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Abstract
In this paper, we present all necessary generalisations to extend the bridging

scale, a finite-temperature multiple scale method which couples molecular
dynamics (MD) and finite element (FE) simulations, to two dimensions.
The crucial development is a numerical treatment of the boundary condition
acting upon the reduced atomistic system, as such boundary conditions are
analytically intractable beyond simple one-dimension systems. The approach
presented in this paper offers distinct advantages compared to previous works,
specifically the compact size of the resulting time history kernel, and the fact that
the time history kernel can be calculated using an automated numerical procedure
for arbitrary multi-dimensional lattice structures and interatomic potentials.
We demonstrate the truly two-way nature of the coupled FE and reduced
MD equations of motion via two example problems, wave propagation and
dynamic crack propagation. Finally, we compare both problems to benchmark
full MD simulations to validate the accuracy and efficiency of the proposed
method.

} 1. Introduction

During the last decade, thanks to a combination of exploding computational

power and improved physical insight into material behaviour, continuum and

atomistic simulations improved greatly. Both classes of methods are now used to

solve problems which are more complicated than ever with greater accuracy than

ever before. Nevertheless, there still exist problems for which neither method alone is

sufficient. This is particularly true when faced with simulating structures and devices

that are on the micro or nanoscale. In general, atomistic simulations cannot be used

for such length scales due to the restrictions on the number of atoms that can be

simulated, along with the time scales which they can be simulated for. In contrast,

continuum simulations tend to fail at the atomic scale, for example due to the

inability of continuum models to describe defects. It is precisely at these length

scales where multi-scale simulation methods, or those which strive to combine the
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salient points of simulations which typically succeed at single length scales, are

needed.

The best known multiple scale methods include the macroscopic, atomistic, ab

initio dynamics (MAAD) method of Abraham et al. (1998), and the quasi-continuum

(QC) method of Tadmor et al. (1996). MAAD was demonstrated on the dyna-

mic fracture of silicon, while the QC was validated on quasi-static problems such

as nano-indentation. Recently developed works include the bridging domain method

of Xiao and Belytschko (2004), and the coupled atomistic dislocation dynamics

(CADD) method of Shilkrot et al. (2004). As the present work is not intended

as an exhaustive review, we refer the interested reader to two recent review papers

on multiple scale methods, those of Liu et al. (2004), and Curtin and Miller (2003).

Recently, an alternative multi-scale approach, the bridging scale, was developed

by Wagner and Liu (2003) to couple MD and FE. In the bridging scale, the con-

tinuum representation exists everywhere in the domain, including those areas in

which MD is present. By using a projection operator to decompose the displacement

field into orthogonal coarse and fine scales, they were able to derive a coupled set of

equations of motion describing the evolution of the MD and FE systems. These

coupled but separate equations of motion have three major benefits. The first is that,

unlike MAAD, the FE and MD equations of motion are not required to be

integrated using the same time step. The second benefit is that it allows the

elimination of unwanted MD degrees of freedom by accounting for them in the

form of an impedance force which augments the standard MD equations of motion.

Because the unwanted MD degrees of freedom are accounted for in a consistent

manner, high-frequency waves which cannot be represented by the continuum mesh

are dissipated naturally out of the MD region. Lastly, unlike the QC method, the

bridging scale is valid for finite-temperature dynamic problems.

The major contribution of this work is an extension of the analytically derived

multiple scale molecular dynamics boundary condition in the Wagner and Liu (2003)

work such that it can be calculated numerically in higher dimensions. Karpov et al.

(2005) demonstrated these conditions within single scale settings. This development

is a key step in the usage of such multiple scale methods, as analytic solutions for the

boundary condition have proven to be intractable above one dimension. As a result

of the derivation, a time history kernel similar in concept to the damping kernels

previously derived analytically by Adelman and Doll (1976) in one-dimension, and

numerically by Cai et al. (2000) and E and Huang (2002) in multiple dimensions is

obtained. As will be demonstrated, the time history kernel derived in this work offers

distinct advantages to previous work; specifically, the salient features are the com-

pact size of the time history kernel matrix, and the fact that the time history kernel

can be computed using an automated numerical procedure which involves only

standard Laplace and Fourier transform techniques.

The layout of this paper is as follows. We first briefly review the bridging

scale fundamentals, and derive the coupled FE and MD equations of motion. We

motivate the need to eliminate the MD region from large parts of the domain and

demonstrate how the eliminated fine scale degrees of freedom are accounted for in the

numerically calculated time history kernel. As a result, a truly two-way boundary con-

dition is established on the MD region, which both accounts for the eliminated fine scale

degrees of freedom and is coupled to the overlaying coarse scale. We apply the bridging

scale to two two-dimensional examples: wave propagation and dynamic crack propaga-

tion. Concluding remarks address further research possibilities using the bridging scale.
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} 2. Overview of bridging scale

2.1. Bridging scale fundamentals

The bridging scale was recently developed by Wagner and Liu (2003) to

concurrently couple atomistic and continuum simulations. This bridging scale

approach was first used by Liu et al. (1997) to enrich the finite element method

with meshfree shape functions. Wagner and Liu (2001) used this approach to

consistently apply essential boundary conditions in meshfree simulations. Zhang

et al. (2002) applied the bridging scale in fluid dynamics simulations, and Qian

et al. (2004) recently used the bridging scale in quasi-static simulations of carbon

nanotube buckling. The bridging scale was also used in conjunction with a

multi-scale constitutive law to simulate strain localisation by Kadowaki and

Liu (2004).

Because much of the following has already been derived (see Wagner and

Liu (2003), Park and Liu (2004)), we refer the interested reader to those works for

further details. The fundamental idea is to decompose the total displacement

field uðxÞ into coarse and fine scales

uðxÞ ¼ �uuðxÞ þ u0ðxÞ: ð1Þ
For consistency, Greek indices ð�,�, . . .Þ will define atoms for the remainder of

this paper, and uppercase Roman indices ðI , J, . . .Þ will define coarse scale nodes.

The coarse scale is defined to be

�uuðX�Þ ¼
X

I

N �
I dI : ð2Þ

Here, N �
I ¼ NI ðX�Þ is the shape function of node I evaluated at the initial

atomic position X�, and dI is the FE nodal displacement associated with node I.

The fine scale is defined to be the projection of the MD displacements q onto

the FE basis functions subtracted from the total solution u, which is equivalent to

the MD displacements q. In other words, the fine scale represents that part of the

total solution that the coarse scale cannot represent,

u0 ¼ q� Pq, ð3Þ
where the projection matrix P is defined to be

P ¼ NM�1NTMA: ð4Þ
In (4),MA is a diagonal matrix with the atomic masses on the diagonal, N is a matrix

containing the values of the FE shape functions evaluated at all the atomic positions

and M ¼ NTMAN is the coarse scale mass matrix. In general, the size of N is

Na1�Nn1, where Nn1 is the number of finite element nodes whose support contains

an atomic position, and Na1 is the total number of atoms. We note that P satisfies

the definition of a projection matrix, i.e. PP ¼ P. The total displacement u can finally

be written as the sum of the coarse and fine scales as

u ¼ Ndþ q� Pq: ð5Þ
The final term in the above equation is called the bridging scale. It is the part of

the solution that must be removed from the total displacement so that a complete

separation of scales is achieved, i.e. the coarse and fine scales are orthogonal, or

linearly independent of each other.
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The coupled MD and FE equations of motion are derived using (5) by first

constructing a multi-scale Lagrangian L, which is defined to be the kinetic

energy minus the potential energy

Lðu, _uuÞ ¼ Kð_uuÞ � VðuÞ: ð6Þ

The multi-scale equations of motion are obtained from the Lagrangian by

following the relations

d

dt

@L

@_dd

� �

� @L
@d

¼ 0, ð7Þ

d

dt

@L
@_qq

� �

� @L
@q

¼ 0, ð8Þ

which give the coupled multi-scale equations of motion:

MA €qq ¼ f, ð9Þ

M€dd ¼ NTfðuÞ: ð10Þ

Now that the coupled coarse and fine scale equations of motion have been

derived, we make some brief comments:

(i) The fine scale equation (9) is simply the MD equation of motion. Therefore,

a standard MD solver can be used to obtain the MD displacements q,

while the vector of total MD forces f can be found using any relevant

potential energy function.

(ii) The coarse scale equation (10) is simply the FE equation of motion.

Thus, we can use standard finite element methods to find the solution to

(10), while noting that the finite element mass matrix M is defined to be

a consistent mass matrix.

