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We present a surface Cauchy-Born approach to modeling FCC metals with nanometer scale dimensions for
which surface stresses contribute significantly to the overall mechanical response. The model is based on an
extension of the traditional Cauchy-Born theory in which a surface energy term that is obtained from the
underlying crystal structure and governing interatomic potential is used to augment the bulk energy. By doing
so, solutions to three-dimensional nanomechanical boundary value problems can be found within the frame-
work of traditional nonlinear finite element methods. The major purpose of this work is to utilize the surface
Cauchy-Born model to determine surface stress effects on the minimum energy configurations of single crystal
gold nanowires using embedded atom potentials on wire sizes ranging in length from 6 to 280 nm with square
cross sectional lengths ranging from 6 to 35 nm. The numerical examples clearly demonstrate that other
factors beside surface area to volume ratio and total surface energy minimization, such as geometry and
the percentage of transverse surface area, are critical in determining the minimum energy configurations of
nanowires under the influence of surface stresses.
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I. INTRODUCTION

The recent explosion of interest in sustainable nanotech-
nologies has driven the development and discovery of nano-
materials. Many different nanoscale structural elements have
been studied and synthesized; examples of these include car-
bon nanotubes,1 nanowires,2–4 nanoparticles,5,6 and quantum
dots.7 Because of their nanometer scale dimensions, these
materials are characterized by having a relatively large ratio
of surface area to volume. The large surface area to volume
ratio combined with nanoscale confinement effects causes
these nanomaterials to exhibit physical properties, i.e., opti-
cal, mechanical, electrical, and thermal, that can be dramati-
cally different from those seen in the corresponding bulk
materials.4

In analyzing the mechanical behavior of nanomaterials, a
key feature of interest is intrinsic surface stresses that arise
due to their large exposed surface areas.8 Surface stresses
have recently been found to cause phase transformations in
gold nanowires,9 self-healing behavior in metal
nanowires,10–12 and surface reorientations in thin metallic
films and wires.13,14 Surface and confinement effects are also
known to cause elevated strength in nanomaterials,15–18

orientation-dependent surface elastic properties19–21 and a
first-order effect on the operant modes of inelastic deforma-
tion in metal nanowires.22

The size-dependent elastic behavior of nanomaterials has
resulted in an increasing amount of literature describing con-
tinuum approaches.8,20,23–32 A common thread that connects
some of the above works25,27,28 is that they are based on
modifications to the surface elasticity formulation of Gurtin
and Murdoch,23 in which a surface stress tensor is introduced
to augment the bulk stress tensor typically utilized in con-
tinuum mechanics. A complicating factor in this formulation
is due to the presence of the surface stress, which creates a
coupled system of equations with nonstandard boundary con-
ditions. The solution of the coupled field equations combined
with the nonclassical boundary conditions makes the appli-
cation of this theory to generalized boundary value problems

a challenging task. Furthermore, very few if any computa-
tional models have been developed that can capture the
coupled effects of surface stress, size, and geometry on
realistic three-dimensional FCC metal nanostructures.

Alternatively, multiple scale models of nanomaterials
have been developed to combine the insights into the de-
tailed response of materials that are available through atom-
istics with the reduced computational expense that con-
tinuum approaches offer. Methods for both quasistatic33–36

and dynamic coupling of atomistics and continua37–46 have
been proposed. With few exceptions,36 a critical issue with
these methods is that the continuum region generally sur-
rounds or encloses the atomistic region, thereby eliminating
the effects of surface stresses on the atomistic behavior.

Therefore, the motivation for the present work is the rep-
resentation of the total energy of a body that obtains the bulk
and surface portions directly from atomistic principles, en-
ables an easy discretization using standard nonlinear finite
element �FE� techniques,47 and can be used to predict the
size and surface stress-dependent mechanical behavior of
three-dimensional FCC metal nanostructures. We accomplish
this by building upon previous developments for pair
potentials48 in which the system potential energy is decom-
posed into bulk and surface components; while this decom-
position has been considered before,8,23,30 those works re-
quire either higher order terms in the surface energy or
empirical fits to constants for the surface stress which require
additional atomistic simulations. In contrast, the uniqueness
of the present approach is that the surface energies are ob-
tained using ideas relevant to Cauchy-Born �CB� constitutive
modeling.33,49,50

By utilizing the CB hypothesis to define the surface en-
ergy density, a potential energy that is comprised of both
surface and bulk contributions can be constructed, then mini-
mized numerically using standard nonlinear FE techniques
while the surface stress effects are transferred naturally to the
computational model. Numerical examples are shown di-
rectly comparing results obtained using the proposed surface
CB model for surface-stress-driven relaxation of gold nano-
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wires using embedded atom method �EAM� �Ref. 51� poten-
tials to fully atomistic simulations; additional examples ex-
plore the effects of the surface area to volume ratio and
geometry on the surface stress influenced minimum energy
configurations of gold nanowires.

