterning, perturbs the final strain distribution
of the nanobubble when compared with a simply clamped
edge. On a more quantitative level, in the cases analyzed
here where the aspect ratio of the bubbles is close to 1, the
magnitude of the PMFs associated with epitaxial strain alone
can easily be of the same magnitude as the PMF generated
within the bubble region. For Cu this is clear in Figs. 8 and 9,
and implies that the presence of the aperture is not the main
factor determining the field distribution.

To better appreciate this aspect, we can inspect the averaged
cross section of the PMF provided in Fig. 15 whose details
are given in Appendix B. The key message conveyed by the
data there is that under more realistic conditions describing the

graphene-substrate interaction, and for the range of parameters
explored here, the PMFs are no longer concentrated in and
around the aperture. The section shown reveals that the PMF
can be considerably higher in regions well outside the aperture
than inside or near the edge. This arises because, on the
one hand, the graphene-substrate interaction alone is able to
generate considerable local strain gradients that beget PMFs
as large as the ones that appear by forcing the inflation of
graphene through the aperture [cf. Fig. 9]. On the other hand,
the fact that graphene can slip into the aperture when simulated
on the Au and Cu substrates softens the strain gradients
in its vicinity in comparison with the artificially clamped
scenario. Slippage under these realistic substrate conditions
prevents strain from concentrating solely within the aperture
region which, instead, spreads to distances significantly away
from the aperture. This is a sensible outcome on account of
the very large stretching modulus of graphene that tends to
penalize stretching as much as possible. We illustrate this
behavior in Fig. 13(a) that compares the magnitude of the
radial displacement of circular nanobubbles. Whereas in the

FIG. 13. (Color online) The radial and vertical displacement
components of graphene along the diametral section y = 0 of
three circular nanobubbles of radius 4 nm, corresponding to the
three substrate conditions considered in this paper. Panel (a) shows
the component ux of the graphene in-plane displacement which
corresponds, in essence, to the radial displacement because of the
circular symmetry. Panel (b) shows the vertical deflection. All cases
were inflated under the same pressure of ≈19 kbar.
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artificially clamped nanobubble graphene remains undisturbed
(by design) outside the aperture, it is clear that in either the
Au or Cu substrates the carbon atoms pertaining to the region
initially outside the aperture are radially pulled everywhere
towards it under pressure, as one intuitively expects. One
consequence of this is the softening of strain gradients in the
bubble region: Slippage naturally tends to diminish the PMFs
generated within and around the aperture. The other is that,
obviously, the deflection at the center is increased, as shown
in Fig. 13(b).

The joint effect of these two factors (slippage and adhesion
to the substrate) is that forcing graphene into a nanobubble
profile at the center of the system is no longer effective in
concentrating the strain gradients and, consequently, the PMF
is no longer more prominent there. One immediate implication
of this is the fact that whether or not it is feasible to locally
tailor the PMF distribution on very small (nanometer) scales
depends not only on the elastic response of graphene or its
loading and geometric constraints, but also on the nature of
the substrate involved.

It is also clear from the above that there might exist certain
substrates in which the epitaxial strain can be significant
enough to, by itself, lead to visible modifications of the
electronic structure of graphene, and even lead to modified
transport characteristics [68–70]. Incidentally our pressure-
based approach facilitates and promotes a uniform adhesion
because graphene is compressed against the substrate. It would
be interesting to experimentally study graphene on top of such
substrates inside pressure chambers, and assess the degree of
control that can be achieved over the Moiré patterns and the
modifications of the electronic and transport characteristics.

