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Viscoelastic effects on electromechanical instabilities in
dielectric elastomers

Harold S. Park*a and Thao D. Nguyenb

We present a computational study of the effects of viscoelasticity on the electromechanical behavior of

dielectric elastomers. A dynamic, finite deformation finite element formulation for dielectric elastomers

is developed that incorporates the effects of viscoelasticity using the nonlinear viscoelasticity theory

previously proposed by Reese and Govindjee. The finite element model features a three-field Q1P0

formulation to alleviate volumetric locking effects caused by material incompressibility. We apply the

formulation to first perform a fundamental examination of the effects of the viscoelastic deviatoric and

volumetric response on dielectric elastomers undergoing homogeneous deformation. Specifically, we

evaluate the effects of the shear and bulk relaxation times on the electromechanical instability, and

demonstrate that while the bulk relaxation time has a negligible impact, the shear relaxation time

substantially increases the critical electric field needed to induce electromechanical instability. We also

demonstrate a significant increase in the critical voltage needed to induce electromechanical instability

in the presence of a distribution of relaxation times, compared to a single relaxation time, where the

former is more representative of viscoelastic behavior of polymers. We then study the effects of

viscoelasticity on crack-like electromechanical instabilities that have recently been observed in

constrained dielectric films with a small hole containing a conductive liquid. Viscoelasticity is shown

again to not only significantly increase the critical electric field to induce the electromechanical

instability, but also to substantially reduce the crack propagation speeds in the elastomer.
1 Introduction

Dielectric elastomers (DEs) have attracted signicant attention
in recent years as a so and exible actuation material.2–4 The
salient characteristic of DEs is that if sandwiched between two
compliant electrodes that apply voltage across the thickness,
the DE can exhibit both signicant thinning and in-plane
expansion, where the in-plane expansion can oen exceed
several hundred percent.5 The ability to undergo such large
deformations has led to DEs being studied for both actuation-
based applications, including articial muscles and exible
electronics, as well as for generation-based applications and
energy harvesting.2,3,6

In-depth investigation of the mechanical behavior of DEs
began with the seminal experimental work of Pelrine et al.7,8

Since then, there have been many experimental,9–23 theoret-
ical,15,16,24–31 and more recently, a small number of computa-
tional31–36 studies aimed that identifying the mechanisms that
have the greatest impact on the nonlinear dynamical behavior
and failure of mechanisms of DEs.
ston University, Boston, MA 02215, USA.
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From these extensive studies, it is now well-known that the
electromechanical behavior and properties of DEs is strongly
rate-dependent.4,14,19,37 However, a quantitative characterization
of viscoelastic effects on the nonlinear dynamics and failure
mechanisms of DEs under external loading remains an open
area for a number of reasons. First, while recent theoretical
work has made progress in this direction,38–40 the incorporation
of complex viscoelastic constitutive relationships within an
analytical model has led to difficulties in evaluating viscous
effects on the failure mechanisms of DEs undergoing general-
ized electromechanical deformations. The viscoelastic behavior
of polymers is characterized by broad distributions of relaxation
times, though their behavior is oen modeled by a single
relaxation process. Consequently, elastomers can exhibit time-
dependent properties over a broad range of time scales.41

Viscoelastic behavior appears in both the shear and bulk
response, but the effect is signicantly larger in shear. The
storage modulus for shear can change by a factor of 1000
through the transition between glassy and rubbery behavior,
while the storage modulus for the volumetric response changes
only by a factor of 2.42 The tan delta, dened as the ratio of the
loss to storage modulus, characterizes the viscous dissipation
exhibited by a viscoelastic material at a given temperature and
frequency. While the peak of the tan delta for the bulk and shear
Soft Matter, 2013, 9, 1031–1042 | 1031
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response occurs at the same frequency, the tan delta for shear
has a broader frequency range.

Second, while there have been a small number of compu-
tational models that have accounted for viscoelasticity,43 these
studies have been limited to linearized theories, which is
incongruous with the large deformations that DEs undergo
before the development of instabilities and subsequent failure.
Linear and nite linear theories of viscoelasticity44,45 inherently
assume small perturbations from thermodynamic equilibrium,
and cannot be applied in situations of large viscous defor-
mations, such as creep. Nonlinear theories that incorporate
the effects of large viscous deformation lead to faster creep
and relaxation and smaller stresses compared to linear
theories.46,47

Third, few existing computational models except for the
recent, dynamic nite element model of Part et al.32 have
demonstrated the capability of capturing the dynamics and
evolution of inhomogeneous deformation, i.e. wrinkles, elec-
tromechanical snap-through and creasing. These ongoing
experimental and theoretical issues suggest that the funda-
mental mechanisms underlying the nonlinear dynamical
behavior and properties that lead to instability and failure of
DEs at large deformations, as illustrated by the establishment of
complex wrinkling patterns in the work of Plante and Dubow-
sky,14 or the more recent creasing instabilities observed by
Wang et al.21 and the crack-like failure mechanism seen by
Wang et al.23 are still not completely understood, particularly
when viscous material effects are accounted for.

Therefore, we present a nonlinear, nite deformation nite
element (FEM) model based on the previous work of Park
et al.,32 while incorporating viscoelastic effects using the fully
nite deformation viscoelastic theory of Reese and Govindjee.1

The resulting viscoelastic DEFEM model also signicantly
alleviates numerical volumetric locking effects caused by the
incompressible nature of the DEs, by incorporating the three-
eld Q1P0 variational formulation of Simo et al.48 We apply the
model to perform fundamental studies of viscoelastic effects on
the electromechanical behavior under homogeneous and
inhomogeneous deformations. Lastly, we examine the effects of
material viscoelasticity on crack-like electromechanical insta-
bilities in constrained DEs.23
2 Background: nonlinear electromechanical
field theory

Because the FEM methodology32 and governing electrome-
chanical eld theory24 we build upon in the present work have
both previously been discussed in detail, we present only a brief
overview here while referring the interested reader to the above
references for a more complete development.

