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a b s t r a c t

We utilize the recently developed surface Cauchy–Born model, which extends the

standard Cauchy–Born theory to account for surface stresses due to undercoordinated

surface atoms, to study the coupled influence of boundary conditions and surface

stresses on the resonant properties of h1 0 0i gold nanowires with f1 0 0g surfaces. There

are two major purposes to the present work. First, we quantify, for the first time,

variations in the nanowire resonant frequencies due to surface stresses as compared to

the corresponding bulk material which does not observe surface effects within a finite

deformation framework depending on whether fixed/free or fixed/fixed boundary

conditions are utilized. We find that while the resonant frequencies of fixed/fixed

nanowires are elevated as compared to the corresponding bulk material, the resonant

frequencies of fixed/free nanowires are reduced as a result of compressive strain caused

by the surface stresses. Furthermore, we find that for a diverse range of nanowire

geometries, the variation in resonant frequencies for both boundary conditions due to

surface stresses is a geometric effect that is characterized by the nanowire aspect ratio.

The present results are found to agree well with existing experimental data for both

types of boundary conditions.

The second major goal of this work is to quantify, for the first time, how both the

residual (strain-independent) and surface elastic (strain-dependent) parts of the surface

stress impact the resonant frequencies of metal nanowires within the framework of

nonlinear, finite deformation kinematics. We find that if finite deformation kinematics

are considered, the strain-independent surface stress substantially alters the resonant

frequencies of the nanowires; however, we also find that the strain-dependent surface

stress has a significant effect, one that can be comparable to or even larger than the

effect of the strain-independent surface stress depending on the boundary condition, in

shifting the resonant frequencies of the nanowires as compared to the bulk material.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, nanowires, both metallic and semiconducting, have drawn considerable interest from the
scientific community (Xia et al., 2003; Lieber, 2003). The large interest in nanowires has largely been driven by their
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remarkable physical properties, most of which emerge due to their small size and thus large surface area to volume (SAV)
ratio. These properties range across the scientific disciplines, including unusual or enhanced optical (Canham, 1990; Barnes
et al., 2003), electrical (Wiley et al., 2006; Rubio et al., 1996; Ohnishi et al., 1998), thermal (Li et al., 2003) and mechanical
(Wong et al., 1997; Cuenot et al., 2004; Wu et al., 2005; Jing et al., 2006) properties.

Nanowires are also important as they will serve as the basic building blocks for future nanoelectromechanical systems
(NEMS), which have been proposed for a multitude of cross-disciplinary applications, including chemical and biological
sensing, force and pressure sensing, high frequency resonators, and many others (Cleland and Roukes, 1996; Huang et al.,
2003; Craighead, 2000; Lavrik et al., 2004; Ekinci and Roukes, 2005; Ekinci, 2005). Because many of the proposed
applications for nanowire-based NEMS, such as resonant mass sensing and high frequency oscillators (Craighead, 2000;
Lavrik et al., 2004; Ekinci and Roukes, 2005) rely on the ability to control and tailor the nanowire resonant frequencies with
a high degree of precision, it is critical to be able to predict and control variations in the nanowire resonant frequencies.

The potential of nanowires in future nanotechnologies has led to significant interest in experimental characterization of
the size-dependent elastic properties of nanowires. The experimental techniques utilized have varied from time-resolved
spectroscopy (Petrova et al., 2006) to AFM-induced bending (Wong et al., 1997; Wu et al., 2005; Heidelberg et al., 2006;
Cuenot et al., 2004; Jing et al., 2006; Hoffmann et al., 2006; Chen et al., 2006; Namazu et al., 2000; Sundararajan et al.,
2002) or resonance measurements (Verbridge et al., 2006, 2007; Cleland and Roukes, 1996; Husain et al., 2003; Nam et al.,
2006; Dikin et al., 2003; Yang et al., 2001; Houston et al., 2002; Evoy et al., 2000). In general, resonance measurements to
obtain the nanoscale elastic properties are predominant in the literature due to their relative simplicity as compared to
bending and tensile experiments at the nanoscale due to the reduced amount of nanowire manipulation involved in
resonance-based testing. The experimental results show significant scatter, with some predictions of enhanced elastic
stiffness (Husain et al., 2003; Cuenot et al., 2004; Jing et al., 2006), some predicting reduced elastic stiffness (Petrova et al.,
2006) with decreasing nanostructure size, and some predicting no change with respect to the bulk elastic stiffness
(Wu et al., 2005; Heidelberg et al., 2006).

The difficulty in predicting the resonant properties of nanowires stems from the fact that they are characterized by a
large SAV ratio; because of this, nanowires are subject to surface stresses (Cammarata, 1994; Haiss, 2001), which occur due
to the fact that surface atoms have fewer bonding neighbors than do atoms that lie within the material bulk. Surface
stresses have been predicted to cause many non-bulk phenomena in nanowires, including self-healing behavior and phase
transformations (Diao et al., 2003; Park et al., 2005; Liang et al., 2005b), and non-bulk elastic properties (Zhou and Huang,
2004; Liang et al., 2005a; Dingreville et al., 2005; Cuenot et al., 2004; Jing et al., 2006; Shenoy, 2005).