Another important factor to consider in estimating the
magnitude and profile of the PMF generated under a given
set of force distributions and geometric constraints is whether
those conditions lead to strong local curvature of the graphene
lattice. We analyzed this issue here by separately considering
the contributions from bond bending and from stretching to
the PMF in the representative case of circular nanobubbles.
Our results establish that, even though the overall, large-scale
curvature of the graphene sheet leads to significant corrections
to the pseudomagnetic field only in ultrasmall bubbles with
diameter smaller than 2 nm, sharp bends arising from direct
clamping or from being pressed against an edge in the
substrate aperture result in much stronger PMFs locally. At
the qualitative level this is naturally expected and certainly not
surprising. What is surprisingly significant is that the bending
contribution can be many times larger than its stretching
counterpart, leading to a PMF distribution dominated by large
values near the edges of the substrate apertures. Moreover,
since this is a local geometric effect, it does not depend on
the bubble size but only on the local curvature around sharp
bends, and should remain in considerably larger systems. This
indicates that curvature of the graphene sheet should certainly
not be ignored in many situations involving out-of-plane
deflection, even though the scaling analysis based on the
overall profile could point otherwise.

Finally, we underline once more that the strategy to generate
graphene nanobulges through gas pressure was chosen here
to minimize other external forces and influences on the
deflection and slippage of graphene while being able to

produce deflections and aspect ratios equal to those reported in
recent experiments that explore the local electronic properties
of these structures. But the conclusions and implications
discussed above certainly carry to various other means of
achieving such or similar nanobubbles and have, therefore,
a wide reach and wide import beyond graphene pressurized
through apertures.

Note added. Recently, we became aware of a recent
proposal to connect structure and electronic properties of
two-dimensional crystals based on concepts from discrete
geometry that allows yet another efficient alternative to obtain
the strain and PMF at discrete lattice points without the
need, for example, to perform numerical derivatives upon the
displacement fields or vector potentials extracted from the MD
data [73,74].
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APPENDIX A: ANGULAR AVERAGING OF THE PMF

Figure 14 below shows the radial dependence of the
averaged PMF amplitude close to the edge of the circular
aperture for the clamped circular case discussed in Sec. III
(Fig. 2). In Fig. 3 we plot the amplitude of the PMF at the edge
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FIG. 14. (Color online) Angular-averaged amplitude of the PMF
for the same cases presented in Fig. 2 in the form of density plots. The
horizontal axis represents the distance from the center of a pressurized
circular graphene nanobubble with clamped boundary conditions. The
data contained here are the same shown in Fig. 3(a), except that here
the (orange) data corresponding to the PMF obtained from the full
hopping perturbation [Eq. (4)] are included for comparison as well.
The bending effects are clearly dominant around the edge/clamping
region. Away from the edge, and inside, the three numerical curves
follow Hencky’s model.
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of the circular aperture in the substrate for various inflation
pressures with clamped graphene. In Fig. 5(b) we show the
average amplitude of the PMF at different distances from the
center.

In all these cases, the data shown reflect the PMF amplitude
averaged over the azimuthal direction. To extract the average
PMF at a given radius, the two-dimensional distribution of
the field is divided into a sequence of radial and azimuthal
bins (annular sectors). For each radial annulus there are 20
bins, each with an 18◦ width. The width of the radial annulus
is chosen such that at least ten atoms lie in each bin (this is
why there are fewer data points near the center of the bubble).
The average and standard deviations of the PMF in each bin
correspond to the value and error bar of that bin. For example,
each point in Fig. 5(c) corresponds to this average PMF for a
given bin. Afterwards, for each radial annulus the data is fit to
the expected sin(3θ ) dependence. The amplitude of the best fit
is plotted as a point [e.g., as in Fig. 14] and the fitting error
provides the error bar.

APPENDIX B: SECTIONAL PLOT OF PMFs FOR
CIRCULAR APERTURES

To better illustrate the magnitude of the PMF in the vicinity
of apertures simulated under realistic substrate conditions, we
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FIG. 15. (Color online) The PMF of graphene pressurized
through equally sized circular apertures along a vertical section
extending from the center of the aperture to the bottom of the
simulation cell. The vertical line at ∼40 Å marks the radius of the
apertures. See the text in Appendix B for more details.

present here a sectional view of the field for the representative
cases of the circular apertures simulated in the artificially
clamped, Au, and Cu scenarios explored in the main text.
Figure 15 shows the PMF of graphene pressurized through
circular apertures of the same size sampled along a vertical
section extending from the center of the aperture to the
bottom of the simulation cell. The sections are taken from