The numerical results we present in this work are based
upon a FEM discretization of the electromechanical eld theory
recently proposed by Suo et al.,24 and recently reviewed by Suo.25

In this eld theory at mechanical equilibrium, the nominal
stress SiJ satises the following weak form of the momentum
balance equation:
1032 | Soft Matter, 2013, 9, 1031–1042
ð
V

SiJ

vxi

vXJ

dV ¼
ð
V

�
Bi � r

v2xi

vt2

�
xidV þ

ð
A

TixidA; (1)

where xi is an arbitrary vector test function, Bi is the body force
per unit reference volume V, r is the mass density of the
material and Ti is the force per unit area that is applied on the
surface A in the reference conguration.

For the electrostatic problem, the nominal electric
displacement ~DI satises the following weak form of the gov-
erning equation:

�
ð
V

~DI

vh

vXI

dV ¼
ð
V

qhdV þ
ð
A

uhdA; (2)

where h is an arbitrary scalar test function, q is the volumetric
charge density and u is the surface charge density, both with
respect to the reference conguration. It can be seen that the
strong form of the electrostatic weak form in (2) corresponds to
Gauss's law.

As the governing eld equations in (1) and (2) are decoupled,
the electromechanical coupling occurs through the material
laws. The hyperelastic material law we adopt here has been
utilized in the literature to study the nonlinear deformations of
electrostatically actuated polymers; see the works of Vu et al.,35

and Zhao and Suo.34 Due to the fact that the DE is a rubber-like
polymer, phenomenological free energy expressions are typi-
cally used to model the deformation of the polymer chains. In
the present work, we utilize the form,34,35

Weq

�
C ; ~E

� ¼ mW0 � 1

2
lðlnJÞ2�2mW0ð3ÞlnJ � 3

2
JCIJ

�1 ~EI
~EJ;

(3)

whereW0 is themechanical free energy density in the absence of
an electric eld, 3 is the permittivity, ~E is the nominal electric
eld, J ¼ det(F), where F is the continuum deformation
gradient, CIJ

�1 are the components of the inverse of the right
Cauchy–Green tensor C, l is the bulk modulus and m is the
shear modulus. We distinguish the free energy Weq in (3) as the
equilibrium free energy as we will dene a non-equilibrium free
energy that accounts for viscoelastic effects later.

We model the mechanical behavior of the DE using the
Arruda–Boyce rubber hyperelastic function.49 The mechanical
free energyW0 in (3) is approximated by the following truncated
series expansion,

W0ðI1Þ ¼ 1

2
ðI1 � 3Þ þ 1

20N

�
I1

2 � 9
�þ 11

1050N2

�
I1

3 � 27
�

þ 19

7000N3

�
I1

4 � 81
�þ 519

673750N4

�
I1

5 � 243
�
; (4)

where N is a measure of the cross link density, I1 is the trace of
C, and where the Arruda–Boyce model reduces to a Neo-Hoo-
kean model if N / N. We emphasize that previous experi-
mental studies of Wissler and Mazza18 have validated the
Arruda–Boyce model as being highly accurate for modeling the
large deformation of DEs.

Physically, the equilibrium free energy Weq in (3) arises
from the representation of an elastomer as a crosslinked
network of long exible chains that consist of a large number of
This journal is ª The Royal Society of Chemistry 2013
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monomers. Consequently, the crosslinks have a negligible
effect on the polarization of the monomers, such that the
elastomer can polarize nearly as freely as a polymer melt. As an
idealization, we may assume that the dielectric behavior of an
elastomer is exactly the same as that of a polymer melt.

Furthermore, in an elastomer, each individual polymer
chain has a nite extensibility. In the undeformed state, the
polymer chains assumes a coiled conguration, which allows
for a large number of conformations. The polymer chains rst
straighten upon loading. As the loads increase, the end-to-end
distance of each polymer chain approaches the nite contour
length, and the elastomer approaches a limiting stretch. On
approaching the limiting stretch, the elastomer stiffens
rapidly, which is captured by the Arruda–Boyce hyperelastic
model in (4).
2.1 Finite viscoelasticity

To describe the well-known viscous, or rate effects on the elec-
tromechanical behavior and properties of DEs, we applied the
nite nonlinear viscoelasticity approach rst proposed by Reese
and Govindjee.1 This approach was recently adopted by Hong38

to develop an analytical model for viscoelastic effects on DEs.
We adopt the approach of Reese and Govindjee1 in the present
work because, unlike many existing theories of viscoelas-
ticity,44,45 it does not restrict the material behavior to small
perturbations away from thermodynamic equilibrium (i.e. nite
linear viscoelasticity), and thus is valid for large viscous defor-
mations, such as creep, or equivalently for large viscous defor-
mation rates. The interested reader may consult Reese and
Govindjee,1 Govindjee and Reese50 and Nguyen47 for a detailed
discussion distinguishing between nite viscoelasticity and
nite linear viscoelasticity.