The knowledge that surface effects are critical to understanding the mechanical behavior and properties of
nanomaterials has motivated the development of enhanced continuum models, as standard continuum mechanics is
length scale independent. Various analytic models have been developed to study the effects of surface stress on the
resonant properties of nanobeams (Lu et al., 2005; Gurtin et al., 1976; Sader, 2001; McFarland et al., 2005), or more
generally to capture the non-bulk mechanical properties of nanostructures (Gurtin and Murdoch, 1975; Miller and Shenoy,
2000; Shenoy, 2005; Sharma et al., 2003; Sun and Zhang, 2003; Dingreville et al., 2005; Wei et al., 2006; Wang et al., 2006;
Tang et al., 2006; Lu et al., 2005; Gurtin et al., 1976; Sader, 2001; Huang et al., 2006; McFarland et al., 2005). Due to
assumptions utilized to make the analyses tractable, the coupled effects of geometry, surface orientation and system size
on the resonant properties of nanowires have not been quantified, nor have surface stress effects arising directly from
atomistic principles been included in the analyses, which are generally in two-dimensions. The analyses also utilize overly
simplistic pair-type atomic interactions to describe the surface physics, which tend to incorrectly predict a compressive
surface stress for metals, whereas the surface stress for metals is almost always tensile. These errors indicate that
quantitative analyses for real materials cannot be made using these approaches.

There are two major goals to the present work. The first is to quantify, for the first time, how surface stresses may be
expected to alter the resonant frequencies for gold nanowires with a h1 0 0i axial orientation and f1 0 0g transverse surfaces
considering both fixed/fixed and fixed/free boundary conditions as compared to the corresponding bulk material that does
not observe nanoscale surface stress effects. These boundary conditions are ubiquitous in the study of NEMS, as most NEMS
employ nanomaterials such as nanowires and nanotubes as the active beam element.

We obtain the resonant frequencies using the recently developed surface Cauchy–Born (SCB) model (Park et al., 2006;
Park and Klein, 2007, 2008; Park, 2008a, b). The uniqueness of the SCB approach as compared to other analytical and
theoretical (Gurtin and Murdoch, 1975; Miller and Shenoy, 2000; Shenoy, 2005; Sharma et al., 2003; Sun and Zhang, 2003;
Dingreville et al., 2005; Wei et al., 2006; Wang et al., 2006; Tang et al., 2006; Lu et al., 2005; Gurtin et al., 1976; Sader, 2001;
Huang et al., 2006; McFarland et al., 2005) surface elastic models is that it enables the solution of three-dimensional
nanomechanical boundary value problems for displacements, stresses and strains in nanomaterials using standard
nonlinear finite element (FE) techniques (Belytschko et al., 2002), with the nonlinear, finite deformation material
constitutive response obtained directly from realistic interatomic potentials such as the embedded atom method (EAM)
(Daw and Baskes, 1984). Furthermore, the usage of a standard FE formulation enables the consideration of arbitrary
geometries and various materials once the SCB model has been developed.

Therefore, the resonant properties of the gold nanowires are determined by solving a standard FE eigenvalue problem
for the resonant frequencies and associated mode shapes, with full accounting for surface stress effects through the FE
stiffness matrix. The present analysis does not account for factors that are known to deleteriously impact the resonant
properties of nanostructures, including clamping losses and thermoelastic damping (Ekinci et al., 2004; Cleland and
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Roukes, 2002; Evoy et al., 1999; Ilic et al., 2004; Yasumura et al., 2000; Carr et al., 1999; Yang et al., 2000). We quantify the
effects of surface stress on the fundamental resonant frequency as well as the higher order resonant frequencies
corresponding to the deformation modes of second bending, twist and stretch for both fixed/free and fixed/fixed boundary
conditions as functions of geometry, size and SAV ratio. We further compare the results to those obtained using the
standard bulk Cauchy–Born (BCB) material, which does not account for surface stress effects, while making contact with
existing experimental data on the resonant frequencies and elastic properties of metal nanowires.

The second major goal of the present work is to, for the first time within the framework of nonlinear, finite deformation
kinematics, determine the effects of both the residual (strain-independent) and surface elastic (strain-dependent) parts of
the surface stress on the resonant frequencies of metal nanowires. Since the work of Gurtin et al. (1976), researchers have
consistently found that, within the confines of linear elastic continuum beam theory, the strain-independent surface stress
has no effect on the resonant frequency of a cantilever beam. However, Huang and Sun (2007) have recently demonstrated
that if nonlinear, finite deformation kinematics are considered, that the residual surface stress does in fact change the
effective elastic properties of the nanostructure. We therefore quantify in this work the effects of the residual and surface
elastic parts of the surface stress on the resonant properties of metal nanowires using a modified version of the SCB model
in which the strain-dependent parts of the surface stress and surface stiffness are subtracted from the original, fully
nonlinear SCB model.

2. SCB model

2.1. Overview

Details regarding the SCB model and its differences from the standard BCB model have been described in previous
publications (Park et al., 2006; Park and Klein, 2007, 2008; Park, 2008a, b). Therefore, we briefly overview the main ideas of
the SCB model here.

The BCB model is a hierarchical multiscale assumption that enables the calculation of continuum stress and moduli
from atomistic principles (Tadmor et al., 1996). Because the BCB model does not consider surface effects, the SCB model
was developed (Park et al., 2006; Park and Klein, 2007, 2008) such that the energy density of a material would include
contributions not only from the bulk, but also the material surfaces thus leading to the incorporation of atomistic-based
surface stress effects into standard continuum stress measures.