FIG. 16. (Color online) PMF distribution for the same systems analyzed in Fig. 4, but here the field is computed by the displacement
approach discussed in the main text. The PMF scale is in units of Tesla. The edge of the substrate apertures used in the MD simulations is
outlined (gray line) for reference.
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the corresponding data shown in Figs. 4(a), 6(a), and 8(a) by
sampling the PMF along a vertical direction and performing
averages within square bins of 25 Å2. The averaging is
done to account for local fluctuations in the PMF and the
standard deviation in each bin is used to draw the error bars.
The traces in Fig. 15 are analogous to the ones in Figs. 14
or 3(a), with the exception that there is no angular averaging
here because the substrate interaction breaks the rotational
symmetry (cf., for example, the region outside the aperture in
Fig. 8); consequently the error bars are higher here than in the
artificially clamped cases.

APPENDIX C: COMPARISON OF PMFs FROM
DISPLACEMENT AND FULL TB APPROACHES

As described in the main text, the displacement approach
to obtain the pseudomagnetic fields throughout the graphene
sheet consists in directly employing Eq. (8), where the
components of the strain tensor are extracted numerically from
the MD-relaxed atomic positions. Apart from contributions
beyond linear order in strain, this should be equivalent
to computing the vector potential A(R) directly from the
definitions (7) and (4), but neglecting the bending effects in
the hopping. This amounts to considering −tij = Vppπ (d).

For completeness, and to show that the two approaches
lead to the same results in practice, we present in Fig. 16 the
PMF distribution computed by the displacement approach for
the same systems analyzed in Fig. 4. The agreement is very
satisfactory and shows that the displacement and tight-binding
methods are equivalent if curvature can be neglected.

APPENDIX D: COMPARISON OF DISPLACEMENT
AND STRESS APPROACHES

The final (inflated bubble) configuration gives us the
basic ingredients needed to calculate the strain, i.e., the
deformed atomic positions. Here we present further details on
the displacement and stress approaches we investigated for

calculating the strain. In the end, the stress approach revealed
itself inadequate to accurately capture the local strain in the
graphene lattice.

1. Displacement approach

We begin with the continuum definition for strain [75],
which is written as

εij = 1

2

(
∂ui

∂Xj

+ ∂uj

∂Xi

)
+ 1

2

∂uk

∂Xi

∂uk

∂Xj

, (D1)

where εij are the components of the strain, u is the displace-
ment, and X denotes the position of a point in the reference
configuration. To compute the displacement field that is needed
to evaluate the strain in Eq. (D1), we first exploit the geometry
of the graphene lattice by meshing it using tetrahedral finite
elements [47], where each finite element is comprised of four
atoms. To remove spurious rigid body translation and rotation
modes, we choose the deformed position of the atom of interest
(atom 0) to be the reference position, i.e., r0 = R0.

By subtracting the original position of each neighboring
atom from its deformed position, we obtain the displacement
vectors of the three nearest neighbors: u01 = (u01x,u01y,u01z),
u02 = (u02x,u02y,u02z), and u03 = (u03x,u03y,u03z).

We use the linear interpolation property of the four-
node tetrahedral element to denote the displacement field
U(x,y,z) = (Ux,Uy,Uz) inside the tetrahedral element as
Ux = a1x + a2y + a3z, Uy = a4x + a5y + a6z, and Uz =
a7x + a8y + a9z, where a1 to a9 are unknown constants
for each tetrahedral element. Inserting the positions [r1 =
(x1,y1,z1), r2 = (x2,y2,z2), r3 = (x3,y3,z3)] and the corre-
sponding displacements (u01,u02,u03) of the three neighboring
atoms, we can solve a1 to a9 in terms of r1, r2, and r3 and u01,
u02, and u03, thus obtaining all coefficients of U(x,y,z). If we
rearrange U(x,y,z) to express it in terms of u01, u02, and u03,
we obtain the following equation:

⎡
⎢⎣

Ux

Uy

Uz

⎤
⎥⎦ =

⎡
⎢⎣

N1 0 0 N2 0 0 N3 0 0

0 N1 0 0 N2 0 0 N3 0

0 0 N1 0 0 N2 0 0 N3

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u01x

u01y

u01z

u02x

u02y

u02z

u03x

u03y

u03z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D2)

where Ni = Ni(x,y,z), i = 1,2,3 are the finite element shape
functions. For simplicity, we can rewrite Eq. (D2) as

U = N · uN, (D3)

where uN = [u01,u02,u03]T is the displacement field of the
three neighbor atoms.