(iii) The coupling between the two equations is through the coarse scale

internal force NTfðuÞ, which is a direct function of the MD internal force

f. In the region in which MD exists, the coarse scale force is calculated by

extrapolating the MD internal force by way of the finite element shape

functions N. The MD internal forces can therefore be thought of as defining

the constitutive relation for the finite element internal force.

(iv) The FE equation of motion is redundant for the case in which the MD and

FE regions both exist everywhere in the domain, because the FE equation of

motion is simply an approximation to the MD equation of motion, with the

quality of the approximation governed by the finite element shape functions

N. We note that due to the Kronecker-delta property of the finite element

shape functions, the coarse scale internal force NTfðuÞ exactly reduces to the

MD forces for the case in which the finite element nodes coexist with atomic

positions. We shall remove this redundancy in the next section, when we

create coupled MD/FE equations of motion for systems where the MD

region is confined to a small portion of the domain.

(v) The total solution u satisfies the same equation of motion as q, i.e.

MA €uu ¼ f: ð11Þ
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This result is due to the fact that q and u satisfy the same initial conditions,

and will be utilized in deriving the boundary conditions on the MD simulation

in the following section.

2.2. Removing fine scale degrees of freedom in the coarse scale only region

2.2.1. Linearized MD equation of motion at the boundary

We imagine the bridging scale to be most applicable to problems in which the

MD region is confined to a small portion of the domain, while the coarse scale

representation exists everywhere. This coupled system is created by reducing the

full system in which MD and FE exist everywhere in the domain; see figure 1 for

an illustrative example. The single scale problem was solved analytically for

some one-dimensional lattices by Adelman and Doll (1976), who used a harmonic

approximation to eliminate the unwanted MD degrees of freedom. The equation of

motion for the remaining atoms then has an additional term which takes the form of

a time history integral involving the atomic velocities multiplied by a matrix bðtÞ,
known as the damping kernel. The damping kernel mimics the dissipation of fine

scale energy into the eliminated degrees of freedom. However, the intractability of

analytically deriving the damping kernel in multiple dimensions motivated methods

to calculate the damping kernel numerically; numerical methods to calculate the

damping matrix bðtÞ, or equivalently its time derivative hðtÞ, were proposed

recently by Cai et al. (2000), and E and Huang (2002).

In this section, we present an approach such that the time history kernel matrix

hðtÞ can be calculated numerically in multiple dimensions for the bridging scale

method. The key idea is to utilize the periodicity of atomic structures so that the

standard technique of discrete Fourier transforms can be applied (Karpov et al.

2002, 2003). Specifically, the method herein is similar to the works by Wagner

et al. (2004), Karpov et al. (2005), Park et al. (2004a), which present methods to

numerically calculate the damping kernel matrix in multiple dimensions for single

Figure 1. Separation of the problem into two regions. Region 1 is FEþ reduced MD,
region 2 is FE. This decomposition exists due to the elimination of the MD degrees
of freedom in region 2.
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scale, molecular dynamics simulations. Here, we generalize the approach such that it

can be applied to multiple scale simulations.

In this approach, we assume that the atomistic region can be subdivided into two

regions. In the first region, i.e. around a crack tip, defects or other locally interesting

physical phenomena, an anharmonic, or nonlinear potential is necessary to

accurately represent the atomic interactions. However, at some distance away

from the process of interest, an anharmonic representation of the atomistic physics

no longer becomes necessary. At this point, the atomic forces can be well represented

as a linear function of the displacements, which implies small relative displace-

ments and rotations of the lattice. Therefore, the remainder of this section

will summarize the methodology used to eliminate those atoms which we assume

to have harmonic-type behaviour while keeping their effects on the reduced MD

system. We first partition the MD displacement degrees of freedom into harmonic

and anharmonic components as

q ¼ qa
qh

� �

, ð12Þ

where qa are the atomistic displacement degrees of freedom which behave

anharmonically, and qh are the atomistic displacement degrees of freedom whose

forces are linearly related to their displacements. It is important to recognize that

the number of qa is small relative to the number of qh, because the nonlinear

representation is only necessary around the local physics of interest. More

importantly, the number of qh is generally huge, and can be on the order of millions

or billions of degrees of freedom. Because of the large number of these unnecessary

degrees of freedom, we now demonstrate how to eliminate the qh degrees of freedom,

while implicitly including their effects on the remaining, uneliminated nonlinear

qa degrees of freedom. To do so, we first decompose (9) as

Ma €qqa ¼ fðuÞ, ð13Þ

Mh €qqh ¼ fðuÞ: ð14Þ

We next linearize the force fðuÞ in (14) about u0 ¼ 0, and use the equality of q and

u to rewrite (14) as

Mh
€�uu�uuh þMh €uu

0
h ¼ fð�uuÞ þ Ku0, ð15Þ

where the stiffness matrix K is defined as

K�� ¼ @f�

@u�
: ð16Þ

In (16), the subscript � includes all atoms in the domain, while the subscript �

includes those atoms in region 2 that are to be eliminated, indicating that K�� is

in general an extremely large matrix. Because the analytic calculation of hðtÞ
requires a matrix inversion of K�� which is generally intractable, the next section

details a procedure that utilizes the repetitive nature of K�� to calculate hðtÞ
numerically. Note that no truncation or higher order terms results in (15) due to

the fact that the linearisation was only performed on the harmonic portion of the

MD region.
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Because we wish to eliminate the fine scale from the majority of the domain

while keeping the coarse scale everywhere, we assume the equating of coarse and

fine scale components, and further decompose (15) into two equations as

Mh
€�uu�uuh ¼ fð�uuÞ, ð17Þ

Mh €uu
0
h ¼ Ku0: ð18Þ

Continuing with the derivation, the fine scale equation (18) is rewritten as

€uu0h ¼ Au0, ð19Þ
where A ¼ M�1

h K. Equation (19) is the major result of this section, and will be

used as the basis for the next section, in which we will demonstrate how all of

the harmonic fine scale degrees of freedom in (14) can be eliminated such

that the nonlinear MD degrees of freedom defined by (13) exist only around the

local physics of interest.

2.2.2. Elimination of unnecessary harmonic fine scale segrees of freedom

Because our stated goal is to entirely remove the harmonic portion of the

fine scale region from the domain, we now utilize the periodicity of crystalline lattices

to derive a numerical boundary condition on the fine scale region which will be

recombined with the coarse scale equation (17) to lead to a non-reflecting MD

boundary condition. The periodic lattice consists of spatially repeated unit cells

which are repeated in two directions. Each repeated cell has na atoms, each of

which can move in nSD spatial directions. The total number of degrees of freedom

in each unit cell is then ndof ¼ na�nSD. Each unit cell can be labelled with

two indices, l and m, indicating the position along axes in the direction of the two

(in two dimensions) primitive vectors of the crystal structure. This is illustrated

in figure 2. Equation (19) can thus be re-written as

€uu0l,mðtÞ ¼
X

lþ1

l0¼l�1

X

mþ�

m0¼m��

M�1
h Kl�l0,m�m0u0l0,m0ðtÞ þM�1

h f ext
l,mðtÞ, ð20Þ

where f ext
l,mðtÞ is the external force acting upon unit cell (l,m), the constant

matrices K relate the displacements in cell ð�l0, �m0Þ to the forces in cell (l,m)

and � represents the range of the forces in the m coordinate direction. We note

that while atoms in a given slab of constant l are coupled to only neighbouring

cells l� 1 and lþ 1, the coupling in the m coordinate direction is not limited to

nearest neighbours. Further comments on K for a specific interatomic potential

are given in appendix A.

Equation (20) is valid for any unit cell within the harmonic fine scale region,

and indicates that each atom comprises a unit cell with two degrees of freedom

(due to the two-dimensional problems we are considering). The summation then

indicates that each atom interacts only with its nearest neighbours; this approxima-

tion can be relaxed simply by increasing the size of the unit cell if longer

ranged interactions are desired, and is the focus of current work (Park et al. 2004b).

The next step is to transform (20) by taking a Laplace transform (LT) and

a discrete Fourier transform (DFT), giving

s2ÛU0ðp, q, sÞ � su0ðp, q, 0Þ � _uu0ðp, q, 0Þ ¼ ÂAðp, qÞÛU0ðp, q, sÞ þM�1
h F̂Fext

0 ðq, sÞ, ð21Þ
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where p and q correspond to spatial indices l and m, the hatted notation indicates

the discrete Fourier transform, and Laplace transformed variables are indicated by

the transformed variable s. ÂAðp, qÞ is the Fourier transform of M�1
h Kl,m. Further

details on the Laplace and Fourier transform techniques utilized in this

section can be found in appendix A.