Both the BCB and SCB models are finite deformation constitutive models that explicitly represent the stretching
and rotation of bonds undergoing large deformation through continuum mechanics-based kinematic quantities such as
the deformation gradient F, or the stretch tensor C ¼ FTF (Belytschko et al., 2002). Under deformations which can be
represented as homogeneous over the unit cell scale, the approximation exactly reproduces the response of the
corresponding, fully atomistic representation of the crystal. The necessity for the finite deformation kinematics gains
credence through recent work that has indicated that surface stresses can cause nonlinearly elastic compressive strains on
the order of 1% or more in the nanowires (Park and Klein, 2007; Liang et al., 2005a). The finite deformation formulation
utilized for the SCB model also enables the calculation of resonant frequencies of highly deformed nanostructures, which
may be useful due to the large elastic deformations that nanowires can undergo prior to yield and subsequent failure and
due to the numerous sensing applications that are envisioned utilizing nanowires as the sensing component (Ekinci and
Roukes, 2005; Park, 2008a).

A schematic of the SCB decomposition of bulk/non-bulk atoms near a free surface is shown in Fig. 1; note that all atomic
interactions involving bulk and non-bulk atoms are governed entirely by the range of the interatomic potential chosen, as
would be in an atomistic simulation. Mathematically, the relationship between the continuum strain energy density and
the total potential energy of the corresponding, defect-free atomistic system can be written as

Xnatoms

i

UiðrÞ ¼

Z
Obulk

0

FðCÞdOþ
Z
G1

0

gG1
0
ðCÞdGþ

Z
G2

0

gG2
0
ðCÞdGþ

Z
G3

0

gG3
0
ðCÞdGþ

Z
G4

0

gG4
0
ðCÞdG, (1)
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Fig. 1. Illustration of bulk and non-bulk layers of atoms in a h1 0 0i=f1 0 0g FCC crystal interacting by an EAM potential.
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where Ui is the potential energy for atom i, r is the interatomic distance, FðCÞ is the bulk strain energy density, Obulk
0

represents the volume of the body in which all atoms are fully coordinated, gGa
0
ðCÞ is the surface strain energy density of a

representative atom in surface layer a and natoms is the total number of atoms in the system.
The bulk strain energy density FðCÞ in this work is obtained using EAM potentials (Daw and Baskes, 1984; Foiles et al.,

1986), and takes the form

FðCÞ ¼
1

O0
ðFiðr̄iÞ þ fiÞ, (2)

fi ¼
1

2

Xnbrvi

jai

fijðrijðCÞÞ, (3)

r̄i ¼
Xnbrvi

jai

rjðrijðCÞÞ, (4)

where nbrvi are the number of bonds in the representative unit volume O0 for atom i, Fi is the embedding function, rj is the
contribution to the electron density at atom i from atom j, fij is a pair interaction function and rij is the distance between
atoms i and j.

Analogous to the bulk energy density, the surface energy densities gðCÞ describe the energy per representative
undeformed area of atoms at or near the surface of a homogeneously deforming crystal, and is also obtained using the same
EAM potential as the bulk energy density. For FCC metals, choosing a surface unit cell that contains only one atom is
sufficient to reproduce the structure of each surface layer. The surface unit cell possesses translational symmetry only in
the plane of the surface, unlike the bulk unit cell which possesses translational symmetry in all directions. Thus, the surface
energy density gGa

0
ðCÞ for a representative atom in a given surface layer Ga

0 in Fig. 1 can be written as

gGa
0
ðCÞ ¼

1

G0
ðFiðr̄iÞ þ fiÞ, (5)

fi ¼
1

2

Xnba

jai

fijðrijðCÞÞ, (6)

r̄i ¼
Xnba

jai

rjðrijðCÞÞ, (7)

where nba are the number of bonds for an atom in surface layer a, and G0 is the representative unit area occupied by
a non-bulk atom lying at or near the free surface.

Once the bulk strain energy density is known, continuum stress measures such as the second Piola–Kirchoff stress S can
be defined as

S ¼ 2
qFðCÞ
qC

, (8)

while the material tangent modulus C is defined to be

C ¼ 2
qS

qC
. (9)

Similarly, the surface stress on each surface layer Ga
0 in Fig. 1 can be defined as

~S
ðaÞ
ðCÞ ¼ 2

qgGa
0
ðCÞ

qC
, (10)

while the surface tangent modulus ~C can be written as

~C ¼ 2
q~S
qC

. (11)

The SCB model thus uses the surface unit cells based on the surface energies gðCÞ to capture the undercoordination of atoms
in the surface layers. Because the surface unit cells are undercoordinated, they are not at a minimum energy at the same
atomistic spacing as bulk atoms, which results in the existence of surface stresses in Eq. (10) through differentiation of the
surface energies gðCÞ. It is critical to emphasize again that both the surface stress in Eq. (10) and the surface tangent modulus
in Eq. (11) are quantities based upon finite deformation kinematics that are functions of strain through the stretch tensor C .

We also discuss here differences between the current formulation for surface stress and surface energy, and the
traditional thermodynamic definition of surface stress (see for example Cammarata, 1994; Shenoy, 2005):

t ¼ t0 þ C0e, (12)
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where t is the surface stress, t0 is the residual (strain-independent) portion of the surface stress, C0e is the surface-elastic
(strain-dependent) part of the surface stress, and where C0 is the (constant) surface elastic stiffness. We will return to this
definition of surface stress later when investigating the effects of the strain-independent part of the surface stress on the
nanowire resonant frequencies.