After we obtain the displacement field U, the strain can be
derived by differentiating Eq. (D3) following the continuum
strain as defined in Eq. (D1) to give

ε = T · uN, (D4)

where T = ∂N
∂x is constant inside each tetrahedral element.

Once the strains for each atom are determined, the vector gauge
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field A is straightforward to compute. However, to get the
pseudomagnetic field, B = ∂xAy − ∂yAx , another derivative is
needed, calculated in a similar fashion as the strain is calculated
from the displacement field. Thus, the displacement approach
involves two numerical derivatives, but no approximation is
made about material properties.

2. Stress approach

In MD simulations, the atomic virial stress can be extracted
on a per-atom basis. In the present work, the virial stress
as calculated from LAMMPS [76] was obtained for the final
(inflated) graphene bubble configuration. These stresses were
then related to the strain via a linear constitutive relationship,
as was done recently by Klimov et al. [46]. In the current
work, we utilized a plane stress model for graphene, where the
in-plane strains are written as εxx = 1

E
(σxx − μσyy), εyy =

1
E

(σyy − μσxx), and εxy = σxy

G
. The material properties of

graphene are chosen as E = 1 TPa [77], G = 0.47 TPa [78],
and μ = 0.165 [79], where E is the Young’s modulus, G is
the shear modulus, and μ is Poisson’s ratio. It is important to
note that, because a linear stress-strain relationship is assumed,
the resulting strain is generally underestimated, particularly at
large deformations due to the well-known nonlinear stress-
strain response of graphene [56].

Both potential and kinetic parts were taken into account for
virial stress calculation. We note that the virial stress calculated
in LAMMPS is in units of ‘pressure · volume,” and thus we
used the standard value of 3.42 Å as the effective thickness
of single layer graphene [77] to calculate the stress. A plane
stress constitutive model was utilized to calculate the strain
via

⎡
⎢⎣

εxx

εyy

εxy

⎤
⎥⎦ =

⎡
⎢⎣

1
E

− μ

E
0

− μ

E
1
E

0

0 0 1
2G

⎤
⎥⎦

⎡
⎢⎢⎢⎣

σxx

σyy

σxy

⎤
⎥⎥⎥⎦ , (D5)

where the constitutive parameters are given in the main text of
the paper.

After the strain is obtained, the same method as in the
displacement approach was used to calculate the vector gauge
field A and the pseudomagnetic field B. The stress approach
avoids one numerical differentiation but a constitutive approx-
imation is involved, i.e., that the stress-strain response for
graphene is always linear.

3. Benchmark examples

We compare the displacement and stress approaches via
two simple benchmark examples: those of uniaxial stretching
and simple shear. For the uniaxial stretching case, εxx ≈ 10%
strain was applied along the x direction. The loading was done
by applying a ramp displacement that went from zero in the
middle of the simulation box to a maximum value at the +x

and −x edges of the graphene monolayers.
For the simple shear case, εxy ≈ 1% shear strain was

applied by fixing the −x edge and displacing the +x edge in
the y direction. Both the uniaxial stretching and simple shear
simulations were performed via classical MD simulations
using the open source LAMMPS [36] code with the AIREBO
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FIG. 17. (Color online) εxx distribution by displacement ap-
proach for uniaxial stretching case with 10% strain.

potential [38]. The result for the uniaxial stretching is shown
in Figs. 17 and 18, while the simple shear is shown in
Figs. 19 and 20. The superior performance of the displacement
approach is seen in both cases. Specifically, because a linear
stress-strain relationship is assumed in the stress approach
as shown in Eq. (D5), the resulting strain is generally
underestimated, particularly at large deformations due to the
well-known nonlinear stress-strain response of graphene [56].