The goal of this process will be to eliminate the atoms in the l>0 cells by solving

for them in terms of the l � 0 degrees of freedom and resubstituting that expression

into (20). In this manner, we will avoid the explicit solution for the l>0 degrees of

freedom while implicitly including their effects into the remaining system dynamics.

We note that in taking the DFT of the stiffness matrices K, it was assumed that

the harmonic degrees of freedom qh are large enough and formally comprise a

large, separate subdomain such that the DFT of only those degrees of freedom

can be performed.

The key step in removing the unwanted l>0 fine scale degrees of freedom is

in realizing that the motion of the boundary ðl ¼ 0Þ atoms can be caused either by

the displacements of the atoms to be kept, or by an external force acting upon

the boundary atoms. Therefore, it will be assumed that the motion of the

boundary atoms is in fact caused by the external force which acts only at l¼ 0

f ext
l,mðtÞ ¼ �l, 0f

ext
0,mðtÞ: ð22Þ

Equation (21) can be solved to give the Laplace transformed/discrete Fourier

transformed displacements in terms of the external force

ÛU0ðp, q, sÞ ¼ ĜGðp, q, sÞðM�1
h F̂Fext

0 ðq, sÞ þ su0ðp, q, 0Þ þ _uu0ðp, q, 0ÞÞ, ð23Þ

where

ĜGðp, q, sÞ ¼ ðs2I� ÂAðp, qÞÞ�1
: ð24Þ

Figure 2. Graphical depiction of the lattice decomposed into that part which interacts
anharmonically ðl < 0Þ, the boundary atoms ðl ¼ 0Þ, and the harmonic portion
which is mathematically eliminated ðl > 0Þ.
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Taking the inverse Fourier transform of (23) in the x direction gives the displacement

in the x direction at atomic position l

~UU0
lðq, sÞ ¼ ~GGlðq, sÞF̂Fext

0 ðq, sÞ þ s
X

l0

~GGl�l0ðq, sÞu0l0ðq, 0Þ þ
X

l0

~GGl�l0ðq, sÞ_uu0l0ðq, 0Þ: ð25Þ

We use the tilde notation to denote mixed space–wavenumber functions, i.e.

functions of space in the x direction (through index l), and wavenumber in the

y direction (through q). By writing (25) for both l¼ 0 and l¼ 1, we can obtain

the displacements ~UU0
1 in terms of ~UU0

0, thereby eliminating F̂Fext
0 and obtaining

~UU0
1ðq, sÞ ¼ ~GG1ðq, sÞ ~GG�1

0 ðq, sÞ ~UU0
0ðq, sÞ þ s

X

l0

~GGl�l0 ðq, sÞu0l0 ðq, 0Þ

þ
X

l0

~GGl�l0 ðq, sÞ_uu0l0ðq, 0Þ: ð26Þ

By inverting the Fourier transform and using the convolution property of the DFT,

we get

U0
1,mðsÞ ¼

X

M=2

m0¼�M=2 þ1

Qm�m0 ðsÞðU0
0,m0ðsÞ � R0,m0 ðsÞÞ þ R1,mðsÞ, ð27Þ

where

~QQðq, sÞ ¼ ~GG1ðq, sÞ ~GG�1
0 ðq, sÞ ð28Þ

and

Rl,mðsÞ ¼ s
X

l0

X

M=2

m0¼�M=2 þ1

~GGl�l0,m�m0ðsÞu0l0,m0ð0Þ

þ
X

l0

X

M=2

m0¼�M=2 þ1

~GGl�l0,m�m0ðsÞ_uu0l0,m0ð0Þ: ð29Þ

Equation (27) becomes useful when it is recalled that the linearized forces acting

on slab l¼ 0 due to slab l¼ 1 can be written as, recalling (20)

F1!0
m ðsÞ ¼

X

mþ�

m0¼m��

K�1,m�m0U0
1,m0ðsÞ: ð30Þ

Substituting (27) into (30) and taking the inverse Laplace transform, the

force boundary condition of the slab l¼ 1 atoms acting upon the slab l¼ 0 atoms

becomes

f1!0
m ðtÞ ¼

X

M=2

m0¼�M=2 þ1

ðt

0

hm�m0ðt� �Þðu00,m0 ð�Þ � R0,m0ð�ÞÞ d� þ Rf
0,mðtÞ, ð31Þ

where the time history kernel hmðtÞ is defined to be

hmðtÞ ¼ L�1ð?mðsÞÞ ð32Þ
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and

?m�m0 ðsÞ ¼
X

mþ�

m0¼m��

K�1,m�m0Qm0 ðsÞ: ð33Þ

The random displacement Rl,mðtÞ is defined to be

Rl,mðtÞ ¼
X

l 0

X

M=2

m0¼�M=2 þ1

_ggl�l 0,m�m0 ðtÞu0l 0,m0 ð0Þ

þ
X

l 0

X

M=2

m0¼�M=2 þ1

gl�l 0,m�m0 ðtÞ_uu0l 0,m0ð0Þ, ð34Þ

where

gl�l 0,m�m0 ðtÞ ¼ F�1L�1ð ~GGðq, sÞÞ, ð35Þ

_ggl�l 0,m�m0 ðtÞ ¼ F�1L�1ðs~GGðsÞÞ ¼ F�1L�1ðs~GGðsÞ � gð0ÞÞ, ð36Þ

and u0ð0Þ, _uu0ð0Þ are random initial displacements and velocities that can be

sampled based on the Maxwell–Boltzmann distribution. The random force Rf
0,mðtÞ

in (33) is defined to be

Rf
0,mðtÞ ¼

X

M=2

m0¼�M=2 þ1

K�1,m�m0R1,m0 ðtÞ: ð37Þ

The fine scale equation of motion (19) for the boundary l¼ 0 atoms can now

be rewritten as

€uu00,m ¼ A0,mu
0
0,m

þM�1
h

 

X

M=2

m0¼�M=2 þ1

ðt

0

hm�m0ðt� �Þðu00,m0ð�Þ � R0,m0ð�ÞÞ d� þ Rf
0,mðtÞ

!

: ð38Þ

Note that the second term on the right-hand side of (38) represents the implicit

effects of the l>0 cells which were eliminated from the system. Adding (38) and

(17) and noting that

M�1
h f0,mð�uuÞ þ Al,mu

0
0,mðtÞ ¼ M�1

h0 f0,mð�uu, u0a, u0h ¼ 0Þ, ð39Þ

where Mh0 is a diagonal matrix containing the masses of the boundary ðl ¼ 0Þ
atoms, we obtain the modified equation of motion for the boundary atoms which

does not involve any unknown degrees of freedom of the cells (l,m) with l>0

Mh0 €qq0,mðtÞ ¼ f0,mð�uu, u0a, u0h ¼ 0Þ

þ
X

M=2

m0¼M=2 þ1

ðt

0

hm�m0ðt� �Þ u00,m0ð�Þ � R0,m0ð�Þ
� �

d� þ Rf
0,mðtÞ: ð40Þ

As can be seen, the exact evaluation of the second term on the right-hand side of

(40) requires a summation over all other unit cells along the boundary. Clearly,
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it would be computationally inefficient to actually perform the exact summation

in practice, particularly if the lattice is large. Therefore, we rewrite (40) as

Mh0 €qq0,mðtÞ ¼ f0,mð�uu, u0a, u0h ¼ 0Þ

þ
X

mþncrit

m0¼m�ncrit

ðt

0

hm�m0ðt� �Þðu00,m0ð�Þ � R0,m0 ð�ÞÞd� þ Rf
0,mðtÞ, ð41Þ

where ncrit refers to a maximum number of atomic neighbours which will be

used to compute the impedance force. The final step to writing the MD

equations of motion for the boundary atoms is to note that the fine scale component

of the MD displacements can be written as

u00,m0ð�Þ ¼ q0,m0 ð�Þ � �uu0,m0ð�Þ: ð42Þ

The final form for the coupled MD and FE equations of motion thus can be

written as

Ma €qqa ¼ fð�uu, u0a, u0h ¼ 0Þ, ð43Þ

Mh0 €qq0,mðtÞ ¼ f0,mðtÞ þ f
imp
0,m ðtÞ þ Rf

0,mðtÞ, ð44Þ

f
imp
0,m ðtÞ ¼

X

ncrit

m0¼�ncrit

ðt

0

hm�m0ðt� �Þðq0,m0ð�Þ � �uu0,m0 ð�Þ � R0,m0 ð�ÞÞd�, ð45Þ

M€dd ¼ NTfðuÞ: ð46Þ
Equations (43)–(46) represent the major results of this section. With these

key equations having been derived, several remarks are in order:

(i) The first equation (43) defines the standard MD equation of motion,

with interatomic forces derived from any anharmonic potential energy

function. This equation is solved for all non-boundary atoms.

