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Abstract

There are two major objectives to the present work. The first objective is to demonstrate that, in
contrast to predictions from linear surface elastic theory, when nonlinear, finite deformation
kinematics are considered, the residual surface stress does impact the resonant frequencies of
silicon nanowires. The second objective of this work is to delineate, as a function of nanowire
size, the relative contributions of both the residual (strain-independent) and the surface elastic
(strain-dependent) parts of the surface stress to the nanowire resonant frequencies. Both goals
are accomplished by using the recently developed surface Cauchy—Born model, which accounts
for nanoscale surface stresses through a nonlinear, finite deformation continuum mechanics
model that leads to the solution of a standard finite element eigenvalue problem for the
nanowire resonant frequencies. In addition to demonstrating that the residual surface stress does
impact the resonant frequencies of silicon nanowires, we further show that there is a strong size
dependence to its effect; in particular, we find that consideration of the residual surface stress
alone leads to significant errors in predictions of the nanowire resonant frequency, with an
increase in error with decreasing nanowire size. Correspondingly, the strain-dependent part of
the surface stress is found to have an increasingly important effect on the resonant frequencies

of the nanowires with decreasing nanowire size.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, semiconducting nanowires have drawn considerable
interest from the scientific community due to their enhanced
physical properties [1-3], which emerge due to their large
surface area to volume ratio. Nanowires are also important
as they will serve as the basic building blocks for future
nanoelectromechanical systems (NEMS), which have been
proposed for a multitude of cross-disciplinary applications,
including chemical and biological sensing, force and pressure
sensing, high frequency resonators, and many others [4-8].
Because many of the proposed applications for nanowire-based
NEMS, such as resonant mass sensing and high frequency
oscillators [6-8] rely on the ability to control and tailor the
nanowire resonant frequencies with a high degree of precision,

0957-4484/09/115701+07$30.00

it is critical to be able to predict and control variations in the
nanowire resonant frequencies.

However, the resonant frequencies of nanowires can devi-
ate from those expected from continuum beam theory [9-11]
due to the effects of surface stresses [12—14], which act on
the nanowire surfaces due to the fact that surface atoms have
fewer bonding neighbors, and therefore a lower coordination
number [15] than do bulk atoms. In the case of silicon, both
experiment [10, 16, 17] and simulation [9, 18] have shown that
surface stresses cause silicon nanowires to be elastically softer
than bulk silicon.

Within the mechanics and physics communities, re-
searchers have accounted for surface stress effects on the
resonant properties of nanowires using linear surface elastic
theory, which was developed more than 30 years ago by
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Gurtin and Murdoch [19], in which a surface stress tensor is
introduced to augment the bulk stress tensor typically utilized
in continuum mechanics. Mathematically, the surface stress
is decomposed into residual (strain-independent) and surface
elastic (strain-dependent) terms [20-22] as

7(€) = 77 + Se, (D

ot
s=2%. . 2
a€| 0 (2

where 7 is the residual (strain-independent) part of the surface
stress 7, Se is the surface elastic (strain-dependent) term and S
is the surface stiffness tensor. Note that (1) is written in terms
of the infinitesimal strain tensor €.

Gurtin et al [20] were also the first to show that, within
the framework of linear elastic beam theory, the beam resonant
frequency is independent of the residual surface stress 7°.
This finding has been validated by subsequent researchers, for
example by Lu et al [21]. In contrast, recent work by Lachut
and Sader [22] has shown that previous analytic models of
surface stress effects on the resonant frequencies [23] that are
based upon one-dimensional models violate Newton’s third
law. Lachut and Sader have further noted that the effects of
the strain-independent part of the surface stress on the resonant
frequencies can only be captured by fully three-dimensional
models.

The conclusion that the beam resonant frequency is
independent of the residual surface stress is obtained as
follows. Within two-dimensional linear beam theory, the
surface stress T can be viewed as a shear stress that acts
on the beam surfaces; the surface stress thus contributes to
a moment about the nanowire cross section. The moment
is subsequently differentiated to obtain the beam equation of
motion; because the residual surface stress t° is a constant, it
drops out once the differentiation occurs. In contrast, because
the surface elastic part of the surface stress is strain-dependent,
it does not drop out during the differentiation of the moment.
Because it drops out during the differentiation of the moment,
the residual surface stress is not found in the beam equation
of motion, and therefore does not affect the beam resonant
frequency. The mathematics and mechanics underlying the
preceding discussion can be found in Gurtin et al [20] and Lu
et al [21].