The thermodynamic interpretation of both the surface stress t in Eq. (12) and that of the surface energy gGa
0
ðCÞ in Eq. (5)

is that of an excess quantity, i.e. a measure of the difference as compared to the equivalent bulk quantity. The surface
energy gGa

0
ðCÞ in Eq. (5) differs from the conventional definition in that it does not represent the excess, or difference in

surface energy as compared to a typical bulk atom; instead, it represents the actual potential energy of an atom lying in
surface layer a.

Furthermore, the definition of surface stress utilized in the present work in Eq. (10) differs from Eq. (12) in that the
surface energy is directly differentiated in the present work to obtain the surface stress in Eq. (10). This choice can be
understood by analyzing the energy balance in Eq. (1). Because Eq. (1) represents the total energy of the nanostructure as
decomposed into bulk and surface contributions, minimization of the energy leads directly to a force balance (Park et al.,
2006; Huang and Wang, 2006), which carries the clear physical meaning that at equilibrium, the bulk forces will balance
the surface forces that originate from the surface stress. Furthermore, starting from the energy balance in Eq. (1) is
extremely favorable for nonlinear FE implementation; the full details of the FE equations are found in Park et al. (2006). We
note in closing that an extensive analysis of the SCB model in calculating the minimum energy configurations of gold
nanowires as compared to benchmark atomistic calculations can be found in Park and Klein (2007).

2.2. FE eigenvalue problem for nanowire resonant frequencies

The equation describing the eigenvalue problem for continuum elastodynamics is written as

ðK�o2MÞu ¼ 0, (13)

where M is the mass matrix and K is the stiffness matrix of the discretized FE equations; the solution of the eigenvalue
problem described in Eq. (13) gives the resonant frequencies f, where f ¼ o=2p and the corresponding mode shapes u. We
note that the stiffness matrix K contains the effects of both material and geometric nonlinearities through a consistent
linearization about the finitely deformed configuration (Belytschko et al., 2002).

As detailed in Park and Klein (2007), once the total energy is obtained by subtracting from Eq. (1) the work due to
external loads, the FE equilibrium equations can be obtained by approximating the displacement field using standard FE
interpolation functions (Belytschko et al., 2002) and taking the first variation of the total energy.

We emphasize that the addition of the surface energy terms in Eq. (1) leads naturally to the incorporation of the surface
stresses in the FE stiffness matrix K, which then leads to the dependence of the resonant frequencies f on the surface
stresses. The eigenvalue problem was solved using the Sandia-developed package Trilinos, which was incorporated into the
simulation code Tahoe.

3. Numerical examples

All numerical examples were performed on three-dimensional, single crystal gold nanowires that have a cross-section
of width a and length h as illustrated in Fig. 2. Three different parametric studies are conducted in this work, which
consider nanowires with constant cross-sectional area (CSA), constant length and constant SAV; the geometries are
summarized in Table 1.

All wires had a h1 0 0i longitudinal orientation with f1 0 0g transverse surfaces, and had either fixed/free (cantilevered)
boundary conditions, where the left ð�xÞ surface of the wire was fixed while the right ðþxÞ surface of the wire was free, or
fixed/fixed boundary conditions, where both the left ð�xÞ and right ðþxÞ surfaces of the wire were fixed. All FE simulations
were performed using the stated boundary conditions without external loading, and utilized regular meshes of 8-node
hexahedral elements. The SCB bulk and surface energy densities in Eqs. (2) and (5) were calculated using EAM interatomic
potentials, with gold being the material for all problems using the parameters of Foiles et al. (1986). In the present work,
the bulk FE stresses were calculated using Eq. (8) and the surface FE stresses were found using Eq. (10).

We note also that the nanowire cross-sections considered in this work are sufficiently large such that the nanowire
surfaces do not reconstruct or reorient to a lower energy orientation; it is well-established (Kondo et al., 1999; Hasmy and
Medina, 2002) that gold f1 0 0g surfaces will reorient to lower energy f1 1 1g surfaces only if the thin film or nanowire
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Fig. 2. Nanowire geometry considered for numerical examples.
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thickness is less than about 2 nm. Thus, the f1 0 0g nanowire surfaces in this work undergo only nonlinear elastic
deformations.

Regardless of boundary condition, the nanowires are initially out of equilibrium due to the presence of the surface
stresses. For fixed/free nanowires, the free end undergoes a compressive relaxation strain to find an energy minimizing
configuration under the influence of surface stresses; previous work (Park and Klein, 2007) illustrated the accuracy of the
SCB model in predicting energy minimizing configurations of the nanowires due to surface stresses. Fixed/fixed nanowires,
on the other hand, are constrained such that the nanowire free surfaces are unable to contract due to the boundary
conditions. Therefore, fixed/fixed nanowires exist in a state of tension, as they are unable to contract despite the presence of
the surface stresses. For both boundary conditions, the minimum energy configuration was obtained while accounting for
the surface stresses.

The fixed/fixed boundary conditions utilized in this work represent nanowires that are fabricated through a top-down
process of etching or lifting-off of a metal film on a semiconducting substrate (Davis and Boisen, 2005; Li et al., 2003, 2007)
as is commonly done in experimental studies of NEMS-based nanowire resonance. Experimentally, the residual tension in
the fixed/fixed nanowires would occur due to surface stress effects on the nanowires that are etched in a fixed
configuration, and are therefore unable to contract axially to relieve the tensile surface stresses.