In the nite nonlinear viscoelasticity theory of Reese and
Govindjee,1 the deformation gradient F is decomposed into
elastic and viscous components F ¼ FeFv to describe the time-
dependent mechanical response. The free energy is additively
decomposed into a time-independent equilibrium part depen-
dent on the total deformation and electric eld, and a time-
dependent non-equilibrium part dependent on the elastic
component of the deformation,

Wtotal ¼ Weq(C, ~E) + Wneq(C
e), (5)

where C ¼ FTF and Ce ¼ Fe
T

Fe. The non-equilibrium free energy
Wneq(C

e) is assumed to be independent of the electric eld
based on the assumption that electrostatic equilibrium occurs
much more quickly than mechanical equilibrium.38

The constitutive relations for the stress response and
evolution equation for the internal deformation are developed
using the Coleman and Gurtin51 thermodynamic theory of
internal variables. The 2nd Piola–Kirchhoff stress is dened as,

S ¼ 2
vWeq

vC
þ Fv�1

2
vWneq

vC e Fv�T

; (6)

which results in an additive decomposition of the stress
response S ¼ Seq + Sneq. The evolution equation for the internal
deformation is restricted to satisfy the positive dissipation
This journal is ª The Royal Society of Chemistry 2013
criteria. The following evolution equation was proposed by
Reese and Govindjee:1

� 1

2
L vbe$be

�1 ¼ V �1: sneq; (7)

where be ¼ Fe$F
T
e, and where L v denotes the Lie time derivative,

an objective rate, of the elastic component of the deformation
tensor. The ow stress sneq is the non-equilibrium component
of the Kirchhoff stress tensor s ¼ FSFT. The mobility tensor
(more commonly known as viscosity tensor) V must be positive
denite to satisfy (7), and takes the following form for an
isotropic material,1

V �1 ¼ 1

2hs

�
I� 1

3
I5I

�
þ 1

9hb

I5I ; (8)

where I is the fourth order identity tensor, and hs and hb

represent the shear and bulk viscosities, respectively. The shear
and bulk viscosities are used to derive relaxation times for the
viscoelastic DE, and we will investigate the effects of each in a
parametric study below.

The additive decomposition of the free energy in (5) is useful
for the subsequent numerical developments as the second
Piola–Kirchhoff stress and material tangent moduli are needed
for the FEM formulation can be decomposed into both equi-
librium and non-equilibrium contributions,

C ¼ C eq þ C neq ¼ 4
v2Weq

vC 2
þ 4

v2Wneq

vC2
: (9)

The reader is referred to Reese and Govindjee1 for a detailed
derivation of the material tangent modulus for numerical
implementation in a nite element formulation.
3 Viscoelastic Q1P0 finite element
formulation
3.1 Base viscoelastic nite element formulation

Recently, Park et al.32 developed a nonlinear, nite deformation,
dynamic FEM formulation of the governing nonlinear electro-
mechanical eld equations of Suo et al.24 that are summarized
in (1) and (2). By using a standard FEM approximation to both
the mechanical displacement and electric potential, incorpo-
rating inertial effects in the mechanical momentum equation,
and then obtaining the relevant variational forms of the eld
equations in (1) and (2), an implicit, coupled, monolithic
nonlinear dynamic FEM formulation was obtained with the
governing equations,�

Da
DF

�
¼ �

�
M þ bDt2K eq

mm Kme

bDt2K em K ee

��1�
Rmech

Relec

�
; (10)

whereM is the lumped FEMmassmatrix, Da is the increment in
mechanical acceleration, DF is the increment in electrostatic
potential, b ¼ 0.25 is the standard Newmark time integrator
parameter,52 Dt is the time step, Rmech is the mechanical
residual, Relec is the electrical residual, and the various stiffness
matrices K include the purely (equilibrium) mechanical (Keq

mm),
mixed electromechanical (Kme ¼ KT

em), and purely electrostatic
(Kee) contributions. The governing FE equations in (10) are
Soft Matter, 2013, 9, 1031–1042 | 1033
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nonlinear, and thus are solved iteratively until convergence
is reached for a given mechanical or electrostatic load
increment.

Explicit expressions for the various mechanical, electrome-
chanical, and electrostatic residual vector and stiffness matrices
can be found in Park et al.32 This method was shown to capture
inhomogeneous electromechanical deformation, including
wrinkling, creasing and snap through instabilities that are the
common failure modes of DEs. However, it did not include
dissipative effects such as viscoelasticity, nor did it address the
issue of volumetric locking due to material incompressibility.

Incorporation of the Reese and Govindjee1 nite nonlinear
viscoelasticity formulation into the previous FEM formulation
of Park et al.32 is relatively straightforward because of the
additive decomposition of the total free energy into equilibrium
and non-equilibrium contributions in (5). Moreover, the non-
equilibrium free-energy depends only on mechanical elds and
deformation. Because of this, when viscoelastic effects are
accounted for using the approach of Reese and Govindjee,1 the
original governing dynamic FEM equations in (10) become�

Da
DF

�
¼ �

�
M þ bDt2K eq

mm þ Kneq
mm Kme

bDt2K em K ee

��1�
Rmech

Relec

�
: (11)

As can be seen by comparing the viscoelastic FEM equations
in (11) with the non-viscoelastic equations in (10), the purely
equilibrium mechanical contribution to the stiffness matrix is
augmented with the non-equilibrium mechanical contribution
to the stiffness matrix, which can be written explicitly as

Kneq
mm ¼

ð
V

�
2dik

vWneqðC eÞ
vCJL

þ 4FiMFkN

v2WneqðC eÞ
vCJMvCLN

vNa

vXJ

vNb

vXL

�
dV ;