(ii) The second equation (44) is the modified MD equation of motion for

the boundary atoms. The first term on the right-hand side of (44), f0,mðtÞ,
is simply the interatomic force calculated assuming that the fine scale for

the l>0 cells is zero. In other words, this is just the standard nonlinear

interatomic force that is calculated in the MD simulation. It is important to

note that this force is the standard nonlinear interatomic force; the assump-

tion of linearity was only used in describing the motion of the l>0 cells

which were eliminated. Specifically, the assumption of linearity

manifests itself in the time history kernel hðt� �Þ.
(iii) For clarity of explanation, we have shown (43) and (44) as separate

equations. In practice, no separate MD equation of motion is solved

for only the boundary l¼ 0 atoms. Instead, the impedance force f
imp
0,m ðtÞ in

(44) and the stochastic force R0,mðtÞ can simply be added to the right-hand

side of the MD equation of motion as external forces acting only on the

MD boundary atoms. In this way, no additional equations to solve are

introduced.

(iv) The second term on the right-hand side of (44), the impedance force f
imp
0,m ðtÞ,

contains the time history kernel hðt� �Þ, and acts to dissipate fine

scale energy from the MD simulation into the surrounding continuum.
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In comparing this term to the previously derived one-dimensional boundary

condition of Wagner and Liu (2003), the major difference is that the time

history kernel hðt� �Þ is now computed numerically instead of analytically,

as was done for the one-dimensional case. The result is a non-reflecting

boundary between the MD and FE regions, as the time history kernel allows

short wavelengths that cannot be represented by the surrounding conti-

nuum to leave the MD region.

(v) The random displacement R0,m0 ð�Þ in (45) and the random force Rf
0,mðtÞ in

(44) act on the reduced atomistic system due to initial conditions in the

continuum region. Because the initial conditions can be known only in an

averaged sense based on the temperature of the coarse scale, and because

many different initial conditions are possible, the random terms represent

thermally dependent excitations exerted on the MD region by the surround-

ing coarse scale. The existence of these random terms indicates that the

bridging scale method can be considered a coupled finite-temperature

method; techniques for applying these stochastic terms were proposed

by Adelman and Doll (1976). In the examples presented in this paper, we

neglect this random term, indicating that the temperature of the surround-

ing continuum is 0K.

(vi) We note that the time history kernel hðtÞ is a 2�2 matrix, corresponding

to the minimum number of degrees of freedom in each unit cell. The

compact size of hðtÞ distinguishes this approach from other methods, such

as that of Cai et al. (2000), and E and Huang (2002). These differences will

be elaborated in the next section. The small size of hðtÞ enables us to achieve

large computational savings by eliminating large portions of the lattice

where an explicit atomistic representation is not desired. Specifically, even

as the number of eliminated qh harmonic fine scale degrees of freedom

grows, the size of hðtÞ remains constant.

(vii) Due to the elimination of the fine scale degrees of freedom for the l>0 cells,

the FE equation of motion (46) is not redundant. The coarse scale thus carries

two major responsibilities. The first is to capture the long wavelength non-

linear response of the system, while the impedance force f
imp
0,m ðtÞ described in

remark (iv) accounts for the high-frequency waves that cannot be captured

by the coarse scale. The second major role of the coarse scale relates to the

coupling of the revised MD equation of motion (44) such that it depends

upon the coarse scale solution �uu0,m0ð�Þ through the impedance force f
imp
0,m ðtÞ

in (45). The coarse scale dependence in (44) then serves as a boundary

condition on the MD simulation, should the flow of information be from

continuum to atomistic regions. In this manner, a true two-way coupling

between the coarse and fine scales has been achieved.

(viii) For the coupled system of equations describing a domain in which FEM and

MD both exist everywhere, i.e. (9) and (10), the global system is

conservative. However, due to the elimination of the qh harmonic

fine scale degrees of freedom, the MD system described by (43) and (44)

is dissipative.

(ix) Due to the fact that the bridging scale involves the solution of the standard

FE and MD equations of motion with few modifications, the method

is extremely well suited to the reusage of existing FE and MD codes.

The changes to the standard MD equation of motion, as previously
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mentioned in remarks (iv) and (v), only involves the additional impedance

and random forces applied to the boundary atoms. For the FE equation of

motion, the FE internal forces are computed using the MD forces as a

function of the total displacement u; therefore, the subroutine used to

calculate the actual MD forces can simply be reused to calculate the FE

internal force NTðuÞ.
(x) The motion of the ghost atoms, which exist such that the reduced

atomistic system does not see a surface, is controlled using the finite

element shape functions. This procedure is identical to that adopted to

control the motion of the pad, or ghost atoms in Shilkrot et al. (2004).

We note that the ghost-atom displacements can be calculated directly by

taking the inverse Laplace transform of (27), and adding on the coarse scale

component of the displacement. However, previous works by Adelman and

Doll (1976), Cai et al. (2000), and E and Huang (2002) have utilized a force

boundary condition. Therefore, we follow convention and use the impe-

dance force formulation while controlling the motion of the ghost atoms

using the finite element shape functions.

2.3. Comparison of time history kernel to previous methods

The time history kernel matrix hðtÞ derived in the previous section bears much

resemblance to other non-reflecting boundary conditions derived by Adelman and

Doll (1976), Cai et al. (2000), and E and Huang (2002). All methods have been

shown to eliminate high-frequency wave reflection at the MD/FE interface by the

derivation and utilization of either bðtÞ, which is known as the damping kernel, or its

time derivative hðtÞ. As the methodology of Adelman and Doll was limited to

one-dimensional examples, we compare our approach to the other two methods

mentioned above.

The work of Cai et al. (2000) is a seminal one due to the fact that it was

one of the first works to numerically calculate the damping kernel bðtÞ in multiple

dimensions. However, the work contains two potential drawbacks. Firstly, the

damping kernel of Cai requires multiple MD simulations on a larger domain to

obtain. Secondly, the size of the damping kernel is proportional to N, with

N being the total number of degrees of freedom in the reduced MD domain.

The work of E and Huang (2002) was based on removing wave reflection

at the MD boundary by optimizing the reflection coefficient at the boundary.

Because of this, multiple MD simulations were not required to obtain the damping

kernel. The formulation of E and Huang, however, introduces other difficulties.

First of all, the geometry of the lattice enters their formulation explicitly,

and must be accounted for in each calculation of the time history kernel.

Secondly, the angles of incidence of waves approaching the interface also need

to be specified; it is unclear if the formulation allows waves impinging on the

boundary at arbitrary angles within a single calculation.

The work presented herein remedies the above difficulties as follows. First,

and most importantly, the size of hðtÞ is that of the minimum number of

degrees of freedom in each unit cell. For example, in the current two-dimensional

formulation, hðtÞ is a 2�2 matrix. Secondly, the geometry of the lattice need not

be explicitly modeled; the effects are contained in the K matrices that can easily

be derived for arbitrary lattice geometries and interatomic potentials. Thirdly,
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due to the repetitive structure of the atomic lattice, the same hðtÞ is used for each

boundary atom in the numerical implementation. Finally, as demonstrated in

Wagner et al. (2004), and Karpov et al. (2005), the methodology for calculating

hðtÞ numerically can be automated, and only requires standard Laplace and

Fourier transform techniques, as well as the K matrices which define the interactions

between an atom and all of its neighbours.

To complete the discussion regarding the methodology presented herein to

numerically calculate the time history kernel hðtÞ, we add the following comments:

(i) Because of the fact that the force on a given boundary atom includes the

displacements of all of its neighbouring atoms (e.g. the sum in (45)), it is

expected that this method will lose accuracy near lattice corners, where a full

complement of atomic neighbours is generally unavailable.

(ii) It was assumed in deriving the MD impedance force (45) that the boundary

layer of atomic unit cells (the l¼ 0 slab in figure 2) is initially planar.

(iii) The formulation presented here is only used in this paper for cases in which

the atoms in each unit cell interact with only the nearest-neighbour atoms.

However, this is not a general restriction on the method. For longer ranged

forces, simply increasing the size of the unit cell accounts for the additional

interactions, and is the focus of work in progress (Park et al. 2004b).