At that point, the eigenvalue problem described in Eq. (13) is solved using the FE stiffness matrix from the equilibrated
(deformed) nanowire configuration to find the resonant frequencies. Resonant frequencies were also found using the
standard BCB model (without surface stresses) on the same geometries for comparison. For all resonant frequencies
reported in this work, the fundamental, or lowest mode frequencies corresponded to a standard bending mode of
deformation.

For each nanowire geometry, we plot the resonant frequencies in two ways. First, we plot the normalized resonant
frequency f scb=f bcb versus the aspect ratio h=a. Second, we plot the normalized resonant frequency f scb=f bcb versus the SAV
ratio to quantify the resonant frequency variation that the surface stresses cause. Finally, we compare the results for the
fixed/free nanowires to those of the fixed/fixed nanowires to ascertain the effects of boundary conditions and surface
stresses on the predicted resonant frequencies.

3.1. Constant CSA

For the first set of simulations, nanowires with constant square cross-section of width a ¼ 16 nm and increasing length
h were considered; the lengths h considered ranged between four and 24 times a, resulting in FE meshes that contained
between 5000 and 29 000 nodes.

To validate the accuracy of the calculations for the bulk material, we compare in Tables 2 and 3 the BCB and SCB
resonant frequencies to those obtained using the well-known analytic solution for the fundamental resonant frequency for
both fixed/free (cantilevered) and fixed/fixed beams (Weaver et al., 1990). For the fixed/free beam:

f 0 ¼
B2

0

2ph2

ffiffiffiffiffiffiffi
EI

rA

s
, (14)

where B0 ¼ 1:875 for the fundamental resonant mode and E is the modulus in the h1 0 0i direction, which can be found to
be 35 GPa (Foiles et al., 1986). The BCB resonant frequencies compare quite well to those predicted by the analytic formula,
with increasing accuracy for increasing aspect ratio h=a, as would be expected from beam theory. We note that the SCB
resonant frequencies become smaller than the bulk resonant frequencies when the aspect ratio h=a48; reasons for this
trend, which will be observed in all parametric studies, will be discussed later.

For the fixed/fixed beam, the analytic solution is given as (Weaver et al., 1990)

f 0 ¼
i2p
2h2

ffiffiffiffiffiffiffi
EI

rA

s
, (15)

where i is a mode shape factor, which is about 1.5 for the fundamental bending mode of fixed/fixed beams with zero
displacement and zero slope boundary conditions (Verbridge et al., 2006; Weaver et al., 1990). Table 3 shows that the bulk
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Table 1
Summary of geometries considered: constant surface area to volume ratio (SAV), constant length, and constant cross-sectional area (CSA)

Constant SAV Constant length Constant CSA

64� 16� 16 232� 9:7� 9:7 64� 16� 16

110� 15:2� 15:2 232� 11:6� 11:6 128� 16� 16

170� 14:9� 14:9 232� 15:95� 15:95 256� 16� 16

230� 14:7� 14:7 232� 23:2� 23:2 384� 16� 16

290� 14:5� 14:5

All dimensions are in nm.

H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) 3144–3166 3149
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CB and analytic frequencies agree nicely, while the SCB resonant frequencies are consistently higher; the reasons for this
will be discussed in detail below.

Fig. 3 shows the resonant frequencies for both the fixed/fixed and fixed/free cases plotted as a function of the aspect
ratio h=a. As can be seen, the calculated resonant frequencies vary greatly depending on the boundary condition. For small
aspect ratios, both boundary conditions give resonant frequencies close to the bulk value. However, as the aspect ratio h=a

increases, the fixed/free resonant frequencies decrease relative to the bulk value, while the fixed/fixed resonant frequencies
increase relative to the bulk value. For the fixed/free case calculated in this work, the resonant frequency is reduced to
nearly 90% of the bulk value when the aspect ratio reaches h=a ¼ 24, while the resonant frequency for fixed/fixed
nanowires increase to more than 140% of the bulk value when h=a ¼ 24.

The results can also be analyzed with respect to the SAV ratio, as seen in Fig. 4. We note that in this case, increasing the
length while keeping the CSA constant leads to a decrease in SAV ratio. Again, the boundary conditions impact the trends
with SAV ratio; while the fixed/fixed nanowires show a decrease in resonant frequency with increasing SAV ratio, the
opposite is observed for the fixed/free nanowires.

ARTICLE IN PRESS

Table 3
Summary of constant CSA nanowire fundamental resonant frequencies for fixed/fixed boundary conditions as computed from: (1) the analytic solution

given by Eq. (15), (2) bulk Cauchy–Born (BCB), and (3) surface Cauchy–Born (SCB)

Geometry Eq. (15) BCB SCB

64� 16� 16 5370 5450 5730

128� 16� 16 1340 1430 1560

256� 16� 16 336 358 440

384� 16� 16 153 159 226

All frequencies are in MHz, the nanowire geometry is in nm.

0 5 10 15 20 25
0.9

1

1.1

1.2

1.3

1.4

1.5

h/a

f s
cb

/f b
ul

k

Constant CSA Nanowires, a = 16 nm

Fixed/free
Fixed/fixed

Fig. 3. Variation in fundamental resonant frequency for fixed/free and fixed/fixed constant cross-sectional area nanowires as a function of nanowire

aspect ratio h=a.