(12)

where again, the details of the non-equilibrium stresses and
moduli that are needed to evaluateKneq

mm are derived in Reese and
Govindjee.1 We re-emphasize that the additive contribution of
the non-equilibrium stiffness matrix Kneq

mm that is seen in (11) is a
direct consequence of the additive decomposition of the free
energy into equilibriumandnon-equilibriumcomponents in (5).
3.2 Q1P0 viscoelastic nite element formulation

The nal step needed to complete the locking-resistant, visco-
elastic FEM formulation for DEs is to modify the formulation in
(11) to alleviate the effects of volumetric locking. The effects of
volumetric locking within the context of DEs manifest them-
selves numerically, as we will demonstrate later in the
Appendix, by the prediction of articially high critical electric
elds that are needed to induce electromechanical instabilities.
In the FEM context, volumetric locking occurs due to the
inability of linear (low-order) FEs to reproduce an isochoric, or
volume-preserving deformation. Further insight into FEM
techniques to alleviate locking is given in Belytschko et al.53

We adopt here the seminal approach developed by Simo
et al.48 to alleviate the volumetric locking effects. The Simo
et al.48 work relies upon a three-eld Hu-Washizu variation
principle that treats the displacements, pressure and Jacobian
1034 | Soft Matter, 2013, 9, 1031–1042
as independent variables along with a kinematic split that
decomposes the deformation gradient F into deviatoric and
volumetric components.

We rst introduce the relevant kinematic variables and the
kinematic split. Given a motion f(X,t), we can dene the
deformation gradient F and Jacobian J as,

F ¼ vf

vX
; J ¼ detF: (13)

We additionally dene,

�F ¼ Q1/3F̂,F̂¼J�1/3F, (14)

whereQ is a new kinematic variable. The key idea underlying the
multiplicative split of the deformation gradient into volumetric
and deviatoric components is that while in the continuous case
Q(X,t) ¼ J(X,t) such that �F ¼ F, this identity does not hold when
constructing a discrete, or nite-dimensional approximation.
Themodied rightCauchy–Green tensorC cannowbewritten as,

C ¼ FTF,Ĉ ¼ J�2/3C ¼ F̂TF̂. (15)

Due to the modication of the deformation gradient and
Cauchy–Green tensors in (14) and (15), the free energy of the
ideal DE in (3) is now written in the form,

W ¼ ~W (Q2/3Ĉ , ~E), (16)

where we note that all resulting modications to the free energy
are to the mechanical kinematic variables, and not the nominal
electric eld. The corresponding second (S) Piola–Kirchhoff
stress tensor is then obtained via,

S ¼
v ~W

�
C ; ~E

�
vC

������
C¼Q2=3Ĉ

: (17)

The modied kinematic variables are then utilized in the
following Lagrangian:

Lðu;Q; pÞ ¼
ð
V

W
�
Q1=3F̂

�
dV þ

ð
V

pðJ �QÞdV

þPextðuÞ � K
�
_u
�
; (18)

where Pext(u) is the external work due to body forces and
prescribed tractions, and K( _u) is the kinetic energy. It is clear
that the purpose of the pressure p in (18) is to enforce the
incompressibility condition in the discrete formulation, i.e. J ¼
Q. Furthermore, as shown by Simo et al.,48 the pressure p is
eliminated at the element level such that the resulting FEM
equations include only the standard displacement (or acceler-
ation) nodal degrees of freedom.

In deriving the governing FEM equations, a mixed projection
approach was utilized by Simo et al.48 The mixed approximation
arises because while the nodal displacement eld is interpo-
lated using standard, linear FEM shape functions, the element-
level pressure and volume are approximated using a lower
order, constant approximation, thus resulting in the Q1P0
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 Effects of varying ss on the electromechanical behavior of DEs undergoing
homogeneous deformation.
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moniker. The projection arises because the shape function
gradients B are decomposed into volumetric and deviatoric
components, where the deviatoric components are calculated
from the gradients of the shape functions but the volumetric
components are approximated by the mean dilation component
for the element to provide a lower order constant approximation
for the volumetric deformation and pressure. Specically,

�BI ¼ BI
dev + �BI

vol, (19)

where the explicit expressions for the �B shape function gradi-
ents can be found in Hughes.52

Coupling the Q1P0 formulation of Simo et al.48 in (18) with
the electromechanical eld equations of Suo et al.24 in (1) and
(2) and the standard FE approximation to the mechanical
displacement and electrostatic potential, we arrive at the
following FEM governing equation that incorporates the nite
viscoelasticity approach of Reese and Govindjee1 and also the
locking-resistant Q1P0 formulation of Simo et al.:48�

Da
DF

�
¼ �

�
M þ bDt2 K eq

mmþq1p0 þ Kneq
mm Kme

bDt2 K em K ee

��1�
Rmech

Relec

�
:

(20)

Incorporation of the Q1P0 formulation of Simo et al.48 results
in some modications to the various terms in (20). First, the
internal mechanical force is modied as

f intm ¼
ð
V

B T

�
1

J
FSFT

�
dv

����
F¼Q1=3F̂

: (21)

Second, because the electromechanical stiffnessmatrices are
derived from a linearization of the modied internal mechan-
ical force in (21), it becomes

Kme ¼ vf intm

v~E
¼
ð
V

B
T

 
1

J
F
vS

v~E
FT

!
Bdv

����
F¼Q1=3F̂

; (22)

where it is clear that the electromechanical stiffness in (22) has
becomemixed in the sense that it depends on both the standard
FE shape function gradients as well as the modied �B shape
function gradients.