Having summarized linear surface elastic theory, we
address two key questions that motivate the present work: (1)
is a nonlinear, finite deformation constitutive theory necessary,
and (2) if so, what quantitative differences in the nanowire
resonant frequencies would result from linear surface elastic
theory and nonlinear, finite deformation model and why? To
answer the first question, finite deformation kinematics are
necessary because recent studies [9, 18] have shown that
silicon nanowires with sub-20 nm cross sections exhibit tensile
strains due to surface stresses on the order of 0.1-1%. In
contrast, we note that linear elasticity is generally valid for very
small strains, i.e. on the order of 0.001% or smaller.

The answer to the second question requires further
discussion.  One consequence of linear surface elastic
theory is that due to equilibrium requirements enforced

between the bulk and surface in deriving the surface elastic
formulation [12, 19, 24], the surface stress in the surface elastic
formulation is a 2 x 2 in-plane stress tensor, where the out-of-
plane stress component must be zero to satisfy the mechanical
equilibrium condition. The implication of this 2 x 2 in-plane
surface stress tensor is that surface elastic formulations are
unable to capture the surface-stress-driven tensile expansion
that silicon nanowires are known to undergo [9, 18, 25].
Furthermore, due to the linear elastic constitutive response that
is assumed for both the bulk and surface, the stiffness of both
the bulk and surfaces are independent of any surface-stress—
induced strain. Because of this, linear surface elastic theory
cannot account for changes in the resonant frequency that occur
due to changes in bulk or surface stiffness that arise from
deformation induced by surface stresses.

We emphasize that the present work represents a
substantial theoretical advancement as compared to previous
work by Park [9], in which the surface Cauchy-Born (SCB)
model was utilized to investigate surface stress effects on the
resonant frequencies of silicon nanowires. However, it was not
delineated in that work how the residual (strain-independent)
and surface elastic (strain-dependent) parts of the surface stress
contributed to the resonant frequency shift as compared to
the bulk material for silicon nanowires. Because of this, it
was also not determined whether the residual surface stress
79, in a nonlinear finite deformation formulation, does impact
the resonant frequencies of silicon nanowires. Furthermore,
it was not delineated how, as a function of nanowire cross
sectional size, the residual (strain-independent) and surface
elastic (strain-dependent) parts of the surface stress impact
the resonant frequencies of silicon nanowires. In the present
work, by delineating the size-dependent contributions of both
parts of the surface stress as defined in (1), we quantify, for
the first time, the errors introduced in modeling the nanowire
resonant frequencies that are introduced by neglecting the
residual (strain-independent) part of the surface stress 7°.

Therefore, the purpose of the present work is to
demonstrate that when nonlinear, finite deformation kinematics
are considered, the residual surface stress does impact
the resonant frequencies of silicon nanowires. A related
objective is to delineate, as a function of nanowire size, the
relative contributions of both the residual (strain-independent)
and surface elastic (strain-dependent) parts of the surface
stress on the nanowire resonant frequencies. Both goals
are accomplished by using the recently developed SCB
model [9, 26, 27], which is a nonlinear continuum mechanics
model that accounts for nanoscale surface stress effects, to
calculate the resonant frequencies of silicon nanowires. We
first briefly describe the theory underlying the SCB model, then
utilize it to achieve the stated objectives of this paper.

2. Modification to surface Cauchy-Born model to
delineate the strain-independent and
strain-dependent contributions to the resonant
frequencies of silicon nanowires

The standard bulk Cauchy—Born (BCB) model is a multiscale,
finite deformation constitutive model that enables the



Nanotechnology 20 (2009) 115701

H S Park

calculation of continuum stress and stiffness directly from an
underlying interatomic potential energy [26, 28—32]. However,
because the BCB model does not account for critical nanoscale
surface stress effects, the SCB model was recently developed
by Park et al [26, 33, 34] to capture surface stress effects within
the framework of the Cauchy—Born approximation. Because
the SCB formulation for silicon was presented in previous
works by Park et al [9, 26], we give a brief summary of the
SCB model here, with a focus on presenting the methodology
that is used to delineate the size-dependent contributions of
both the strain-independent and strain-dependent parts of the
surface stress to the resonant frequencies of silicon nanowires.