Table 2
Summary of constant CSA nanowire fundamental resonant frequencies for fixed/free boundary conditions as computed from: (1) the analytic solution

given by Eq. (14), (2) bulk Cauchy–Born (BCB), and (3) surface Cauchy–Born (SCB)

Geometry Eq. (14) BCB SCB

64� 16� 16 873 917 922

128� 16� 16 218 226 225

256� 16� 16 55 56 54

384� 16� 16 24 25 23

All frequencies are in MHz, the nanowire dimensions are in nm.

H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) 3144–31663150
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3.2. Constant length

Simulations were also performed keeping the length of the nanowire fixed at h ¼ 232 nm, while increasing the CSA.
Aspect ratios of h=a ¼ 10–24 were studied to quantify the variation in resonant frequencies for the two boundary
conditions; the resulting FE meshes ranged in size from about 16 000 to 46 000 nodes.

The normalized resonant frequencies are plotted versus aspect ratio h=a in Fig. 5. Again, the fixed/fixed nanowires show
a marked increase in resonant frequency with increasing h=a, while the fixed/free nanowires show a marked decrease in
resonant frequency with h=a. For the smallest nanowires considered in this work, with a transverse dimension of 9.7 nm,
the fixed/free resonant frequency is only 90% of the bulk value, while the fixed/fixed resonant frequency is more than 160%
of the bulk value. In all cases, the fixed/free resonant frequencies are below the bulk value.

An interesting result is obtained when the resonant frequencies for the constant length geometry are plotted against
SAV ratio in Fig. 6. Unlike the constant CSA resonant frequencies shown in Fig. 4, the fixed/free resonant frequencies
decrease with increasing SAV ratio, while the fixed/fixed resonant frequencies increase with increasing SAV ratio.

3.3. Constant SAV ratio

To draw general conclusions about the impact of SAV ratio on the nanowire resonant frequencies, we calculate the
resonant frequencies of nanowires that have the same SAV ratio ð0:28 nm�1Þ, but different square cross-sections of length a

and longitudinal length h; a ranged from 14.5 to 16 nm, while h ranged from 64 to 290 nm, leading to FE mesh sizes ranging
from about 5000 to 25 000 nodes.

The results for the constant SAV ratio nanowires are shown in Fig. 7; in this case, because the SAV ratio is constant, we
plot the resonant frequencies for both boundary conditions only with respect to the aspect ratio h=a.

Fig. 7 clearly shows that the resonant frequency does not remain constant if the SAV ratio remains constant, for either
fixed/free or fixed/fixed boundary conditions. In fact, the results strongly mirror those presented earlier in Fig. 3 for the
constant CSA nanowires, and thus indicate that the nanowire aspect ratio h=a is a much more reliable tool to controlling,
predicting and tailoring the resonant frequencies of nanowires than is the SAV ratio. This fact will be discussed later in
this work.

3.4. Higher order modes

In addition to analyzing boundary condition and surface stress effects on the fundamental resonant frequencies of gold
nanowires, we also now analyze their effects on the higher order resonant frequencies corresponding to the modes of
second bending, twist and stretch.

We first plot the higher order mode resonant frequencies normalized by the corresponding bulk values of each mode for
the two boundary conditions and for the constant CSA nanowires. The fixed/fixed higher order modes are plotted in Fig. 8,
while the fixed/free higher order modes are plotted in Fig. 9. In both cases, the largest variation occurs in the second
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bending mode resonant frequency, which increases with h=a for the fixed/fixed case similar to the fundamental mode
resonant frequency, and decreases with h=a for the fixed/free case, again similar to the fundamental mode resonant
frequency. In contrast, the twist and stretch frequencies show little variation with increasing aspect ratio h=a.

We also plot in Figs. 10 and 11 the variation in the higher mode resonant frequencies by normalizing each mode
resonant frequency for both the BCB and SCB calculations by the first (fundamental) bending mode resonant frequency
ðf scb

stretch=f scb
bend1; f

bulk
stretch=f bulk

bend1; etc.Þ, to quantify how surface stresses cause the higher mode (second bending, stretch, twist)
resonant frequencies to either increase or decrease relative to the fundamental bending resonant frequency.

Figs. 10 and 11 illustrate two points: first, how the higher mode (second bending, twist, stretch) resonant frequencies
change with respect to the fundamental resonant frequency with increasing h=a, and second, how surface stresses alter the
changes as compared to the BCB material. These figures again illustrate the effects of boundary conditions and surface
stresses on the resonant frequencies. For example, in the fixed/fixed case in Fig. 10, all higher mode resonant frequencies
decrease due to the surface stresses, with the effects being particularly dramatic for the stretch and twist modes; the
f stretch=f bend1 ratio including surface stresses is only 71% of the equivalent bulk ratio when h=a ¼ 24, while the twist
differential is nearly identical. Similarly, the f bend2=f bend1 ratio including surface stresses is about 87% of the bulk ratio when
h=a ¼ 24.
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The trends for the fixed/free nanowires are completely different, as shown in Fig. 11. There, all higher mode resonant
frequencies increase due to the surface stresses relative to the fundamental resonant frequency. The f stretch=f bend1 ratio
including surface stresses is 108% of the equivalent bulk ratio when h=a ¼ 24, while f twist=f bend1 is 116% of the equivalent
bulk ratio. Similarly, the f bend2=f bend1 ratio including surface stresses is about 109% of the bulk ratio when h=a ¼ 24.