Finally, as noted by Simo et al.,48 the mechanical stiffness
matrices Keq

mm+q1p0 in (20) can be written

Keq
mm+q1p0 ¼ Kgeo + Kmat + Kp, (23)

where Kgeo and Kmat are the standard geometric and material
contributions to the stiffness matrix, and where Kp is a new
contribution to the stiffness matrix that emerges due to the
incompressibility pressure constraint in (18). We evaluate the
stresses and moduli that are needed in (23) for the equilibrium
(Keq

mm+q1p0) tangent stiffness in (20) using the numerical nite
difference approach of Miche.54

4 Numerical results
4.1 Homogeneous deformation: single relaxation time

We rst examine how viscoelasticity impacts the electrome-
chanical behavior of DEs under homogeneous deformation.
This journal is ª The Royal Society of Chemistry 2013
The model DE geometry was a cube of side length one that is
traction and mechanical constraint-free and thus effectively
free-standing. Electrostatic loading was applied through a
monotonically increasing charge on the +y surface, while the�y
surface was prescribed a constant (zero) voltage. The material
constants for the DE were set as (see eqn (3) and (4)): m ¼ 3 ¼ 1,
l ¼ 10000, N ¼ 5.0. These parameters were chosen as they
enable the DE to undergo an electromechanical instability via
soening in the normalized voltage vs. charge curve,33 while the
ratio l/m ¼ 10000 was used to enforce incompressibility of the
DE. The parameters for the shear and bulk relaxation times ss
and sb were varied as well as the loading rate to evaluate the
effect of deviatoric and volumetric viscoelasticity. All calcula-
tions were performed in 3D with a single 8-node hexahedral
nite element using the Sandia-developed simulation code
Tahoe.55 The FE time step chosen was several orders of
magnitude smaller than the smallest relaxation time such that
the viscoelastic behavior was accurately resolved. In the present
work, for simplicity, we assumed that the non-equilibrium free
energy takes a Neo-Hookean form.

4.1.1 SHEAR AND BULK TIME CONSTANT EFFECTS. We rst
examined the effects of varying either the bulk or shear
relaxation time, while holding the other one xed, with the
results for varying the shear relaxation time summarized in
Fig. 1. These numerical examples are thus based upon a single
relaxation time in either the bulk or shear mode, and will be
contrasted with the multiple relaxation time cases discussed
below. The shear and bulk relaxation times ss and sb have all
been normalized in this and subsequent gures by multiplying
the relaxation time by the loading rate. For the case shown in
Fig. 1, the bulk relaxation time was held xed at a very small
value relative to the shear relaxation times to enable us to
delineate the effect of varying the shear relaxation time. We
will demonstrate in a later discussion that having the bulk
relaxation time be comparable to the shear relaxation time
does not change the conclusions we reach based on the results
in Fig. 1.
Soft Matter, 2013, 9, 1031–1042 | 1035
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Fig. 2 Normalized voltage–charge curves for a DE undergoing homogeneous
deformation if ss ¼ sb.

Fig. 3 Effect of different charge loading rates on the electromechanical behavior
of viscoelastic DEs undergoing homogeneous deformation.
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Our rst result, though not shown pictorially, was obtained
by keeping the shear relaxation time xed at a small value ss ¼
0.001, while varying the bulk relaxation time sb. However, we
found that varying sb four orders of magnitude56 does not lead
to any difference in the electromechanical behavior of the DE,
which exhibits an initial increase in the normalized voltage–
charge curve, followed by electromechanical instability occur-
ring at a normalized voltage of about F¼ 0.75 (see, for example,
the black curve in Fig. 1). The likely reason for the fact that the
bulk relaxation time has little effect is due to the incompressible
behavior of DEs, where there is no appreciable volumetric
deformation.

In contrast, if sb ¼ 0.001 and ss is varied over three orders of
magnitude as shown in Fig. 1, the critical voltage and charge
needed to induce the electromechanical instability gradually
increase as compared to the case in which viscoelastic effects
are neglected. We see that when ss ¼ 10, the critical voltage to
induce the electromechanical instability increases about 36%
from 0.75 to 1.02. However, it is also observed that increasing
the single shear relaxation time ss above 10 does not appear to
appreciably change either the critical voltage for instability, nor
the resulting post-instability behavior. This result suggests that,
as predicted previously by Zhao et al.,39 viscous effects delay the
onset of electromechanical instabilities in DEs.

As demonstrated in Fig. 1, time-dependent behavior is
observed for a narrow range of relaxation times, i.e. 0.1 < ss < 10.
For ss < 0.1, the loading rate is signicantly lower than the
relaxation rate such that the material remains in equilibrium
throughout the deformation. For ss > 10, the loading rate is
signicantly faster than the relaxation rate such that there is
insufficient time for appreciable relaxation of the material to
occur during deformation. At equilibrium, the shear modulus is
the same as the shear modulus m for the elastic (no viscoelastic)
case, thus the instability behavior of the two cases are identical.
The shear modulus of the unrelaxedmaterial is 2m, which by the
scaling analysis done in Fig. 1 where both the charge Q and
voltage F are normalized by

ffiffiffiffiffiffiffiffi
3=m

p
, indicates that the break-

down voltage should increase by about a factor of
ffiffiffi
2

p
, or 41%.

This is in fact very close to the 36% increase observed in Fig. 1
for the ss ¼ 100 case. Larger normalized relaxation times would
have no further effect on the dielectric behavior.