(iv) The assumption of linearity is only required to hold for the atoms in the

l>0 unit cells which are eliminated from the formulation. Therefore,

the method does not allow defects such as dislocations to propagate through

the boundary. The remainder of the lattice is allowed to interact via

any anharmonic potential desired.

(v) The four components of the time history kernel in (45) calculated for a

hexagonal lattice interacting via a nearest-neighbour Lennard–Jones (LJ)

6–12 potential are shown in figures 3–6. As can be seen in the figures, the

dominant order for each component is the zeroth-order ðncrit ¼ 0Þ, which
corresponds to only taking the value of the displacements at each boundary

atom, and not considering the displacements of any neighbouring atoms.
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Furthermore, the higher order components are not only smaller in ampli-

tude but are time delayed with respect to the zeroth-order. This makes

sense, as the response of a neighbouring atomic unit cell to the perturbation

of the boundary unit cell will be slower the further away the unit cells are. It

is thus expected in numerical computation that the single biggest improve-

ment will occur simply by utilizing the zeroth-order component of the time

history kernel; as more neighbours are used, the solution should improve,

but slowly and less dramatically.

(vi) An important point that will be exploited in our numerical simulations is

the decaying nature of all of the components of the time history kernels.

Because the long time values of the kernels are essentially inconsequential

with regards to the short time values, it is expected that the kernels will
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in practice be able to be truncated without significant loss in accuracy and

with significant gains in computational efficiency.

(vii) We note that the time axes in figures 3–6 are normalized by the shortest

period of vibration Tmin, corresponding to the longitudinal mode with

wave vector k ¼ f0, 2p=
ffiffiffi

3
p

a0g in a two-dimensional hexagonal lattice (see

figure 2) with the LJ potential. In the expression for the wave vector k, a0
corresponds to the lattice parameter. It is noteworthy that the time

history kernels are able to be truncated after less than ten atomic

vibrational periods, and indicates that the time history dependence of the

lattice does indeed decay quite rapidly.

2.4. Aspects of numerical implementation: impedance force

The numerical implementation of the MD impedance force (45) involves two

components. The first component deals with the calculation of the time history

kernel hðtÞ. In practice, hðtÞ is computed and stored before the actual calculation

takes place. The values of hðtÞ depend on the type of lattice considered, the

interatomic potential utilized, and the number of atomic neighbours considered in

calculating the impedance force. The interatomic potential influences the values of

the stiffness matrix K, for example in (33). In the numerical implementation,

because of the decreasing nature of the time history kernel hðtÞ, all components

of hðtÞ are set to zero after a certain time, i.e. nine atomic vibrations corresponding

to normalized time t¼ 3 in figures 3–6, which dramatically reduces the storage

requirements for hðtÞ.
A particular point of emphasis is that hðtÞ is not stored for every boundary atom.

Because of the repetitive structure assumption used in deriving hðtÞ, all boundary
atoms in a given row can be considered to be identical. Therefore, only one set of hðtÞ
is necessary, and is reused for each boundary atom. The number of hðtÞ stored

then only depends on the number of atomic neighbours (ncrit in (45)) considered

for each boundary atom.
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Thus, the only variables that are required for the impedance force which require

updating during the simulation is the difference in boundary displacements, or the

q0,m0 ð�Þ � �uu0,m0ð�Þ term in (45). This difference in displacement is stored for every

boundary atom. The q0,m0 ð�Þ term, or the displacements of each boundary atom, are

available each MD time step. The �uu0,m0 ð�Þ term, or the interpolated FE displacement

at each boundary atom, is calculated after each FE time step. Because that term is

also necessary at each MD time step, it is integrated in time at each MD time step

assuming a constant coarse scale acceleration and thus the difference

q0,m0 ð�Þ � �uu0,m0ð�Þ can be evaluated and stored for each MD time step. Details on

the integration algorithm for both the coarse and fine scales can be found in Wagner

and Liu (2003), and Park and Liu (2004).

Because the time history kernel hðtÞ is truncated after a certain period of time, the

requirements for the displacement history are correspondingly truncated to hold for

the same number of time steps. A further truncation on the storage of the displace-

ment histories can be accomplished by only storing the displacement histories at

certain time steps, while weighting those values accordingly to account for the fact

that the displacement histories are not stored at every MD time step (Karpov et al.,

2005).

2.5. Aspects of numerical implementation: coupling force

We now discuss implementation-specific details of the coarse scale internal force

in (46), i.e. the NTfðuÞ term. This term originates naturally due to the separation of

scales in constructing the multi-scale Lagrangian (6). In two dimensions, the size of

the matrix NT is Nn1�Na1, where Nn1 is the number of finite element nodes whose

support contains an atomic position, and Na1 is the total number of atoms. The

matrix NT is calculated once at the outset of the simulation as follows. First, a search

is performed to determine which atoms lie within the interior of each finite element.

The finite element shape functions are then evaluated at each initial atomic position

which lies within the finite element. Because each node has a compact support, the

matrix NT is stored as a sparse matrix. The x and y components of the finite element

nodal forces can then be calculated as

fIx ¼
X

nIatom

�¼1

NI ðX�Þf�xðuÞ, ð47Þ

fIy ¼
X

nIatom

�¼1

NI ðX�Þf�yðuÞ, ð48Þ

where NI ðX�Þ are the finite element shape functions evaluated at the initial atomic

positions X�, fIx are the x components of finite element nodal forces, fIy are the

y components of the finite element nodal forces, f�xðuÞ are the x components of

the standardMD interatomic forces evaluated as a function of the total displacements

u, f�yðuÞ are the y components of the standard MD interatomic forces evaluated as

a function of the total displacements u and nIatom are the number of atoms within the

support of node I.

Equations (47) and (48) represent the discrete version of the coarse scale internal

force derived consistently through the multi-scale Lagrangian in (6). It is important

to note that for the case in which the finite element nodal positions exactly overlay
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the atomic lattice, the coarse scale internal forces (47) and (48) will exactly corre-

spond to the actual atomistic internal forces due to the Kronecker-delta property of

the finite element shape functions. For the more general case in which the finite

element nodal positions are spaced wider than the atomic lattice spacing, the coarse

scale internal forces represent an average of the underlying atomic forces, with the

quality of the approximation given by the finite element shape functions.

Due to the long-ranged interactions inherent in atomistic simulations, many

situations will arise in which some portion of the force on a given atom will contain

the effects of the motion of other atoms in different finite elements. However,

because the force on each atom in (47) and (48) is a total value, no special treatment

is needed to treat atomic bonds which cross finite element boundaries.

The coarse scale internal force for the Nc2 nodes in region 2 is calculated in

a different manner, due to the absence of atoms in that region. This is described

in the following section.

2.6. Cauchy–Born rule for coarse scale

In the coarse scale-only region, where the MD force is unavailable (i.e. region 2

in figure 1), an approximation to the right-hand side of (46), the NTfðuÞ term, must

be made. Because of the desire to use the same interatomic potential to derive the

finite element forces even in the absence of the underlying MD region, we use the

Cauchy–Born rule in the region which contains only the coarse scale. We note that

the Cauchy–Born rule is not the only possible method to represent the coarse scale

internal force; other methods which do not require a hyperelastic stress update and

only depend on the interatomic potential have been developed (Qian et al. 2004,

Qian and Gondhalekar 2004). Due to the inherent limitations in the Cauchy–Born

rule in describing the mechanics of carbon nanotubes, among other interesting

structures, this ensures that the bridging scale is not correspondingly limited

in this manner. Further details on the Cauchy–Born implementation for the

bridging scale can be found in Wagner and Liu (2003), and Park and Liu (2004).

Further details on the Cauchy–Born rule can be found in Tadmor et al. (1996).

2.7. Staggered time integration algorithm

As was previously mentioned, one strength of the bridging scale lies in the ability

to update the MD and FE equations of motion using appropriate time steps for each

equation. In fact, both simulations are integrated through time using widely utilized

algorithms; velocity verlet for MD, and explicit central difference for FE. Details

on the staggered time integration can be found in Wagner and Liu (2003) and Park

and Liu (2004).

} 3. Numerical examples

All MD calculations presented in this section utilize the LJ 6–12 potential, which

takes the form

�ðrijÞ ¼ 4�
�

rij

� �12

� �

rij

� �6
 !

, ð49Þ

where � has dimensions of length, � has dimensions of energy and rij is the distance

between two atoms i and j. The examples were run with parameter values � ¼ � ¼ 1

considering nearest-neighbour interactions only, while all atomic masses were chosen
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as m¼ 1. The interatomic distance rij which minimizes the potential energy � in (49)

can be determined to be 21=6�.