Once the strain distribution is determined from the MD
simulations the PMF, B, can be directly evaluated from the
definitions above. However, if the strain tensor is calculated
within the deformation approach, a second numerical deriva-
tive is needed to get B, which is likely to introduce a certain
degree of error. Nevertheless we found the errors to be of
acceptable magnitude.

Compared with the displacement approach, the stress
approach avoids one numerical differentiation, but a
constitutive approximation is involved. To compare the
accuracy of the displacement and stress approaches, we
calculated the PMF distribution in a circular bubble (for
which an analytic solution is available and detailed analysis
was recently performed [14]) by obtaining the strain via
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FIG. 18. (Color online) εxx distribution by stress approach for
uniaxial stretching case with 10% strain.
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FIG. 19. (Color online) εxy distribution by displacement ap-
proach for simple shear case with 1% strain.

three different methods, as illustrated in Fig. 2: an analytic
continuum mechanics model, i.e., the Hencky solution [54]
(b), the MD-based displacement approach (c), and the
MD-based stress approach (d). In the MD simulations we
used 100 snapshots over 5 ps during thermal equilibrium to
determine the average final position and stress for the inflated
bubbles. For all three models, the radius of the circular
hole was 3 nm, while the final deflection was about 1 nm.

FIG. 20. (Color online) εxy distribution by stress approach for
simple shear case with 1% strain.

As Fig. 2 demonstrates, the PMFs generated from the
MD-based displacement approach are in good agreement with
those that follow from Hencky’s analytic solution, and also
with previously reported values for a circular bubble [14].
In contrast, the stress approach fails to yield reasonable
results for this loading situation, even at the qualitative
level.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[2] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[4] M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett.

98, 206805 (2007).
[5] J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T.

Pettes, X. Li, Z. Yao, R. Huang, D. Broido et al., Science 328,
213 (2010).

[6] F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30
(2010).

[7] Z. Qi, D. A. Bahamon, V. M. Pereira, H. S. Park, D. K. Campbell,
and A. H. Castro Neto, Nano Lett. 13, 2692 (2013).

[8] H. Tomori, A. Kanda, H. Goto, Y. Ootuka, K. Tsukagoshi,
S. Moriyama, E. Watanabe, and D. Tsuya, Appl. Phys. Express
4, 075102 (2011).

[9] F. Guinea, A. K. Geim, M. I. Katsnelson, and K. S. Novoselov,
Phys. Rev. B 81, 035408 (2010).

[10] V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103,
046801 (2009).

[11] F. Guinea and T. Low, Philos. Trans. R. Soc., A 368, 5391
(2010).

[12] F. Guinea, B. Horovitz, and P. Le Doussal, Phys. Rev. B 77,
205421 (2008).

[13] N. Abedpour, R. Asgari, and F. Guinea, Phys. Rev. B 84, 115437
(2011).

[14] K.-J. Kim, Y. M. Blanter, and K.-H. Ahn, Phys. Rev. B 84,
081401 (2011).

[15] N. C. Yeh, M. L. Teague, S. Yeom, B. L. Standley, R. T. P. Wu,
D. A. Boyd, and M. W. Bockrath, Surf. Sci. 605, 1649 (2011).

[16] H. T. Yang, J. Phys.: Condens. Matter 23, 505502 (2011).
[17] A. L. Kitt, V. M. Pereira, A. K. Swan, and B. B. Goldberg, Phys.

Rev. B 85, 115432 (2012).
[18] A. L. Kitt, V. M. Pereira, A. K. Swan, and B. B. Goldberg, Phys.

Rev. B 87, 159909(E) (2013).
[19] K. Yue, W. Gao, R. Huang, and K. M. Liechti, J. Appl. Phys.

112, 083512 (2012).
[20] V. M. Pereira, A. H. Castro Neto, H. Y. Liang, and L. Mahadevan,

Phys. Rev. Lett. 105, 156603 (2010).
[21] D. A. Abanin and D. A. Pesin, Phys. Rev. Lett. 109, 066802

(2012).
[22] Z. F. Wang, Y. Zhang, and F. Liu, Phys. Rev. B 83, 041403

(2011).
[23] V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev.