To further demonstrate the relative importance of ss as
compared to sb, we show in Fig. 2 the normalized voltage–
charge curves if ss ¼ sb for a range of values spanning three
orders of magnitude. It is clearly seen that Fig. 2 is quite similar
to Fig. 1b in which sb ¼ 0.001 and ss is varied, which again
suggests that the bulk relaxation time sb does not strongly
impact the electromechanical behavior of DEs, particularly in
comparison to the shear relaxation time ss.

4.1.2 LOADING RATE EFFECTS. Another important parameter
to consider within the context of viscoelasticity is the effect of
electrical loading rate on the electromechanical behavior of the
DEs. We illustrate this effect in Fig. 3, again for the case of
homogeneous deformation of a free-standing lm.

Of interest, the results in Fig. 3 nearly identical to those seen
in Fig. 1b for when the shear time constant was varied. This is
because the normalized time constant ss we plot is the shear
1036 | Soft Matter, 2013, 9, 1031–1042
viscosity multiplied by the loading rate. Therefore, even if the
shear viscosity hs is kept constant, the normalized time constant
ss increases due to the increase in loading rate, and thus we nd
that regardless how the time constant is decomposed (i.e. lower
viscosity and higher loading rates vs. higher viscosity and lower
loading rates), the net electromechanical behavior appears to be
quite similar for the same normalized ss.

4.2 Homogeneous deformation: multiple relaxation times

We continue our study of the free-standing lm model problem
by examining the effect of a distribution of relaxation times on
the electromechanical behavior of DEs. We again choose a very
small bulk relaxation time of sb ¼ 0.001, and focus on the effect
of multiple shear relaxation times ss. In enabling a distribution
of shear relaxation times, we constrain the non-equilibrium

potentials such that 1þPN
i¼1

mneqi
=meq is the same for a different

number of non-equilibrium processes N. This is done to ensure
This journal is ª The Royal Society of Chemistry 2013
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that the stiffness of the instantaneous response of the DE is not
changed by having multiple relaxation times and non-equilib-
rium potentials. Fig. 4 demonstrates this for two such ratios,
where

P
mneq¼ 1 and

P
mneq¼ 10. The mneq was the sum divided

by the number of non-equilibrium processes. For example, ifP
mneq ¼ 10, and there were 4 non-equilibrium processes, then

each non-equilibrium process had a mneq ¼ 2.5.
We show in Fig. 4 the results of choosing shear relaxation

times with a wider and higher range, up to ve orders of
magnitude. The results suggest that a system with the distri-
bution of shear relaxation times requires more electrostatic
loading in order to exhibit the electromechanical instability.
The post-instability behavior, however, appears to depend on
the values of the non-equilibrium shear moduli mneq.

The values of the non-equilibrium shear moduli appear to
have a signicant effect on the critical electric eld for elec-
tromechanical instability. While an increase in the critical
electric eld of about 29% is observed when 1 +

P
mneq/meq ¼ 2,

the increase is about 2.7 times the no viscoelasticity result when
ve relaxation orders of relaxation times are present, and
Fig. 4 Effects of a distribution of shear relaxation times ss on the electrome-
chanical behavior of DEs undergoing homogeneous deformation. (a) 1 +
(
P

mneq)/meq ¼ 2. (b) 1 + (
P

mneq)/meq ¼ 11.

This journal is ª The Royal Society of Chemistry 2013
when 1 +
P

mneq/meq ¼ 11. Performing the same scaling analysis
as above for the single relaxation time case, we can compare the
increase in the critical voltage needed to induce electrome-
chanical instability that is obtained from the FEM calculation to
that predicted analytically. For the

P
mneq ¼ 1 case, if ve orders

of relaxation times are considered, the increase in the critical
voltage in Fig. 4a reaches 91% of the predicted enhancement.
For the

P
mneq ¼ 10 case for ve relaxation times in Fig. 4b, 81%

of the predicted enhancement in the critical voltage is reached.
The results in Fig. 4b demonstrate that the impact of visco-

elastic effects depends on the breadth of the relaxation spectrum.
For a given loading rate, viscoelastic behavior characterized by a
broader relaxation spectrum (more non-equilibrium processes)
requires progressively higher critical voltage to induce electro-
mechanical instability. Elastomericmaterials exhibit a very broad
relaxation spectrum, spanning multiple orders of magnitude in
time. It is also worth noting the gradual decrease in voltage aer
the onset of electromechanical instability seen in Fig. 4b. This
gradual relaxation will have a signicant impact on the crack
propagation speeds observed in the numerical example on
bursting drops in quasi-3D dielectric solids.

4.3 Charge-induced creep: single and multiple relaxation
times

To provide further insight into the effects of the different shear
relaxation times on the viscoelastic response of DEs, we perform
an electromechanical analog of the classical creep test in which
the freestanding DE is subject to a constant charge load, while
the resulting in-plane and out-of-plane stretches l are moni-
tored as a function of time, as shown in Fig. 5 for mneq ¼ 10. As
seen in Fig. 5, both in and out-of-plane stretches converge to a
limiting value as time increases, with the convergence time
being strongly correlated to the shear relaxation time ss. The
oscillatory nature of the stretches arises due to the presence of
dynamic wave propagation, though the magnitude of the
oscillations is correctly observed to decrease with increasing
time, while also eventually oscillating (correctly) about the
converged value of stretch.

We also discuss the creep response if multiple relaxation
times are active in Fig. 6, for the 1 +

P
mneq/meq ¼ 11 case, where

the creep response is again obtained by applying a constant
charge on the freestandingDE. In particular, Fig. 6 demonstrates
the substantial, order of magnitude variations in the time taken
to relax to the nal state of deformation if a wide spectrum of
relaxation times are active. We also note that, in comparing the
relaxation to the converged stretch in Fig. 5 and 6, the relaxation
times are slightly faster for themultiprocess case in Fig. 6. This is
because the relaxation is distributed over a broad range of
relaxation times rather than a single relaxation time.