4. Discussion, analysis and comparison to existing theoretical and experimental studies

4.1. Fixed/fixed nanowires

We now turn our attention to the fact that the resonant frequencies of fixed/fixed nanowires due to surface stresses as
predicted using the SCB model are consistently larger than the resonant frequencies of the corresponding bulk material.
Experimental measurements of the elastic properties of metal nanowires have generally focused upon using the atomic
force microscope (AFM) to calculate the elastic properties through bending related techniques (Wu et al., 2005; Heidelberg
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et al., 2006; Jing et al., 2006). Alternatively, some researchers have utilized resonance-based measurements to extract the
elastic properties. One such study was performed by Cuenot et al. (2004), who utilized electrostatic resonant-contact AFM
to determine Young’s modulus of silver and lead nanowires by first calculating the resonant frequencies. The nanowires
analyzed in that work had fixed/fixed boundary conditions, while the diameters ranged from about 50 to 200 nm. The
major finding of the Cuenot et al. work is that the nanowire Young’s modulus (and therefore the resonant frequency)
increases with respect to the bulk value with a reduction in CSA. Similar results were obtained by Jing et al. (2006), who
utilized an AFM to perform three-point bend tests to extract the elastic properties of fixed/fixed silver nanowires. For
nanowires with diameters ranging from 20 to 140 nm, similar results to those of Cuenot et al. were obtained, i.e. an
increasing modulus with decreasing size.

Due to the existence of an analytic solution that was derived by Cuenot et al. (2004) to model the observed increase in
nanowire Young’s modulus with decreasing size for the fixed/fixed boundary conditions, we compare results obtained in
the present work with their analytic solution. From the work of Cuenot et al. (2004), the analytic solution is

Escb ¼ Ebulk þ
8

5
ð1� nÞg h2

D3
, (16)
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where h is the nanowire length, Escb is the apparent Young’s modulus taking surface effects into account, Ebulk is the bulk
Young’s modulus, D is the nanowire diameter, g is the surface energy and n is Poisson’s ratio. We note that Eq. (16) implies
that the modulus of the nanowires will change both as functions of the length, cross-sectional diameter, and therefore the
aspect ratio. Here, the relaxed f1 0 0g surface energy g ¼ 0:914 J=m2 for the Foiles et al. (1986) potential was utilized, while
the bulk Poisson’s ratio of 0.44 for gold was utilized. We also note that in the Cuenot et al. (2004) work, the analytic relation
in Eq. (16) was not actually utilized to compare against the experimentally obtained results.

Fig. 12 thus shows the Escb=Ebulk ratio for the present work, which is obtained by substituting the numerically obtained
resonant frequencies for both the SCB and BCB cases into Eq. (15) to solve for the SCB and BCB Young’s moduli. We utilize
the standard continuum beam theory equation in Eq. (15) to solve for the SCB Young’s modulus due to the fact that the
analytic solution given in Eq. (16) is also based upon continuum beam theory.

As can be seen, the modulus ratio obtained through the present work agrees well with the analytic solution of Cuenot
et al. (2004) for the aspect ratios considered in this work, and illustrates that the expected length dependence of the
nanowire Young’s modulus is captured in the present work. The present results are not expected to agree exactly with the
analytic solution in Eq. (16) for multiple reasons; the major reasons include the fact that metal nanowires typically form
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oxide layers on the surface (Jing et al., 2006; Cuenot et al., 2004), and also because the SCB resonant frequencies were
calculated using finite deformation kinematics, where the stiffness of the nanowire changes due to deformation induced by
surface stresses. In contrast, the Cuenot et al. (2004) beam theory solution is based upon linear elasticity, and therefore
constant material properties for both the bulk and surface components.

Despite these uncertainties, the general trend in Fig. 12 of increasing nanowire Young’s modulus with increasing aspect
ratio for fixed/fixed boundary conditions is correctly predicted using the SCB model. More importantly, Cuenot et al. (2004)
experimentally observed an increase in apparent Young’s modulus with decreasing size for fixed/fixed silver nanowires;
the same trend is predicted in the present work for gold, and is explained naturally by understanding that the fixed/fixed
nanowires exist in a state of tensile stress due to the fixed/fixed boundary conditions, which prevent surface stresses from
contracting the nanowires.

We also compare our results with those obtained from Husain et al. (2003); we make this comparison due to the fact
that they also studied the resonant properties of a fixed/fixed FCC nanowire, in this case platinum. To compare with
their larger nanowires (cross-section of 43 nm, length of 1300 nm), we created gold nanowires of the same dimensions,
and calculated the resonant frequency using the SCB model. The Husain et al. (2003) work found a resonant frequency
for their fixed/fixed platinum nanowire of about 105 MHz, which exceeds the predicted value of 69 MHz as calculated using
Eq. (15), with the experimentally measured resonant frequency being 1.5 times larger than the predicted resonant
frequency.

For gold, the predicted resonant frequency using Eq. (15) should be about 35 MHz; the SCB calculations predicted a
resonant frequency of 47.5 MHz, thus leading to the SCB results being about 1.4 times larger than that expected using
Eq. (15). In the Husain et al. (2003) work, thermal effects due to mismatch between the nanowire and the substrate were
cited as being a likely cause for placing their platinum nanowire under tension. The present results indicate that surface
stress effects are likely to have played a role in elevating the experimentally observed resonant frequencies above those
predicted using bulk continuum measures.