B 80, 045401 (2009).
[24] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X.

Shen, ACS Nano 3, 483 (2009).
[25] M. Farjam and H. Rafii-Tabar, Phys. Rev. B 80, 167401 (2009).
[26] S.-M. Choi, S.-H. Jhi, and Y.-W. Son, Phys. Rev. B 81,

081407(R) (2010).
[27] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).
[28] H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).
[29] V. M. Pereira, R. M. Ribeiro, N. M. R. Peres, and A. H. Castro

Neto, Eur. Phys. Lett. 92, 67001 (2010).

125419-19

http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1126/science.1184014
http://dx.doi.org/10.1126/science.1184014
http://dx.doi.org/10.1126/science.1184014
http://dx.doi.org/10.1126/science.1184014
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1021/nl400872q
http://dx.doi.org/10.1021/nl400872q
http://dx.doi.org/10.1021/nl400872q
http://dx.doi.org/10.1021/nl400872q
http://dx.doi.org/10.1143/APEX.4.075102
http://dx.doi.org/10.1143/APEX.4.075102
http://dx.doi.org/10.1143/APEX.4.075102
http://dx.doi.org/10.1143/APEX.4.075102
http://dx.doi.org/10.1103/PhysRevB.81.035408
http://dx.doi.org/10.1103/PhysRevB.81.035408
http://dx.doi.org/10.1103/PhysRevB.81.035408
http://dx.doi.org/10.1103/PhysRevB.81.035408
http://dx.doi.org/10.1103/PhysRevLett.103.046801
http://dx.doi.org/10.1103/PhysRevLett.103.046801
http://dx.doi.org/10.1103/PhysRevLett.103.046801
http://dx.doi.org/10.1103/PhysRevLett.103.046801
http://dx.doi.org/10.1098/rsta.2010.0214
http://dx.doi.org/10.1098/rsta.2010.0214
http://dx.doi.org/10.1098/rsta.2010.0214
http://dx.doi.org/10.1098/rsta.2010.0214
http://dx.doi.org/10.1103/PhysRevB.77.205421
http://dx.doi.org/10.1103/PhysRevB.77.205421
http://dx.doi.org/10.1103/PhysRevB.77.205421
http://dx.doi.org/10.1103/PhysRevB.77.205421
http://dx.doi.org/10.1103/PhysRevB.84.115437
http://dx.doi.org/10.1103/PhysRevB.84.115437
http://dx.doi.org/10.1103/PhysRevB.84.115437
http://dx.doi.org/10.1103/PhysRevB.84.115437
http://dx.doi.org/10.1103/PhysRevB.84.081401
http://dx.doi.org/10.1103/PhysRevB.84.081401
http://dx.doi.org/10.1103/PhysRevB.84.081401
http://dx.doi.org/10.1103/PhysRevB.84.081401
http://dx.doi.org/10.1016/j.susc.2011.03.025
http://dx.doi.org/10.1016/j.susc.2011.03.025
http://dx.doi.org/10.1016/j.susc.2011.03.025
http://dx.doi.org/10.1016/j.susc.2011.03.025
http://dx.doi.org/10.1088/0953-8984/23/50/505502
http://dx.doi.org/10.1088/0953-8984/23/50/505502
http://dx.doi.org/10.1088/0953-8984/23/50/505502
http://dx.doi.org/10.1088/0953-8984/23/50/505502
http://dx.doi.org/10.1103/PhysRevB.85.115432
http://dx.doi.org/10.1103/PhysRevB.85.115432
http://dx.doi.org/10.1103/PhysRevB.85.115432
http://dx.doi.org/10.1103/PhysRevB.85.115432
http://dx.doi.org/10.1103/PhysRevB.87.159909
http://dx.doi.org/10.1103/PhysRevB.87.159909
http://dx.doi.org/10.1103/PhysRevB.87.159909
http://dx.doi.org/10.1103/PhysRevB.87.159909
http://dx.doi.org/10.1063/1.4759146
http://dx.doi.org/10.1063/1.4759146
http://dx.doi.org/10.1063/1.4759146
http://dx.doi.org/10.1103/PhysRevLett.105.156603
http://dx.doi.org/10.1103/PhysRevLett.105.156603
http://dx.doi.org/10.1103/PhysRevLett.105.156603
http://dx.doi.org/10.1103/PhysRevLett.105.156603
http://dx.doi.org/10.1103/PhysRevLett.109.066802
http://dx.doi.org/10.1103/PhysRevLett.109.066802
http://dx.doi.org/10.1103/PhysRevLett.109.066802
http://dx.doi.org/10.1103/PhysRevLett.109.066802
http://dx.doi.org/10.1103/PhysRevB.83.041403
http://dx.doi.org/10.1103/PhysRevB.83.041403
http://dx.doi.org/10.1103/PhysRevB.83.041403
http://dx.doi.org/10.1103/PhysRevB.83.041403
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1021/nn8008323
http://dx.doi.org/10.1021/nn8008323
http://dx.doi.org/10.1021/nn8008323
http://dx.doi.org/10.1021/nn8008323
http://dx.doi.org/10.1103/PhysRevB.80.167401
http://dx.doi.org/10.1103/PhysRevB.80.167401
http://dx.doi.org/10.1103/PhysRevB.80.167401
http://dx.doi.org/10.1103/PhysRevB.80.167401
http://dx.doi.org/10.1103/PhysRevB.81.081407
http://dx.doi.org/10.1103/PhysRevB.81.081407
http://dx.doi.org/10.1103/PhysRevB.81.081407
http://dx.doi.org/10.1103/PhysRevB.81.081407
http://dx.doi.org/10.1103/PhysRevLett.78.1932
http://dx.doi.org/10.1103/PhysRevLett.78.1932
http://dx.doi.org/10.1103/PhysRevLett.78.1932
http://dx.doi.org/10.1103/PhysRevLett.78.1932
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1209/0295-5075/92/67001
http://dx.doi.org/10.1209/0295-5075/92/67001
http://dx.doi.org/10.1209/0295-5075/92/67001
http://dx.doi.org/10.1209/0295-5075/92/67001