II. SURFACE CAUCHY-BORN FORMULATION FOR THE
EMBEDDED ATOM METHOD

A. Brief overview of Cauchy-Born theory

The CB rule is a hierarchical multiscale assumption that
enables the calculation of continuum stress and moduli from
atomistic principles.33 In this work, we will focus on apply-
ing the CB rule to FCC metals whose behavior can be well
represented using EAM potentials;51 the CB assumption has
recently been extended to study carbon nanotubes50,52 as well
as semiconductors such as silicon.53 Considering a purely
atomistic system, the EAM energy for an atom Ui is written
as

Ui = Fi��̄i� +
1

2�
j�i

nbi

�ij�rij� , �1�

�̄i = �
j�i

nbi

� j�rij� , �2�

where nbi are the number of bonds of atom i, Fi is the em-
bedding function, �i is the total electron density at atom i, � j
is the contribution to the electron density at atom i from atom
j, �ij is a pair interaction function and rij is the distance
between atoms i and j. We note that the number of bonds nbi
is dictated by the cutoff distance of the interatomic potential.

In order to turn the atomistic potential energy into a form
suitable for the CB approximation, two steps are taken. First,
the potential energy is converted into a strain energy density
through normalization by a representative atomic volume
�0; �0 can be calculated noting that there are four atoms in
an FCC unit cell of volume a0

3, where a0 is the lattice param-
eter. Thus �0=4/a0

3 for a �100� oriented crystal. Second, the
neighborhood surrounding each atom is constrained to de-
form homogeneously via continuum mechanics quantities
such as the deformation gradient F, or the stretch tensor
C=FTF. The resulting EAM strain energy density � is

��C� =
1

2�0
�
j�i

nbrvi

„Fi��i�rij�C��	 + �ij�rij�C��… , �3�

where nbrvi are the number of bonds in the representative
unit volume for atom i. For homogeneous deformations, in-
tegrating the CB strain energy in Eq. �3� over the represen-
tative volume �0 gives the same result as the energy of an
atomic unit cell in a homogeneously deforming crystal. This
energetic equivalence forms the basis of the traditional CB
hypothesis, in which lattice defects are not allowed; other
works, notably the quasicontinuum method,33 have been
developed to relieve this restriction. Once the strain energy
density is known, continuum stress measures such as the
second Piola-Kirchoff stress S, which can be interpreted as

the actual force mapped to the undeformed configuration
divided by the undeformed area,47 can be defined as

S = 2
���C�

�C
=

1

�0

�U�C�
�r

�r

�C
, �4�

while the material tangent modulus C is defined to be

C = 2
�S

�C
. �5�

Another key restriction of the CB hypothesis that motivated
the present work is that all points are assumed to lie in the
bulk as ��C� does not account for surface effects. Therefore,
the issue at hand is to develop an expression for the energy
density along the surfaces of a body, where the potential
energy of atoms differs from the bulk due to undercoordina-
tion; here, undercoordination is used to describe the fact that
atoms at the surfaces of a material have fewer bonding
neighbors than atoms that lie within the bulk portion of the
material. We will describe in the next section how surface
effects can be included using the CB assumption.

B. Surface Cauchy-Born extension for embedded atom method

In this section, we discuss the methodology by which the
energy density of a body can be represented using the CB
assumption with appropriate modifications for the surface
energy contributions; further details can be found in earlier
work by the authors.48 The relationship between the con-
tinuum strain energy density and the total potential energy of
the corresponding, defect-free atomistic system can be
written as

�
i=1

natoms

Ui�r� = 

�0

bulk
��C�d� + 


�0

��C�d� , �6�

where r is the interatomic distance, ��C� is the bulk strain
energy density, �0

bulk represents the volume of the body in
which all atoms are fully coordinated, ��C� is the surface
strain energy density, �0 represents the surface area of the
body in which the atoms are undercoordinated and natoms is
the total number of atoms in the system.