A hexagonal lattice structure corresponding to the (111) plane of an fcc crystal

was considered for the MD simulations, with the atoms initially in an equilibrium

configuration. Because of the symmetry between the top and bottom layers of

a hexagonal lattice, the time history kernels for the top and bottom layers can

be related by

h
top
n ðtÞ ¼ h

bottom
�n ðtÞ, ð50Þ

and the storage requirements for the time history kernels can be reduced by one half.

A schematic demonstrating the atomic directions along which the impedance force

(45) was applied for all numerical bridging scale examples is shown in figure 7.

In (50), h
topðtÞ corresponds to the ½�112�110� direction of a hexagonal lattice while

hbottomðtÞ can then be found using the symmetry arguments in (50). Figures 3–6

show the time history kernel for an LJ 6–12 potential computed for hbottomðtÞ.
All simulations were performed with the random terms RðtÞ in (44) and (45)

set equal to zero, indicating a continuum region at zero temperature. All MD

simulations were correspondingly run using a zero temperature approximation.

For the regions which satisfy a coarse scale-only description, the Cauchy–Born

rule was utilized to calculate the coarse scale internal force as described above. The

LJ 6–12 potential was used to describe the continuum strain energy density, such that

the coarse scale internal force could be derived from the same interatomic potential

that was used for the MD force calculations. All numerical examples utilized quad-

rilateral 4-node bilinear finite elements to discretize the continuum.

We comment here on the usage of a general interatomic potential with param-

eters which do not match those of any real material. These choices were made in the

interest of generality, such that large classes of realistic physical systems could be

simulated without concentrating on a specific material. Future work could, of

course, use specific values for � and � to match the behaviour of a given material

should a detailed study of a specific physical process be desired. Finally, the

LJ potential was chosen to represent a model brittle material.

All units related to atomistic simulations in this section, such as velocity, position

and time, are given in reduced units. It should be noted that because of the choices

of mass, � and � as unity, all normalization factors end up as unity. Finally, all

Figure 7. Schematic illustration of the boundaries on which the MD impedance force (45)
was applied for all numerical examples.
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numerical examples shown in this work were performed using the general purpose

simulation code Tahoe, which was developed at Sandia National Laboratories

(Tahoe 2004).

3.1. Two-dimensional wave propagation

In this example, we demonstrate the effectiveness of the bridging scale in

eliminating high-frequency wave reflection between the FE and MD regions.

To do so, a two-dimensional wave propagation example was run. A part of the

MD region was given an initial displacement corresponding to a two-dimensional

circular-type wave. The components of the initial displacements given in polar

coordinates were

urðrÞ ¼
A

A� uc
1þ b cos

2pr

H

� �� �

A e�ðr=�Þ2 � uc

� �

êer: ð51Þ

The corresponding parameters had values of �¼ 15, H ¼ �=4, A¼ 0.015, b¼ 0.1,

rc ¼ 5� and uc ¼ A eð�rc=�Þ2 . A controls the wave amplitude, b controls the degree of

high-frequency content in the wave (b¼ 0 implies zero high-frequency content) and

rc controls the cut-off distance of the initial displacements. The initial configuration

for the problem is shown in figure 8.

In order to have a comparison for the bridging scale simulations, a larger MD

simulation was performed, and taken to be the benchmark solution. In

Figure 8. Initial conditions for two-dimensional wave propagation example. Contours
of displacement magnitude shown.
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this simulation, the same initial displacements prescribed by (51) for the bridging

scale simulation were prescribed for the MD lattice. For the full MD region to match

the entire bridging scale region, 91 657 atoms, or 301 atoms in the x direction along

with 301 atoms in the y direction were used. The wave was allowed to propagate

away from the centre of the lattice until just before the domain boundaries

were reached.

The corresponding bridging scale simulation contained 31 157 atoms (301 atoms

in the x direction by 101 atoms in the y direction) and 1920 finite elements, of which

600 were in the coupled MD/FE region. Twenty MD time steps were used for each

FE time step. The bridging scale MD domain contained as many atoms in the

x direction as the full MD simulation, but only one-third the number of atoms in

the y direction. Because the MD boundary conditions were only enforced on the top

and bottom atomic layers of the bridging scale MD lattice, this would ensure that

the waves reached and passed through the top and bottom boundaries before the

left and right boundaries were reached by the wave.

In order to test the accuracy of the MD impedance force, five cases were run.

The first case involved not applying the impedance force, which would expectedly

lead to large amounts of high-frequency wave reflection at the MD/FE boundary.

Then, four cases were run in which the number of neighbours used in calculating the

impedance force (ncrit in (45)) was increased. A snapshot showing the natural

propagation of the wave which originated in the MD region into the surrounding

continuum is shown in figure 9. It is important to note that while the continuum

representation exists everywhere, that part of the FE mesh overlaying the MD region

Figure 9. A later snapshot of wave propagation from the MD region into the continuum
region. Contours of displacement magnitude shown.
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is not shown to better illustrate how the coarse scale captures the information

originating in the MD region.

The resulting total energy (kinetic energyþpotential energy) transferred from

the MD region using the bridging scale is shown in figure 10. The full MD energy

was measured only in the region in which the bridging scale MD existed, such that a

valid comparison could be made. The full MD energy was then normalized to be the

reference solution, such that it tends to zero in figure 10. Of course, because the wave

has not fully exited the system, the actual energy in all systems does not go to zero,

but this normalization is performed such that a percentage measurement and

comparison between the full MD and bridging scale MD systems can be obtained.

As figure 10 shows, if the MD impedance force (45) is not applied, only

about 35% of the MD energy is transferred in comparison to the full MD.

However, if the impedance force that is presented in this work is utilized, even if

only one neighbour is used in calculating the boundary force (i.e. ncrit ¼ 0), about

91% of the MD energy is transferred in comparison to the full MD simulation.

The percentage steadily increases until more than 95% of the energy is transferred

if nine neighbours ðncrit ¼ 4Þ are used to calculate the impedance force. These results

show the necessity in correctly accounting for the eliminated fine scale degrees

of freedom in the form of the impedance force (45). The time axis of figure 10 has

been normalized by ttrans, which represents the transit time that the shortest

wavelength the FE mesh can support takes to reach the MD boundary from the
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centre of the MD region. As could be expected, energy begins to dissipate from the

MD region around the normalized time of one.

A final note of importance is made in further analysing the bridging scale result

shown in figures 11, 12. One element of the bridging scale simulation that results is a

long wavelength reflection back into the MD region. The reason for this long wave-

length reflection is due to the fact that the FE internal force is calculated by two

different means for the boundary nodes. The result of this is a system with slightly

different stiffnesses. For the problem shown in this section, because most of the

initial MD energy is concentrated in the high-frequency waves, the majority of the

energy is transferred into the continuum. In general, this may not be the case, and

more of the system energy may be concentrated in the longer wavelengths.

There are multiple ways of reducing this effect. One approach is to split the

boundary element such that it receives a contribution from both the MD forces

and the Cauchy–Born forces. By doing so, a transition element is created whose

properties are an average of the two systems. By creating this transition element, the

long wavelength reflection is eliminated, as has been done in one-dimensional

problems (Wagner and Liu 2003).

Another option is to use meshfree shape functions everywhere in the domain.

Because of the non-local nature of the meshfree shape functions, the transition

element described above will be naturally created without the need for special

integration techniques for the boundary element. This issue will be addressed

more carefully in a later work.

Figure 12. Final displacements in MD region if MD impedance force (45) is not applied.
Reprinted from Liu et al. (2004) with permission from the publisher.

Figure 11. Final displacements in MD region if MD impedance force (45) is applied.
Reprinted from Liu et al. (2004) with permission from the publisher.
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3.2. Dynamic crack propagation in two dimensions

The previous example dealt with a specific case in which all of the initial energy

of the problem was in the MD domain and then dissipated away into the surround-

ing continuum. This type of example, while useful for verifying the effectiveness of

the derived MD impedance force (45), does not demonstrate all relevant facets of a

generalized multiple scale simulation. In fact, it could be reasonably argued that for

problems such as the wave propagation example in which the only goal is to allow

passage of the fine scale waves out of the MD region without causing internal

reflection, using techniques such as those introduced by Wagner et al. (2004) and

Karpov et al. (2005) would be sufficient, thereby rendering the coarse scale redundant.