QI, KITT, PARK, PEREIRA, CAMPBELL, AND CASTRO NETO PHYSICAL REVIEW B 90, 125419 (2014)

[30] L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S.
Novoselov, Adv. Mater. 22, 2694 (2010).

[31] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl,
F. Guinea, A. H. Castro Neto, and M. F. Crommie, Science 329,
544 (2010).

[32] J. Lu, A. H. Castro Neto, and K. P. Loh, Nat. Commun. 3, 823
(2012).

[33] M. Neek-Amal and F. M. Peeters, Phys. Rev. B 85, 195446
(2012).

[34] M. Neek-Amal, L. Covaci, and F. M. Peeters, Phys. Rev. B 86,
041405 (2012).

[35] W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14,
33 (1996).

[36] LAMMPS, http://lammps.sandia.gov, 2012.
[37] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[38] S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys.

112, 6472 (2000).
[39] H. Zhao and N. R. Aluru, J. Appl. Phys. 108, 064321 (2010).
[40] Z. Qi, F. Zhao, X. Zhou, Z. Sun, H. S. Park, and H. Wu,

Nanotechnology 21, 265702 (2010).
[41] M. Neek-Amal and F. M. Peeters, Phys. Rev. B 85, 195445

(2012).
[42] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
[43] R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K.

Geim, Science 335, 442 (2012).
[44] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande,

J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8,
2458 (2008).

[45] S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, Nat.
Nanotechnol. 6, 543 (2011).

[46] N. N. Klimov, S. Jung, S. Z. Zhu, T. Li, C. A. Wright, S. D.
Solares, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Science
336, 1557 (2012).

[47] T. J. R. Hughes, The Finite Element Method: Linear Static and
Dynamic Finite Element Analysis (Prentice-Hall, Englewood
Cliffs, NJ, 1987).

[48] A. Isacsson, L. M. Jonsson, J. M. Kinaret, and M. Jonson, Phys.
Rev. B 77, 035423 (2008).

[49] A. Hansson and S. Stafström, Phys. Rev. B 67, 075406 (2003).
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