As discussed in the introduction, most surface elastic
models decompose the total energy of the continuum body
into surface and bulk contributions. The uniqueness of the
present approach is the usage of the CB approximation in
constructing the surface energy density; we now discuss how
the CB approximation can be utilized to approximate the
surface energy density.

We first note that for �100� FCC crystals whose interac-
tions are governed by EAM potentials, there exist four
nonbulk layers of atoms at the surfaces, as illustrated in Fig.
1. Thus, we rewrite Eq. �6� taking into account the four
nonbulk layers to read
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�0
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��0
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�0
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��0
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Having defined the energy equivalence including both bulk
and surface effects, we now determine the surface energy
densities ��C�. Analogous to the bulk energy density, the
surface energy densities ��C� will describe the energy per
representative undeformed area of atoms at or near the sur-
face of a homogeneously deforming crystal. For FCC metals,
choosing a surface unit cell that contains only one atom is
sufficient to reproduce the structure of each surface layer.
The surface unit cell possesses translational symmetry only
in the plane of the surface, unlike the bulk unit cell which
possesses translational symmetry in all directions. Thus, the
surface energy density for a representative atom in a given
surface layer in Fig. 1 can be written generally as

��0
a�C� =

1

2�0
a�

j�i

nba

„Fi��i�rij�C��	 + �ij�rij�C��… , �8�

where �0
a is the area occupied by an atom in surface layer a

and nba are the number of bonds for an atom in surface layer
a; the number of bonds nba is dictated by the range of the
interatomic potential such that each representative surface
atom has the same bonding environment as the equivalent
surface atom in a fully atomistic calculation.

We note in closing this section that because we have as-
sumed that the energetics of each surface layer can be de-
scribed by a single representative atom, we have ignored the
effects of edge and corner atoms. While these atoms are ex-
pected to play an important role in truly small
nanostructures,54 the system size at which these effects be-
come significant can easily be described using direct molecu-
lar calculations. As will be demonstrated in the numerical
examples, the current methodology is geared for larger prob-
lems where such edge and corner effects are relatively insig-
nificant, and simultaneously where the system size for fully
atomistic calculations becomes prohibitive.

C. Finite element approximation

Having defined the surface energy densities ��C� for each
nonbulk layer of atoms near the surface, we can immediately
write the total potential energy 	 of the system including
external loads T as

	�u� = 

�0

bulk
��C�d� + 


�0
1

��0
1�C�d� + 


�0
2

��0
2�C�d�

+ 

�0

3
��0

3�C�d� + 

�0

4
��0

4�C�d� − 

�0

�T · u�d� .

�9�

In order to obtain a form suitable for FE calculations, we
introduce the standard discretization of the displacement
field u�X� using FE shape functions as

u�X� = �
I=1

nn

NI�X�uI, �10�

where NI are the shape or interpolation functions, nn are the
total number of nodes in the discretized continuum, and uI
are the displacements of node I.47,55 Substituting Eqs. �3� and
�8� into Eq. �9� and differentiating gives the minimizer of the
potential energy and also the FE nodal force balance47

�	

�uI
= 


�0
bulk

BTSFTd� + 

�0

1
BTS̃�1�FTd� + 


�0
2

BTS̃�2�FTd�

+ 

�0

3
BTS̃�3�FTd� + 


�0
4

BTS̃�4�FTd� − 

�0

NITd� ,

�11�

where S is the second Piola-Kirchoff stress due to the bulk

strain energy and BT= � �NI

�X
�T

; S̃�a� can be loosely labeled as
surface Piola-Kirchoff stresses on layer a that can be found
using Eqs. �8� and �4� to be of the form

S̃�a��C� = 2
���0

a�C�

�C
=

1

�0
a

�U�a��C�
�r

�r

�C
. �12�

The surface Piola-Kirchoff stresses differ from those in the
bulk because the normalization factor is an area, instead of a

volume. In addition, the surface Piola-Kirchoff stresses S̃�a�


�C� are 3
3 tensors with normal components which allow
surface relaxation due to undercoordinated atoms lying at
material surfaces; this result differs from the traditional defi-
nition of surface stress8 which is a 2
2 tensor with only
tangential components.