4.4 Bursting drops in a quasi-plane strain dielectric solids

We focus our large-scale numerical investigation of viscoelastic
effects on electromechanical instabilities in DEs on recent
experiments performed by Wang et al.23 The experimental
conguration is shown in Fig. 7a. The problem is one of a
dielectric lm with a small hole containing a conductive liquid,
Soft Matter, 2013, 9, 1031–1042 | 1037
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Fig. 5 Charge creep-induced relaxation of (a) in-plane (lx ¼ lz) and (b) out-of-
plane ly stretch as a function of time for a range of individual shear relaxation
times, for mneq ¼ 10.

Fig. 6 Charge creep-induced relaxation of (a) in-plane (lx ¼ lz) and (b) out-of-
plane (ly) stretch as a function of time for multiple shear relaxation times ss where
1 + (

P
mneq)/meq ¼ 11.
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for example NaCl solution. All edges of the lm are constrained
mechanically, and a voltage differential F is applied across the
lm. The novel experimental nding was the rst observation of
instabilities of drops in solids, in which a different scaling was
observed as compared to instabilities of drops in liquids.

We perform a computational study of the experimental work
of Wang et al.23 using the one quarter computational model
shown in Fig. 7b that exploits the symmetries present in Fig. 7a.
Aside from the computational model, another important
distinction is that we considered a quasi-plane strain model,
rather than the full three-dimensional experiment performed by
Wang et al.23 We did this by using the full three-dimensional
viscoelastic Q1P0 DEFEM formulation presented in this work,
though modeling the lm to be only a single element thick, and
prescribing all out of plane (z) displacements to be zero. This
approximation was done mainly due to signicant computa-
tional expense for the full three-dimensional model, and also
because the critical physics of interest can, as we will demon-
strate below, be captured using the quasi-plane strain model. It
is noted that an axisymmetric computational model would be
an ideal choice for this problem.
1038 | Soft Matter, 2013, 9, 1031–1042
The full quasi-plane strain model in Fig. 7b had dimensions
of 40 � 40, with the radius of the hole being 2. Therefore, the
axisymmetric model had dimensions 20 � 20, with the same
hole radius of 2. This axisymmetric geometry was modeled
using standard 8-node hexahedral nite elements with a mesh
spacing of 0.5, for a total number of 1586 elements and 3332
nodes. We note that the mesh density of 0.5 likely will not result
in converged results for the critical electric eld, as experience
has shown57 that a ner mesh is needed to obtain quantitative
accuracy as compared to experimental and theoretical predic-
tions when using the Q1P0 formulation of Simo et al.48However,
because we have chosen the same mesh density for both
viscoelastic and non-viscoelastic simulations, we can achieve
the more important result of comparing the effects of visco-
elasticity for a xed mesh density.

We rst describe the electromechanical instability and
phenomena of interest, as shown by the FEM simulation results
in Fig. 8. As seen in Fig. 8a, the circular bubble is initially
undeformed prior to application of electrostatic loading. At a
critical value of the far-eld electric eld that is applied to the
top of the DE lm, as shown in Fig. 7, a sharp crack-like tip
This journal is ª The Royal Society of Chemistry 2013
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Fig. 7 (a) Experimental and (b) quarter axisymmetric computational models for
bursting drop in a dielectric solid based on experiments of Wang et al.23

Fig. 8 Representative snapshots of crack propagation in constrained DE film. (a)
Initial, undeformed configuration; (b) formation of sharp crack tip at top of the
bubble; (c) propagation of crack and elongation of initially circular bubble; (d)
further crack propagation and elongation of initially circular bubble. This image is
for five orders of relaxation times when

P
mneq ¼ 10.

Fig. 9 Electric field at bubble crack tip normalized by far field applied electric
field Etop for

P
mneq ¼ 10.
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forms at the top of the circular bubble, as shown in Fig. 8b.
Further increase of the voltage causes the sharp crack-like
feature to propagate vertically towards the applied far-eld
electrostatic loading, which also causes a distortion of the
initially circular bubble into a shape resembling an elongated
ellipsoid. Fig. 8d demonstrates further distortion of the circular
bubble and crack propagation with increased electrostatic
loading. We emphasize that all of these phenomena, i.e. the
initial sharp crack followed by the vertical propagation of the
crack and transformation of the initially circular hole to an
elongated ellipsoid, were observed in the full three-dimensional
experiments of Wang et al.23

The critical electric eld to initiate the sharp crack was found
analytically and experimentally for the three-dimensional
bubble by Wang et al.23 to be between 0:55

ffiffiffiffiffiffiffiffi
m=3

p
and 0:6

ffiffiffiffiffiffiffiffi
m=3

p
.

For our two-dimensional circular bubble without viscoelasticity
as shown in Fig. 9, the critical normalized electric eld is found
to be Ec ¼ 0.56, which agrees fortuitously with the three-
dimensional bubble results of Wang et al.23 The result is
fortuitous because of the relatively coarse FEM mesh size
utilized, where renement of the mesh would lead to conver-
gence of the critical electric eld, which should be different in
two-dimensions as compared to the three-dimensional experi-
ments of Wang et al.23 However, again, our emphasis in the
present work is in capturing the macroscopic phenomena of
This journal is ª The Royal Society of Chemistry 2013
crack propagation, and comparing the results with and without
viscoelasticity for a xed FEM mesh density. Fig. 9 also
demonstrates that the critical electric eld at the top of the
bubble prior to crack tip nucleation and propagation is nearly
two times the applied far eld value, which is in agreement with
the analytic solution of Kusne and Lamberth.58

Fig. 9 also demonstrates the effects of viscoelasticity on the
critical electric eld Ec, where if

P
mneq ¼ 10, Ec increases from

0.56 for the no viscoelasticity case to about 1.6 if ve decades of
relaxation times are active. This result is again consistent with
previous analytical studies39 that viscoelasticity results in higher
critical electric elds to cause electromechanical instabilities.