However, many problems of interest involve those in which the MD region

is not initially in a state of motion, and instead moves as a result of some initial

continuum deformation which is passed to the MD region via the coarse scale/fine

scale coupling established in (45). Because of this, it is important that the MD

boundary condition acts as a two-way filter; first, that it allows large scale

continuum information into the MD region. Secondly, that it still dissipates away

the high-frequency MD waves which cannot be represented by the surrounding

continuum. To demonstrate the truly two-way coarse/fine coupled nature of the

bridging scale, we solve a two-dimensional dynamic crack propagation in which

the boundary conditions are applied to the coarse scale. The problem schematic

is shown in figure 13.

Figure 13. Configuration for two-dimensional dynamic crack propagation example.
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The pre-crack is generated by preventing the interaction of two rows of atoms.

In this way, the atoms on the faces of the pre-crack effectively behave as if on a free

surface, and the crack opens naturally in tension. A ramp velocity is applied to the

top and bottom nodes of the continuum region such that the atomistic fracture

occurs in a mode-I fashion. The application of the ramp velocity is shown in

figure 14.

A full MD simulation was also run in which the entire domain was comprised of

atoms. The bridging scale simulation consisted of 91 051 atoms and 1800 finite

elements, of which 900 were in the coupled MD/FE region. Forty MD time

steps were run for each FEM time step. Correspondingly, the full MD simulation

consisted of 181 201 atoms. The identical velocity boundary condition as shown

in figure 14 was applied on the full MD simulation as was the bridging scale

simulation, with the peak velocity Vmax ¼ 0:04. For all bridging scale simulations

shown in this section, only one neighbour was utilized in evaluating the impedance

force, i.e. ncrit ¼ 0.

A comparison between the full MD simulation and bridging scale simulations

is shown in figures 15 and 16. In these figures, the potential energy of the MD

domain is shown. As can be seen, both simulations show the same dominant char-

acteristics, notably the size and intensity of the process zone immediately ahead of

the crack tip, and also in the high-frequency radiation emitted from the crack tip.

This high-frequency radiation, which appears as concentric circles radiating away

from the crack tip, is emitted each time a single atomic bond is broken by the

propagating crack. The opening of the crack is shown clearly by magnifying the y

component of the displacement by a factor of 3. It should be noted that while the

interatomic interactions have been restricted to nearest neighbours, the potential is

not truncated at any point such that the potential energy and force are fully con-

tinuous functions of interatomic distance.

If a larger peak velocity Vmax is chosen for the velocity boundary condition

or the simulation is run for a sufficiently lengthy period of time, then complete

Figure 14. Ramp velocity boundary condition that is applied on FE region for dynamic
fracture examples.
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fracture of the atomic lattice into two sections will occur. This is demonstrated in

figures 17 and 18, where the peak velocity was chosen as Vmax ¼ 0:06. As can be

seen in figures 17 and 18, the bridging scale simulation agrees very well with the full

MD simulation. It is also noteworthy that complete fracture of the underlying MD

lattice is allowed in the coupled simulation; this is because the finite element nodal

forces in that region are obtained directly from the underlying atomistic forces via

(47) and (48). Because of this fact, no calculation of deformation gradients in the

coupled MD/FE region is necessary. Therefore, the finite elements which overlay

the MD region can deform in a manner that finite elements governed by

traditional constitutive laws cannot. This is exemplified by the pinched nature of

the deformation of the finite elements at the edge of the cracked specimen in

figure 19, which shows the deformed FE mesh and separated MD lattice plotted

together. Again, the crack opening is shown in the figures by magnifying the

y component of the displacement by a factor of 3.

Figure 16. Potential energy contours of bridging scale fracture simulation.

Figure 15. Potential energy contours of full MD fracture simulation.
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Another useful measure of comparison between the bridging scale and a full

MD simulation is in tracking the initiation times and subsequent positions of the

crack tips. In our simulations, because the location of the pre-crack is known, the

location of the crack tip could be easily ascertained by comparing the y displace-

ments of the atoms ahead of the pre-crack, and checking if they had exceeded

a critical value. The comparison between the full MD and two different bridging

scale simulations using different MD domain sizes is shown in figure 20, for the case

Vmax ¼ 0:04. As can be seen, the bridging scale simulations predict the identical

crack initiation time as the full MD simulation as well as the position of the crack

tip as it evolves through time.

A slightly different system was run for further comparisons. In this case, the

full MD system contained 362 101 atoms (601 atoms in the x direction by 601

Figure 18. Potential energy contours of bridging scale simulation after complete fracture
of lattice has occurred.

Figure 17. Potential energy contours of full MD simulation after complete fracture of
lattice has occurred.
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atoms in the y direction). Three different bridging scale simulations with varying MD

system sizes (601�301, 601�201, 601�101) along with 3600 finite elements were run.

The crack tip history is shown in figure 21. As can be seen, the first two bridging scale

simulations match the crack initiation time and time history exactly. However, for

the smallest MD region within a bridging scale simulation (the 601�101 atom case),
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Figure 20. Comparison of crack position with respect to time for full MD and two different
bridging scale simulations.

Figure 19. Left: y displacements of entire structure. Note that MD exists only in a small part
of the domain, while FE exists everywhere. Right: zoom in of y displacements
in coupled MD/FE region. Reprinted from Liu et al. (2004) with permission from
the publisher.
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the crack initiates at a slightly earlier time than in the full MD case. After initiation,

the velocity of the crack appears to match the velocity of the crack in the full MD

case. We note that other simulations were run in which the number of atoms in the

y direction was reduced to less than 101. For these simulations, the crack either

initiated much earlier or later than expected, or did not initiate at all. It appears

as though the incorrect physics demonstrated in this case reflects the assumption of

linearity at the MD boundary being violated if the MD region is too small.

Taken together, figures 20 and 21 demonstrate the truly two-way coupled nature

of the derived MD boundary condition (45). Firstly, the large scale information

which is passed to the MD region as a boundary condition is being passed correctly;

this is borne out by the fact that the crack initiation times in the bridging scale

simulations match the initiation times in the full MD simulations. Secondly, the

derived MD boundary condition effectively dissipates high-frequency waves emitted

from the crack tip; this is revealed by the fact that the position of the crack tip over

the entire duration of propagation matches that of the full MD simulation. More

simply, the high-frequency waves emitted by the crack tip are not reflecting from the

MD boundary and interfering with the crack propagation dynamics.

The time axis in figures 20 and 21 was normalized by a critical time T1 corre-

sponding to the time that a crack in an infinite strip would begin initiation under

mode-I type loading, where the crack driving force under plane stress is given to be

G ¼ E�2

2hð1� �2Þ
: ð52Þ
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Figure 21. Comparison of crack position with respect to time for full MD and three different
bridging scale simulations.
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In (52) G is the crack driving force, E is the Young’s modulus, � is Poisson’s ratio,

� is the applied displacement to the strip edge and h is the total height of the strip.

Along the cleavage plane created in the simulation, extending the crack by a distance

of the lattice parameter a0 requires the breaking of two bonds. Therefore, the

fracture energy is 2�=a0. For both the full MD system as well as the bridging

scale calculations, crack initiation occurred later than predicted by the analytical

relations, indicating that the specimen considered is not sufficiently long in the

x direction for (52) to hold.

Finally, a comparison of the computational expense incurred utilizing the

bridging scale versus a pure atomistic simulation is shown in figure 22. The full

MD simulation of 362 101 atoms was set as the benchmark simulation in terms of

computational time. This benchmark full MD simulation was then compared to two

bridging scale simulations. The first used approximately one-third the number of

atoms, 121 901, along with 3721 FE nodes. The second used approximately one-sixth

the number of atoms, 61 851, along with 3721 FE nodes. As can be seen,

computational speedups of two and three times were observed, respectively, using

the bridging scale for the case in which all computations were performed in serial.

The bridging scale simulation times do not scale exactly as the fraction of MD

degrees of freedom due to the additional expense of the terms introduced by the

bridging scale coupling, and also because certain optimization tools, such as the

truncation of the number of displacement histories stored per boundary atom

as done in Park and Liu (2004) and Karpov et al. (2005), have not yet been

implemented.