The normal components arise in the present approach be-
cause the atoms that constitute the surface unit cells lack
proper atomic coordination in the direction normal to the
surface; therefore, the atomistic forces that are normalized to
stresses in Eq. �12� are also out of balance in the normal
direction. Thus, surface relaxation is necessary in the normal
direction to regain an equilibrated state. Further details on
the numerical implementation of the surface layers can be
found in Ref. 48.

FIG. 1. Illustration of bulk and nonbulk layers of atoms in a
�100� FCC crystal with �100	 surfaces interacting by an EAM
potential.

SURFACE CAUCHY-BORN ANALYSIS OF SURFACE… PHYSICAL REVIEW B 75, 085408 �2007�

085408-3



III. NUMERICAL EXAMPLES

All numerical examples presented have geometries simi-
lar to that shown in Fig. 2, which illustrates a gold nanowire
with square cross section of length a and longitudinal length
h. All wires had a �100� longitudinal orientation with �100	
transverse side surfaces, and were subject to the same bound-
ary conditions; the left �−x� surface of the wires were fixed,
while the right �+x� surface of the wires were constrained to
move only in the x direction. All simulations, both molecular
statics �MS� for the benchmark atomistics and the FE for the
surface CB �SCB� were performed using the stated boundary
conditions without additional external loading and without
periodic boundary conditions. Therefore, all deformation ob-
served in the examples is caused by the effects of surface
stresses. All SCB calculations utilized regular meshes of
eight-node hexahedral elements.

The atomistic interactions were based on the EAM,
with gold being the material for all problems using the
parameters of Foiles,56 while the same parameters were used
to calculate the bulk and surface stresses needed for the SCB
simulations; single crystal gold nanowires were considered
in all cases. Care was taken to consider nanowires with sizes
large enough such that surface-stress-driven phase
transformations9 or reorientations,57 which have been pre-
dicted in gold nanowires with cross sections smaller than
about 2 nm, did not occur. We note that such inelastic defor-
mation could be accommodated using nonlocal atoms, for
example, following the example of the quasicontinuum
method,33 though this would require full atomistic resolution
along the nanowire surfaces.

In the present work, the FE stresses were calculated using
Eq. �4�, while the tangent moduli were calculated using the
numerical approximation of Miehe.58 All simulations, for
both FE and MS, were performed quasistatically to find en-
ergy minimizing positions of either the atoms or the FE
nodes accounting for the surface stresses.

A. Direct surface Cauchy-Born and molecular statics
comparison

The first example illustrates a direct comparison between
a benchmark MS calculation and a SCB calculation. For this,
the gold nanowire was comprised of 145 261 atoms with
dimensions of 24.48 nm
9.792 nm
9.792 nm. The
equivalent SCB model contained a regular mesh of 576 finite
elements and 833 nodes, leading in a 99.4% reduction in the
number of degrees of freedom; because similar mesh densi-
ties were used for all simulations shown in this work, similar
reductions in the required degrees of freedom for the SCB
calculations were achieved in all cases.

Due to the surface stresses, the +x edge of the wire con-
tracts upon relaxation, resulting in an overall state of com-
pressive strain in the wire. For both the MS and SCB calcu-
lations, the compressive strain was calculated by measuring
the displacement at the center of the +x surface at
�+x ,0 ,0�. This was done because, as seen in Fig. 3, the cor-
ners of the +x surface of the nanowire have a greater con-
traction than the center of the +x surface because they have
the greatest degree of undercoordination. The SCB calcula-
tion predicted a compressive strain to relaxation of −0.91%,
while the MS calculation predicted a contraction of −0.83%.

The fact that the SCB can predict the compressive relax-
ation is strengthened by comparative calculations for the re-
laxed and unrelaxed surface energy for both the SCB and MS
systems for the same EAM potential; the unrelaxed surface
energies �ur were found to be 0.975 J /m2 for the MS system,
and 0.973 J /m2 for the SCB system for the �100	 surface of
gold using Foiles et al.56 potential. The relaxed surface en-
ergies �r were found to be 0.914 J /m2 for the MS system,
and 0.932 J /m2 for the SCB system; the slight overestima-
tion of the relaxed surface energy by the SCB correlates
correctly with the higher relaxation strain in the above nu-
merical example. Given the accuracy of the surface energy
calculations, other sources of error between the SCB and MS
simulations will be discussed later in the context of the
numerical calculations.