As noted in previous expositions on the SCB model for
silicon [9, 26], the SCB model is based constructing a surface
strain energy density y (C) of a representative surface unit cell,
where C = F'F is the continuum stretch tensor, indicating
that the SCB model is a nonlinear, finite deformation model.
The surface energy density y (C) is calculated using the T3
parameters of the Tersoff potential [35]; it is further critical
to note that the SCB surface energy density y (C) represents
the actual surface energy of the surface unit cell, and not
the excess in energy as compared to a representative bulk
atom, which is how the surface energy is traditionally defined
thermodynamically [12]. Once the surface energy density is
known, the second surface Piola—Kirchoff stress g(C) and the
surface stiffness C(C) can be calculated by taking derivatives
of the surface energy density y (C) with respect to the stretch
tensor C (see equations (30) and (31) in Park and Klein [26]).

We now articulate the methodology for separating the
effects of the strain-independent and strain-dependent parts of
the surface stress on the resonant frequencies of the silicon
nanowires. The motivation for the current approach is drawn
from equation (1), where the total surface stress 7(€) is
composed of two parts, the residual (strain-independent) part
7%, and the surface elastic (strain-dependent) part Se. As
previously discussed, previous works that have utilized linear
surface elastic theory to study surface stress effects on the
resonant frequencies of nanowires have found that the residual
(strain-independent) part of the surface stress t° does not
impact the nanowire resonant frequencies [20, 21].

The purpose of the present work is to investigate whether,
if nonlinear, finite deformation kinematics are considered, the
residual surface stress t° does in fact impact the resonant
frequencies of silicon nanowires, and to quantify the effect of
the residual surface stress on the nanowire resonant frequencies
with decreasing nanowire size. Therefore, a logical approach
to delineating this effect is to subtract the surface elastic
part of the surface stress Se from the surface stress that is
defined in (1), and calculate the resulting nanowire resonant
frequencies considering only the residual (strain-independent)
surface stress 7°.

However, because the SCB model is a nonlinear, finite
deformation model, it is not possible to entirely separate
or subtract the surface elastic (strain-dependent) part of the
surface stress. Therefore, the approximation utilized in the
present work, which mirrors that of Park and Klein for metal
nanowires [27], is to subtract the linearized strain-dependent
surface stress such that effects of the strain-independent surface

stress can be studied. This is accomplished by modifying the
SCB surface energy density y (C) as

7(C) — B (y(C) - JaE"GE). 3)

where E = 0.5(FTF — I) is the Green strain tensor, « and 8
are adjustable parameters, and C, is the undeformed surface
stiffness, i.e. the SCB surface stiffness evaluated at C = 1.

Due to the above modification of the SCB surface energy
density, the SCB surface stress and surface stiffness must also
be modified, as they are simply strain derivatives of the surface
energy density. Upon taking derivatives of the modified surface
energy density in (3) to get the modified surface stress and
surface stiffness, the surface stress is modified as

S(C) — BS(C) — BalyE, 4)
while the surface stiffness is modified as
C(C) — BC(C) — paly. Q)

In analyzing (4), it can be seen that the surface stress S
has been modified by subtracting, in a linearized fashion,
the strain-dependent part of the surface stress CoE term. If
we compare this CoE term with the actual surface elastic
part of the surface stress Se, we see that CoE is essentially
the finite deformation analog of the surface elastic (strain-
dependent) part of the surface stress Se in (1). By subtracting
this term from (4), we can achieve our objective, i.e. isolate
the effects of the strain-independent surface stress on the
resonant frequencies of silicon nanowires if finite deformation
kinematics are considered.