} 4. Conclusions

The major thrust of this work has been to present the fundamentals necessary

to make the bridging scale, a method designed to couple atomistic and

continuum simulations, valid for simulations in multiple dimensions. The key step

has been in developing a technique to numerically calculate the time history kernel

matrix hðtÞ, which mimics the dissipation of high-frequency fine scale waves into

the eliminated fine scale degrees of freedom, in multiple dimensions. Similar to the

single scale work by Wagner et al. (2004) and Karpov et al. (2005), a multiple

scale method for numerically accounting for the eliminated fine scale degrees of

freedom in the form of an impedance force that acts upon the reduced MD

Figure 22. Comparison of simulation times using bridging scale vs. full MD. ncrit ¼ 0
for bridging scale simulations.
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lattice was presented. The major assumptions of the method include a planar MD

boundary, approximating the interatomic forces of the eliminated MD degrees of

freedom as a linear function of atomic displacements, and a repetitive, crystalline

lattice structure. Incorporating this methodology into the bridging scale

framework leads to a truly two-way coupled boundary condition on the MD

simulation, which allows the dissipation of high-frequency waves into the

surrounding continuum while also passing long wavelengths from the continuum

into the atomistic region.

The numerical examples presented in this work illustrate two important

concepts. The wave propagation examples demonstrated that the numerically

calculated time history kernel hðtÞ acts to eliminate high-frequency waves that

cannot be represented by the continuum. The dynamic crack propagation example

demonstrated the truly two-way nature of the MD impedance force; boundary

conditions applied to the continuum caused the atomistic crack to grow, while the

MD impedance force containing hðtÞ again removed high-frequency waves emitted

by the propagating crack which cannot be represented by the continuum.

In comparing the bridging scale to other multi-scale methods, the following

conclusions can objectively be drawn. First, due to the existence of a clearly

delineated coarse and fine scale, the coarse scale time step is not restricted to the

stable MD time step. Because the coarse scale is not required to update at the

same time scales as the MD simulation, an enormous computational savings is

achieved compared to those methods that require a one-to-one atom to node

mesh. Another major advantage of the bridging scale lies in the mathematically

consistent treatment of the removed fine scale degrees of freedom. Because those

removed fine scale degrees of freedom contribute to the MD equation of motion

through the MD impedance force, it is exactly clear why the method succeeds in

the elimination of high-frequency waves leaving the atomistic region; the wave

propagation example shown in this work conclusively demonstrates the importance

of correctly accounting for the removed fine scale degrees of freedom.

The form of the time history kernel matrix hðtÞ also constitutes one of the

major advantages of the bridging scale. It was shown that, unlike previous methods,

hðtÞ is a compact matrix, whose size corresponds to the minimum number of degrees

of freedom in each unit cell. Furthermore, a simple numerical procedure to calculate

hðtÞ was discussed, which utilizes only standard Laplace and Fourier transform

techniques. Lastly, the geometry of the lattice structure need not be explicitly

modelled; all geometric effects are implicitly included in the lattice stiffness, or K

matrices. We close the summary of the bridging scale by noting that it is valid for

dynamic, finite-temperature problems.

Future work on the bridging scale can be decomposed into three major

tasks. The first task is to extend the method to allow fully coupled finite-temperature

simulations. Due to the presence of the random terms RðtÞ, the continuum is allowed

to exert thermally motivated forces on the atomistic region. While there is no restric-

tion on the temperature of the atomistic region, there is currently no established

manner in which the internal energy generated within the MD region is passed or

represented accurately in the continuum. Further research is needed to develop a

heat conduction equation for the coarse scale which can accurately represent the

energy dissipated from the MD region due to the impedance force.

The second crucial future task involves the relaxation of the fact that only

nearest-neighbour atomic interactions were considered in this paper. As stated
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within this article, this is not a restriction on the method itself; the derivation for the

time history kernel hðtÞ can be extended to including non-nearest-neighbour inter-

actions simply by utilizing a larger unit cell, which would allow the usage of longer-

ranged potentials such as the embedded atom method (EAM) (Daw and Baskes

1984). This generalisation has indeed been performed, and the results of this inves-

tigation will be reported in Park et al. (2004).

A third goal is to relax the small displacement assumption that exists in calculat-

ing the time history kernels hðtÞ. In principle, because the impedance force (45)

represents a zeroth-order linearization of the interatomic forces, higher order

terms could be used to represent moderate nonlinearities and rotations at the MD

boundary.

One final note of importance concerns the issue of time scale with respect to the

MD simulation. While the expense of the MD simulations in this work was cut by

reducing the size of the MD domain, the issue of extending the time scales that can

be simulated using MD still remains, and is beyond the scope of this work. It may be

possible in the future to use methods such as that of Voter et al. (2002) to extend the

time scales that are currently available within a standard MD simulation. However,

these methods are currently valid only for infrequent event simulations, such as

diffusion, and may not be applicable to the problems presented in this work.
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APPENDIX A

}A1. Derivation of stiffness matrices

We derive here the details related to the usage of the time history kernel hðtÞ.
A crucial component in determining hðtÞ lies in the stiffness matrices K, as in (20).

We first define a unit cell n ,m, as shown in figure A1, and the other cells interacting

with n ,m.

In general, the K matrices can be defined as

Kn�n0,m�m0 ¼ @fn,m

@rn0,m0
ðr ¼ reÞ, ðA1Þ

where r is a vector of current atomic positions in the repetitive cell and re denotes

the vector of corresponding equilibrium positions. For the LJ 6–12 potential utilized

throughout this work, the K matrices are found as functions of an interaction coeffi-
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cient k, where k is defined to be

k ¼ @
2
�ðrÞ
@r2

ðr ¼ reÞ, ðA2Þ

and r is a scalar representing the distance between two atoms. Utilizing the above

definition, it is found that

k ¼ 36ð4Þ1=3 �

�2
: ðA3Þ

Furthermore, the scalar distance re which minimizes the potential energy of the LJ

potential can be determined to be

re ¼ 21=6�: ðA4Þ
For a given lattice structure and coordinate system, the interaction coefficient k

defined in (54) defines all K matrices uniquely. The K matrices are now given as

K1, 1 ¼ K�1,�1 ¼
k

4

1
ffiffiffi

3
p

ffiffiffi

3
p

3

� �

, ðA5Þ

K�1, 1 ¼ K1,�1 ¼
k

4

1 �
ffiffiffi

3
p

�
ffiffiffi

3
p

3

� �

, ðA6Þ

K2, 0 ¼ K�2, 0 ¼ k
1 0

0 0

� �

, ðA7Þ

K0, 0 ¼ k
�3 0

0 �3

� �

: ðA8Þ

APPENDIX B

}B1. Discrete Fourier transform

The discrete Fourier transform (DFT) is used to transform functions from real

space to wavenumber space. Assuming that the function f can be defined at all

n,m n+2,mn-2,m

n+1,m+1

n+1,m-1

n-1,m+1

n-1,m-1

y

x

Figure A1. Basic unit cell n ,m with neighbouring (interacting) unit cells.
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atomic positions l, we denote the value of f and position l as fl. The DFT of f,

which is described using the hatted notation, is defined to be

f̂f ðpÞ ¼ F l!pfflg �
X

L=2

l¼�ðL=2Þ þ1

fl e
�i2ppl=L, ðB1Þ

where L denotes the number of lattice sites, and p can take any integer value

between �ðL=2Þ þ 1 and L / 2. The inverse Fourier transform (IFT) is then

defined to be

fl ¼ F�1
p!lff̂f ðpÞg �

1

L

X

L=2

p¼�ðL=2Þ þ1

f̂f ðpÞ ei2ppl=L: ðB2Þ

We close by noting the convolution property of the DFT, i.e. that the transform

of the convolution of two functions in space is equal to the product of the transforms

of the individual functions

F l!p

X

L=2

l 0¼�ðL=2Þ þ1

fl�l 0gl 0

 !

¼ f̂f ðpÞĝgðpÞ: ðB3Þ

}B2. Laplace transform

The Laplace transform (LT) is used to transform functions of time t into

the transformed variable s. The LT of a function f(t) is defined to be

FðsÞ ¼ Lff ðtÞg �
ð1

0

f ðtÞ e�st dt: ðB4Þ

The inverse Laplace transform (ILT) is defined to be

f ðtÞ ¼ L�1fFðsÞg � 1

2pi

ðcþi1

c�i1
FðsÞ est ds, ðB5Þ

where c is a constant greater than the real parts of all singularities of F(s). We

give two other important definitions for the LT, first the transform of the time

derivative of a function

L dnf ðtÞ
dtn

� 	

¼ snFðsÞ � sn�1f ð0Þ � sn�2 df

dt
ð0Þ � � � � � dn�1f

dtn�1
ð0Þ: ðB6Þ

Finally, similar to the DFT, the LT of a convolution integral of two functions

is equal to the product of the transforms of the individual functions

L
ðt

0

f ðt� �Þgð�Þ d�
� 	

¼ FðsÞGðsÞ: ðB7Þ
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