The overall contours of the x and y displacements are
shown in Figs. 3 and 4. As can be seen, the SCB calculations
reproduce well the displacement fields in both the x and y
directions, including the compressive relaxation in the x di-
rection at the +x edge of the nanowire, which then causes
expansion of the nanowire in the y and z directions. The y

FIG. 2. Nanowire geometry considered for surface-stress-driven
relaxation examples.

FIG. 3. �Color online� Comparison of x displacements for
24.48 nm
9.792 nm
9.792 nm gold nanowire for �top� MS and
�bottom� SCB calculations.
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displacement was calculated at the center of the +y surface at
�0, +y ,0� and was compared for both the SCB and MS cal-
culations; the SCB predicted an expansion of 0.18% while
the MS calculation predicted an expansion of 0.17%.

The snapshots of the x and y displacements shown in
Figs. 3 and 4 serve to highlight both the strengths and the
weaknesses of the current version of the SCB method. As
mentioned above, the SCB method clearly captures in a
qualitative sense the overall relaxed configuration for the
gold nanowire, at a greatly reduced computational cost as
compared to the MS simulation. On the other hand, the re-
sults of the MS simulations show that the corners and edges
of the nanowire experience a considerably different deforma-
tion than the surfaces and the bulk. Because the SCB method
as currently formulated does not account for corner and edge
effects, the deformation of those areas is captured in an av-
erage sense due to the deformation of the adjacent surfaces.

B. Parametric studies

1. Constant nanowire cross sectional area

Having analyzed the performance of the SCB model in
the previous set of numerical examples, we now study the
effects of the surface area to volume ratio along with nano-
structure geometry using both the benchmark MS and SCB
calculations. For the first set of simulations, a constant
square cross section of length a was used, while systemati-
cally increasing the longitudinal length h. The MS calcula-
tions had a constant cross section of a=4.08 nm, while the
SCB calculations had square cross sectional lengths of a
=5.72, 8.7, and 16 nm; all wires with constant cross section

a were considered with lengths h between one and 16 times
a. The smaller cross section for the MS calculations was
considered due to computational expense. The number of
atoms for the MS calculations ranged between 9041 and
70 781, while between 125 �for a 5.7 nm
5.7 nm
5.7 nm
nanowire� and 20 817 �for a 512 nm
16 nm
16 nm
nanowire� FE nodes were used.

By keeping the cross sectional area constant, the surface
area �calculated as 2a2+4ah� to volume �calculated as a2h�
ratio tends to a constant value if h becomes large enough.
For the MS case, the surface area to volume ratio approaches
0.98 nm−1, while the ratios approach 0.025, 0.046, and
0.07 nm−1 for the a=16, 8.7, and 5.72 nm cases, respec-
tively. We analyzed variations in the compressive relaxation
strain as the surface area to volume ratio approaches the
limiting value; again, the compressive relaxation strain was
calculated using the displacement at the center of the +x
surface at the point �+x ,0 ,0�.

The results are summarized graphically in Fig. 5, which
shows the compressive relaxation strain plotted versus nor-
malized longitudinal length, where the normalization was by
the smallest longitudinal length h0 for a given cross sectional
length a, and again versus surface area to volume ratio. Fig-
ure 5 captures several key features. First, as the nanowire
length increases for a given cross sectional area, the amount
of relaxation reduces nonlinearly to a limiting value at infi-
nite length. In addition, the SCB calculations capture the fact
that, for wires with smaller cross sections, the amount of
relaxation strain initially increases at a higher rate for smaller
normalized longitudinal lengths than for wires with larger
cross sections; this is observed in Fig. 5�a�. Also noteworthy
is the fact that the larger cross section wires relax less for the
same normalized lengths, thus correctly capturing the well-
known behavior that surface stresses have a decreasing effect
with increasing nanostructural size.