It is now appropriate to discuss the two parameters o
and B. As shown in previous works using the SCB model
for silicon [9, 26], silicon nanowires tend to expand and
develop a tensile strain at equilibrium due to the effects of
surface stresses. Because both the SCB model and the BCB
model, which is used for the nanowire bulk, are nonlinear,
finite deformation constitutive models, any deformation that
is caused by the surface stresses changes the stiffness of both
the SCB and BCB models, which then results in a change in
resonant frequency due to the change in stiffness.

Therefore, to eliminate any differences in nanowire
resonant frequency that might arise between the modified SCB
model in (3)—(5) and the non-modified SCB model [9, 26] due
to differences in bulk stiffness, we picked o and g for each
nanowire geometry such that the tensile strain that is caused by
the surface stresses through the modified SCB model in (3)—
(5) matches that of the non-modified SCB model [9, 26]. To
accomplish this, we chose @ = 0.7, and solved for 8, where
B varied between 0.84 and 0.93 depending on the nanowire
geometry; the value for o could not be increased due to
numerical instabilities, which indicates that we were not able
to remove the entire contribution of the strain-independent
surface stress. Furthermore, because the modified SCB surface
stress in (4) and the non-modified SCB surface stress are
equivalent at equilibrium, we can ascribe any changes in
resonant frequency between the two SCB models mainly to
differences in the modified SCB surface stiffness in (5) as
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Figure 1. Nanowire geometry considered for numerical examples.

Table 1. Summary of nanowire geometries considered: constant
length and constant aspect ratio (CAR). All dimensions are in nm.

Constant length ~ Constant aspect ratio

240 x 12 x 12 96 x 12 x 12
240 x 18 x 18 144 x 18 x 18
240 x 24 x 24 192 x 24 x 24
240 x 30 x 30 240 x 30 x 30

compared to the non-modified SCB surface stiffness. Because
of this fact, we refer from here on to the modified SCB
model described in (3)—(5) as the ‘stiffness modified” SCB
model [27].

3. Numerical examples

All numerical examples were performed on three-dimensional,
single crystal silicon nanowires of length / that have a square
cross section of width a as illustrated in figure 1. Two
different parametric studies are conducted in this work, which
consider nanowires with constant length and constant aspect
ratio (CAR); the geometries are summarized in table 1.

All wires had a (100) longitudinal orientation with
unreconstructed {100} transverse surfaces, and had either
fixed/free boundary conditions, where the left (—x) surface
of the wire was fixed while the right (4+x) surface of the
wire was free, or fixed/fixed boundary conditions, where
both the left (—x) and right (+x) surfaces of the wire were
fixed. All FE simulations were performed using the stated
boundary conditions without external loading, and utilized
regular meshes of 8-node hexahedral elements.

Both the stiffness modified SCB nanowires and non-
modified SCB nanowires were first relaxed to a minimum
energy configuration to account for deformation induced by
surface stresses; we emphasize that using the parameters o
and B in (3)—(5), both the stiffness modified SCB nanowires
and non-modified SCB nanowires had the same surface-stress—
induced tensile strain at equilibrium. We further emphasize
that previous works [9, 26] have demonstrated the ability of the
SCB model to accurately capture surface-stress—induced strain
and deformation that occurs in silicon nanowires as compared
to benchmark atomistic calculations. Once the minimum
energy configuration for either boundary condition is known,
a standard eigenvalue problem of the form

(K — @*M)u = 0, (6)

where M is the mass matrix and K is the stiffness matrix
of the discretized FE equations, is solved using the FE
stiffness matrix from the equilibrated (deformed) nanowire

H S Park
Fixed/Free Constant Length Nanowires, 1=240 nm
1.05 T T T : -
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Figure 2. Effect of subtracting the strain-dependent surface stress
and stiffness on the resonant frequencies of fixed/free constant length
nanowires.

configuration to find the resonant frequencies f = Va2,
Resonant frequencies were also found using the standard
BCB model (without surface stresses) on the same geometries
for comparison to quantify how surface stresses change the
resonant frequencies as compared to the bulk material for
a given geometry and boundary condition; all calculations
were performed using the Sandia-developed simulation code
Tahoe [36].