Another important consideration is the effective crack
propagation speed if viscoelastic effects become important. We
illustrate these effects in Fig. 10, where we plot the normalized
deformation of the crack tip as a function of the applied far-eld
electric eld magnitude E. Fig. 10 demonstrates that the
increase in critical electric eld magnitude as well as the crack
Soft Matter, 2013, 9, 1031–1042 | 1039
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Fig. 10 Effects of multiple shear relaxation times ss on the electrostatically
induced instability and subsequent crack propagation in constrained quasi-3D DE
film. (a) 1 + (

P
mneq)/meq ¼ 2. (b) 1 + (

P
mneq)/meq ¼ 11.

Fig. 11 Effects of not relieving, through the proposed Q1P0 formulation,
volumetric locking on the electromechanical behavior of viscoelastic DEs under-
going inhomogeneous deformation.
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speed strongly depends not only on the range of relaxation
times that are active, but also on the non-equilibrium moduli.
The crack tip position was obtained by tracking the displace-
ment of the FE node whose position coincided with the top of
the bubble in Fig. 7.

For example, for the case in Fig. 10a where
P

mneq ¼ 1,
indicating that the non-equilibrium shear modulus is compa-
rable to the equilibrium shear modulus, a slight increase in
critical electric eld is observed if ve decades of relaxation
times are active. However, the effective crack propagation
velocity appears to be little changed compared to the non-
viscoelasticity case.

The situation is quite different for the case when
P

mneq ¼
10, as shown in Fig. 10b. In that case, not only is the critical
electric eld increased substantially as previously discussed,
but there is a clear decrease in crack speed as a wider range of
relaxation times are considered. The viscous energy dissipation
rate scales with the non-equilibrium modulus and strain rate,
thus slower propagation speeds are expected in a material with
a higher non-equilibriummodulus for the same applied work.59

For example, if a single relaxation time is activated, the crack
1040 | Soft Matter, 2013, 9, 1031–1042
propagation speed drops to about 78% of the non-viscoelastic
crack propagation speed. The results are muchmore dramatic if
the distribution of relaxation times spanned three and ve
orders of magnitude. For the three orders of magnitude case,
the crack propagation speed drops to about 47% of the non-
viscoelastic case, while for the ve orders of magnitude case, the
crack propagation speed drops to 40% of the non-viscoelastic
case. The substantial decrease in the crack speed with the
breadth of the spectrum of relaxation times can be related to the
much more gradual relaxation aer electromechanical insta-
bility previously observed in Fig. 4b, where the additional
stiffening that occurs over a wide range of time scales acts to
substantially impede the crack speed that is observed.

5 Conclusions

We have presented a new dynamic, nite deformation nite
element model of dielectric elastomers that incorporates nite
viscoelasticity, and also alleviates volumetric locking due to
material incompressibility. Our single element tests demon-
strated the effects that viscoelasticity in the shear properties can
have not only on the critical electric elds needed to induce
electromechanical instability, but also in the post-instability
behavior of the elastomer, where the magnitude of these effects
increased with the distribution of shear relaxation times. In
contrast, viscoelasticity in the mechanical bulk properties had
little effect on the electromechanical behavior.

Our large scale nite element simulations of electrome-
chanical instability, and specically crack propagation resulting
in constrained dielectric elastomer lms containing a conduc-
tive bubble, illustrated the effects of viscoelasticity in reducing
the crack speeds that are observed. This result is similar to that
observed in a purely mechanical viscoelastic crack propaga-
tion.59 Overall, our results demonstrate the signicant effects of
viscoelasticity on dielectric behavior of elastomers undergoing
electromechanical instabilities.
This journal is ª The Royal Society of Chemistry 2013
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6 Appendix

Because we have not quantied the effects of not eliminating
volumetric locking, we demonstrate in this Appendix the effects
of not relieving volumetric locking through the Q1P0 formula-
tion on the electromechanical behavior of viscoelastic DEs
subject to mechanical constraints. The constraints are needed
as volumetric locking is not observed for the homogeneous
deformation cases corresponding to the freestanding DEs. To
constrain the DE, which was a cube of unit length that was
discretized by a single 8-node hexahedral nite element, we
xed the �y surface from moving in any direction.

As can be seen in Fig. 11, if volumetric locking effects are not
alleviated, the critical normalized voltage and charge needed to
induce electromechanical instability is signicantly and arti-
cially enhanced as compared to the Q1P0 cases, both with and
without rate-dependent material effects. Particularly note-
worthy is the fact that the critical normalized voltage is more
than three times the critical value if the Q1P0 formulation is not
utilized. Furthermore, if volumetric locking is not alleviated, the
voltage–charge curve does not exhibit a soening instability.
This example is important as it shows that, for the multi-
dimensional electromechanical instabilities that we analyzed in
Section 4.4, if the volumetric locking effects are not alleviated,
that the numerical model will predict an articially high critical
electric eld that is needed for the onset of electromechanical
instabilities in constrained DE lms.
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