Finally, despite the variation in surface area to volume
ratio for the different nanowires considered, all show the
same linear relationship in Fig. 5�b� where the relaxation
strain increases with decreasing surface area to volume ratio.
The slopes of the surface to volume versus strain curves in
Fig. 5�b� are 0.17 for the MS, and 0.12, 0.14, and 0.15 for the
SCB with a=5.72, 8.7, and 16 nm, respectively. The higher
accuracy of the SCB calculations for the larger wires is likely
due to the diminished effect of corners and edges at those
length scales;59 however, the results still show qualitative
agreement in all cases.

2. Constant nanowire length

Simulations were also performed using the SCB model in
which energy minimizing configurations of wires with a con-
stant length of h=34.8 nm and varying square cross sectional
length from a=5.8 to 34.8 nm under the influence of surface
stresses were determined; the FE mesh sizes ranged from
625 to 15 625 nodes. The results are summarized in Fig. 6,
and show two notable trends. First, as shown in Fig. 6�a�, the
SCB calculations predict that the equilibrium compressive
strain is a nonlinear function of cross sectional area that in-
creases rapidly for small cross sectional areas, while saturat-
ing to a limiting value for larger cross sectional areas; the

FIG. 4. �Color online� Comparison of y displacements for
24.48 nm
9.792 nm
9.792 nm gold nanowire for �top� MS and
�bottom� SCB calculations.
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normalization is done by the smallest cross sectional length
considered, a0=5.8 nm.

More interestingly as illustrated in Fig. 6�b�, the relax-
ation strain increases with increasing surface area to volume
ratio. This is in stark contrast to the previous results in Fig.
5�b� considering nanowires with constant cross sectional ar-
eas with increasing lengths, where the relaxation strain de-
creases with increasing surface area to volume ratio. Thus,
these results indicate that the surface area to volume ratio,
which has been well documented21 as playing a critical role
in determining the unique mechanical properties of nanoma-
terials, cannot be utilized alone to predict minimum energy
configurations for nanomaterials. Clearly, the geometry of
the material must also be considered to make accurate pre-
dictions on minimum energy configurations.

The reason why longer wires tend to contract more than
shorter wires even though they have a smaller surface area to

volume ratio is because they have a larger ratio of transverse
�4ah� to total �4ah+2a2� surface area. Thus, longitudinal
contraction allows the wire to efficiently reduce its exposed
transverse surface area; the relevance of this point will be
made clearer in the next section.

An analogy can be drawn here to recent work10,11,22 on
metal nanowires that has shown that �100�/�100	 nanowires
can reorient to �110� nanowires with �111	 transverse sur-
faces, which allows the nanowire to reduce its overall poten-
tial energy by exposing close packed and thus low energy
�111	 transverse surfaces. While the SCB simulations do not
allow such reorientations and were performed on large wires
that are not expected to show the reorientation, they do cap-
ture the basic physics of transverse surface area reduction by
increased relaxation strain for longer wires.

3. Constant surface area to volume ratio

Finally, simulations were performed using the SCB model
on nanowires with the same surface area to volume ratio, but

FIG. 5. �Color online� MS and SCB relaxation results for nano-
wires with constant square cross sectional lengths a, increasing lon-
gitudinal lengths h. �a� Strain as a function of normalized longitu-
dinal length h0. �b� Strain as a function of surface area to volume
ratio.

FIG. 6. Relaxation results using the SCB method for gold nano-
wires with constant length of h=34.8 nm with varying cross sec-
tional area. �a� Strain versus normalized cross sectional length. �b�
Strain versus surface area to volume ratio.
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different lengths and square cross sections. The wires con-
sidered all had a surface area to volume ratio of 0.28 nm−1,
square cross sections with lengths ranging from a
=14.5 to 34.8 nm, and longitudinal lengths ranging from h
=12 to 290 nm; the FE mesh sizes ranged from 3757 to
24 321 nodes. The compressive relaxation strains plotted
against normalized area are shown in Fig. 7; the normaliza-
tion factors are a0 for Fig. 7�a�, which is the smallest cross
sectional length for all geometries considered, and the small-
est surface area for all geometries considered for Fig. 7�b�.
As can be seen, the relaxation observed by wires with differ-
ent geometries but the same surface area to volume ratio
is not the same. For wires with the same surface area
to volume ratio but different geometries, Fig. 7�b� illustrates
that the cross sectional area can be strongly correlated to the
relaxation strain.