4. Numerical results and discussion

We can now present numerical simulations that enable
us to delineate the effects of the strain-independent and
strain-dependent parts of the surface stress on the resonant
frequencies of silicon nanowires if finite deformation
kinematics are considered. @ We compare in this section
resonant frequency results calculated using the non-modified
SCB model (¢« = 0, B = 1) and those calculated using the
stiffness modified SCB model described in equations (3)—(5).
In both cases, the SCB resonant frequencies are normalized by
those obtained using the BCB model, i.e. neglecting surface
stress effects, to quantify how surface stress effects impact
the resonant frequencies of nanowires as compared to the
corresponding bulk material for different geometries and sizes.

We first discuss the results for constant length nanowires
as shown in figures 2 and 3. Because the stiffness modified
SCB results are found by subtracting the strain-dependent part
of the surface stress and stiffness as shown in equations (4)
and (5), the difference between the SCB curve and the SCB
(¢ = 0.7) curves can be interpreted to be the resonant
frequency shift caused by subtracting the strain-dependent
part of the surface stress and stiffness. As discussed earlier,
we were not able to subtract the entire contribution of the
strain-dependent surface stress; therefore, the actual resonant
frequencies due to the strain-independent surface stress alone
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Figure 3. Effect of subtracting the strain-dependent surface stress
and stiffness on the resonant frequencies of fixed/fixed constant
length nanowires.

are likely to be further reduced as compared to the SCB (a =
0.7) curves in figures 2 and 3.

Figures 2 and 3 demonstrate two key facts. First, they
clearly demonstrate that the residual surface stress does, in
contrast to predictions that arise from linear surface elastic
theory [20, 21], impact the resonant frequencies of silicon
nanowires. Second, figures 2 and 3 also demonstrate that
the effect of the residual surface stress on the resonant
frequency is boundary condition dependent. For example, for
the fixed/free constant length nanowires in figure 2, a slight
increase in resonant frequency is observed for the SCB model
for increasing aspect ratio //a, or decreasing cross sectional
size. However, when the strain-dependent surface stress is
subtracted in the stiffness modified SCB model, the resonant
frequency is observed to decrease with increasing aspect ratio
I/a. This result strongly indicates that consideration of the
residual surface stress alone would lead to incorrect predictions
and trends regarding surface stress effects on the resonant
frequencies of nanowires with decreasing size.

In contrast, for the fixed/fixed constant length nanowires
in figure 3, the overall trend that is predicted by considering
the residual surface stress alone through the stiffness modified
SCB model, i.e. that of an increase in resonant frequency with
increasing aspect ratio, matches the SCB solution. However, it
is important to note that the difference between the stiffness
modified SCB resonant frequency and the SCB resonant
frequency is always larger than the difference between the
SCB resonant frequency and the bulk resonant frequency for
all aspect ratios considered. For example, when [/a = 8§,
the difference between the SCB and bulk resonant frequency
is about 1.015%, while the difference between the stiffness
modified SCB and bulk resonant frequency is about 2%. When
l/a = 20, the difference between the SCB and bulk resonant
frequency is about 7%; however, the difference between the
stiffness modified SCB and the bulk resonant frequency is
nearly 14%.

Fixed/Free Constant Aspect Ratio Nanowires, l/a=8
1.05 T :

—v—SCB
—a—SCB: 0=0.7 f

1.04 |
1.03 | 1
1.02 | 1

1.01} Y

fscb/fbulk

0.99 1

0.98 | ]

0.97 J

L L

0.96 *
10 15 20 25 30

Cross Sectional Length (nm)

Figure 4. Effect of subtracting the strain-dependent surface stress
and stiffness on the resonant frequencies of fixed/free constant aspect
ratio nanowires.

We also discuss the recent predictions of resonant
frequency shift due solely to the strain-independent surface
stress by Lachut and Sader [22]. In that work, an expression
was derived for the resonant frequency shift of a fixed/free
beam due to the strain-independent surface stress within
the context of linear elastic beam theory; we simplify that
expression (equation (4) in Lachut and Sader [22]) to account
for the fact that the nanowire cross sections considered in the
present work are square, and arrive at

Aw v(l — v)oy

— =—-0.042——, 7

wo Eh
where Aw is the shift in resonant frequency, v is Poisson’s
ratio, oy is the strain-independent surface stress, E is the
Young’s modulus and / is the nanowire length. Importantly, (7)
indicates that the shift in resonant frequency due to the strain-
independent surface stress should be dependent only on the
nanowire length 4. In looking at both the fixed/free constant
length case in figure 2 and the fixed/fixed constant length
case in figure 3, it is clear that the resonant frequency is
not constant as is predicted by (7). Instead, when only the
strain-independent surface stress is considered by utilizing
the stiffness modified SCB model, the resonant frequencies
are predicted, for both boundary conditions, to decrease with
increasing aspect ratio [ /a.

We now quantify how the residual surface stress impacts
the resonant frequencies of nanowires as a function of size.
To do so, we discuss the results for nanowires with a constant
aspect ratio of [ /a = 8; as shown in table 1, the cross sectional
length a was increased from 12 to 30 nm to investigate the size
effect. The results for the CAR nanowires, for both boundary
conditions, are shown in figures 4 and 5.

In both figures, it is clear that consideration of the residual
surface stress alone would lead again to incorrect predictions
of the nanowire resonant frequencies, with an increase in error
for decreasing nanowire size. For the SCB model for both
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Figure 5. Effect of subtracting the strain-dependent surface stress
and stiffness on the resonant frequencies of fixed/fixed constant
aspect ratio nanowires.

boundary conditions and all nanowire sizes, a small increase
in resonant frequency as compared to the bulk material is
predicted. However, for the stiffness modified SCB model,
there are two key differences. First, the resonant frequencies
predicted by the stiffness modified SCB model are smaller,
and not larger than the bulk resonant frequencies. Second, a
decrease in resonant frequency for the stiffness modified SCB
model is observed for decreasing nanowire size, in contrast
with the full SCB results.

It is clear from figures 4 and 5 that the strain-dependent
surface stress becomes increasingly important with decreasing
nanowire size. This occurs because as the nanowire size
decreases, the surface area to volume ratio increases; this
is critical because subtraction of the strain-dependent surface
stress, as in (4) leads to a corresponding reduction in surface
stiffness, as in (5). As the surface area to volume ratio increases
with decreasing nanowire cross sectional size, subtraction of
the strain-dependent surface stress leads to a corresponding
reduction in surface stiffness, which increasingly reduces
the overall nanowire stiffness with decreasing size. We
note that this effect also was observed in figure 2 for the
fixed/free constant length nanowires; there, an increase in
nanowire aspect ratio //a also corresponds to a decrease in
nanowire cross sectional size. Because of the decrease in size,
subtracting the strain-dependent surface stress as is done for
the stiffness modified SCB model leads to an overall decrease
in nanowire elastic stiffness, thus leading to the observed
reduction in resonant frequencies for the stiffness modified
SCB model with decreasing nanowire size.

5. Conclusions

The key findings of this work are summarized as follows: (1)
We have demonstrated using the recently developed surface
Cauchy-Born model that if nonlinear, finite deformation kine-
matics are considered, then unlike the results obtained using

linear surface elastic theory, the residual (strain-independent)
surface stress does impact the resonant frequencies of silicon
nanowires. (2) Consideration of the residual surface stress
alone leads to significant errors in predictions of the nanowire
resonant frequencies, with the error increasing with decreasing
nanowire size. (3) The surface elastic (strain-dependent) part
of the surface stress has an increasingly large effect on the
nanowire resonant frequencies with decreasing nanowire size;
this is because the surface stiffness, and its difference from
the bulk stiffness, has an increasingly important effect on
the overall elastic stiffness of the nanowire with decreasing
size. (4) The present results strongly indicate that knowledge
of the state of strain is not sufficient to predict the resonant
frequencies, and thus the elastic properties of the nanowires.
This was demonstrated by considering two different SCB
models, the SCB model and the stiffness modified SCB
model, both of which lead to equivalent states of deformation
due to surface stresses, but which generate significantly
different predictions in the nanowire resonant frequencies.
(5) Nonlinear, finite deformation kinematics appear to be
essential in describing surface stress effects on the elastic
properties, and therefore the resonant frequencies of nanowires
due to the ability to capture changes in both bulk and surface
elastic stiffness that arise from deformation induced by surface
stresses.
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