Figure 7�b� illustrates conclusively that arguments based
on total surface area reduction also cannot be utilized to
predict the minimum energy configurations for nanowires
with the same surface area to volume ratio. Instead, there
appears to be a crossover point between −0.23% �where h
�a� and −0.32% �where h�a� as labeled in Fig. 7�b�, which
corresponds to an estimate of the relaxation observed by a
cubic wire with h=a. For nanowires that are much longer
than wide �i.e., increasing h�, the argument for surface area
reduction holds and the wires show larger contractive strains.
However, for nanowires whose cross sectional dimensions
exceed the length �i.e., h�a�, the wires show reduced con-
traction though the surface area increases as seen in Fig.
7�b�.

The reason for this is shown in Fig. 7�c�, which shows the
relaxation strain plotted against the ratio of the transverse
surface area, defined as 4ah, to the total surface area of
4ah+2a2, and Table I, which summarizes the behavior of all
wires with the same surface area to volume ratio. Both
figures show that longer wires relax more longitudinally be-
cause they have the largest percentage of transverse surface
area to reduce. Eventually, as the wire geometries become
increasingly square and even pancakelike when h�a, the
percentage of transverse surface area decreases and the driv-
ing force to contract longitudinally to reduce the exposed
transverse surface area decreases as well, resulting in
decreased relaxation.

The transverse surface area argument can also be used to
understand the results seen for the two cases of wires con-
sidered earlier. The percentage of transverse surface area also
explains the increasing relaxation for the wires in Fig. 5�b�,
which showed greater relaxation despite the decreasing sur-
face area to volume ratio; again, making longer wires with
the same cross sectional dimensions increases the percentage
of transverse surface area, leading to increased relaxation.
This also explains the trends seen in Fig. 6�b�, in which wires
with constant length and increasing cross sectional areas
showed decreasing amounts of relaxation along with
decreasing surface area to volume ratio; increasing the cross
sectional dimensions keeping the length fixed decreases
the percentage of transverse surface area, thus reducing the
driving force for relaxation.

IV. CONCLUSIONS

In this paper, we have developed a simple extension to the
standard Cauchy-Born rule to capture surface stress effects
on the mechanical behavior of single crystal FCC metallic

FIG. 7. Relaxation results using the SCB method for gold nano-
wires with the same surface area to volume ratio. �a� Strain versus
normalized cross sectional length. �b� Strain versus normalized sur-
face area. �c� Strain versus ratio of transverse to total surface area;
ratio=4ah / �2a2+4ah�.
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nanostructures. The extension decomposes the total energy
into bulk and surface components; the surface energy is then
calculated using the Cauchy-Born approximation. The result-
ing potential energy can be minimized numerically using
standard nonlinear finite element techniques, endowing the
numerical model with the effects of the nanoscale surface
stresses. Importantly, the surface Cauchy-Born model was
shown to allow accurate predictions of the coupled effects of
surface stress, size, and geometry on three-dimensional FCC
metal nanostructures at low computational cost.

Numerical simulations using the proposed surface
Cauchy-Born model have revealed the following: �1� The
surface area to volume ratio alone cannot be utilized to pre-
dict minimum energy configurations for metal nanostruc-
tures. �2� Ideas based on total surface area minimization are
also not sufficient to predict minimum energy configurations.
�3� Just as geometry has been seen to greatly affect other
physical properties of nanostructures,60 the mechanical be-
havior of nanowires are found to be strongly geometry
dependent;61 long and slender wires, due to having a higher
percentage of transverse surface area, will contract more in
compression due to surface stresses than short and thick
wires, which have a lower percentage.

It should be emphasized that some simulations were
performed on wires with dimensions on the order of hun-

dreds of nanometers, with cross sectional lengths on the
order of tens of nanometers; future research investigating the
mechanical properties of such nanowires will allow direct
contact with recent experimental results on gold nanowires
of similar size.17 In addition, because the potential energy is
minimized using finite elements, the approach can easily be
used to model nanostructures with faceted geometries. In
contrast, the method currently cannot be used to model phase
transformations or surface reconstructions.

Finally, recent work has indicated that the modulus of
nanowires is dependent upon the amount of compressive re-
laxation strain they undergo due to surface stresses.21 The
results obtained in this work have shown how wires with
different geometries and surface area to volume ratios un-
dergo different amounts of surface-stress-driven relaxation;
correlation of this relaxation to modulus will be made in
future work.
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