We also discuss the experiments of Verbridge et al. (2006), who studied the effect of applied tensile stress on the
resonant frequencies of fixed/fixed SiN nanowires. This study is of relevance as it is one of the few to study the effects of
tensile stresses on the resonant frequencies of nanowires, and thus is analogous to our situation where surface stresses
cause a tensile stress within the gold nanowires.

A key finding of that work was the fact that the resonant frequency was found to vary linearly with the inverse of length;
as shown in Verbridge et al. (2006), the resonant frequency of a beam under high tensile stress can be written as

f ¼
i

2h

ffiffiffiffiffiffiffi
S

rA

s
, (17)

where S is the force in the beam. Interestingly, as can be seen in Fig. 13, both the SCB and BCB resonant frequencies scale
linearly with 1=h2, instead of 1=h. The bulk dependence on 1=h2 is not surprising considering the 1=h2 dependence of the
analytic solution given in Eq. (15).

However, the same dependence of the SCB resonant frequencies is interesting, and implies that the surface stresses, and
the nonlinear elastic deformation they cause in the nanowire, may be responsible for the variation from the behavior
observed experimentally in the larger (100 nm) SiN nanowires. We also note that the different surface stresses of metallic
(generally tensile Wan et al., 1999) and semiconductor (sometimes compressive Balamane et al., 1992) surfaces may also
help to explain the observed differences. Finally, for the nanowires considered in that work, it is likely that the 100 nm
cross-section is too large for surface stresses to have a significant effect on the mechanical properties, and thus the
measured resonant frequencies.

4.2. Fixed/free nanowires

The large disparity in the calculated resonant frequencies between the fixed/free and fixed/fixed cases indicates that
the nanowire stiffness and state of stress is strongly dependent on the boundary conditions. As previously discussed, the
fixed/fixed boundary conditions prevent the nanowires from relaxing axially, as would occur due to surface stresses if one
of the ends were free (Diao et al., 2003; Park et al., 2005; Liang et al., 2005b). Thus, the fixed/fixed nanowires exist in a state
of tension, which elevates their resonant frequencies as compared to the unstrained fixed/fixed bulk material.

However, when fixed/free boundary conditions are utilized, the free end of the nanowire is able to contract axially in
response to the tensile surface stresses, thereby reducing their transverse surface area and finding a minimum energy
configuration. The prediction of the fixed/free resonant frequencies is therefore dependent on obtaining the correct
stiffness of the nanowires after the surface-stress-driven relaxation has occurred; previous work (Park and Klein, 2007)
indicated the ability of the SCB model to predict the correct relaxation strain due to surface stresses.

Fig. 14 illustrates one of the key findings of this work. In Fig. 14, we plot the variation in the fixed/free nanowire resonant
frequencies due to surface stresses for all three geometries considered in this work (constant CSA, constant length, constant
SAV ratio) versus the nanowire aspect ratio h=a. As can be seen, for the diverse geometries we have considered, the
variations in resonant frequency due to surface stresses are quite similar as a function of h=a, indicating that the resonant
frequency variation is purely geometric in nature.
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Recent atomistic simulations (Liang et al., 2005a; Diao et al., 2006) have indicated that the nanowire elastic properties
are strongly dependent upon the amount of compressive surface-stress-driven relaxation strain that the nanowires
undergo. We therefore plot in Fig. 15 the variation in nanowire resonant frequencies for the three different geometry
types as a function of the percent compressive relaxation strain. As can be observed, while the nanowire resonant
frequencies do decrease with increasing relaxation strain, the variation is not the same for the three geometries, which
indicates that knowledge of the state of strain is not sufficient to predict the resonant frequencies, and therefore the elastic
properties of the fixed/free nanowires. Furthermore, this indicates that the nanowire aspect ratio h=a is the critical
geometric parameter for determining the resonant frequency variations due to surface stresses as compared to the
corresponding bulk material.

The reduction in resonant frequencies for the fixed/free h1 0 0i nanowires considered in this work is due to the fact that
bulk FCC metals tend to soften if compressed in the h1 0 0i direction (Liang et al., 2005a); in the present work, the
compression arises due to the surface stresses, rather than any externally applied forces. Therefore, the resonant
frequencies for other orientations, for example the h1 1 0i orientation in which FCC metals are known to stiffen under
compression (Liang et al., 2005a), may increase rather than decrease for fixed/free boundary conditions as compared to the
bulk material.
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We were able to find in the literature one experimental study of free-standing gold nanowires, that of Petrova et al.
(2006), who used time-resolved spectroscopy to excite the fundamental resonant mode of h1 0 0i gold nanowires with
cross-sectional sizes between 8 and 20 nm. Because the experimentally synthesized wires in that study were free standing,
the implication is that the nanowires were also free to relax due to surface stresses. The major result of the Petrova et al.
(2006) work is that the resonant frequencies, and thus the elastic properties, were lower than the bulk h1 0 0i modulus for
gold, with the postulated reason being due to the elimination of defects in the ultrasmall nanowires.

We note that the SCB calculations in this work, which are also on defect-free nanowires, also predict a decrease in
resonant frequency with decreasing nanowire size. We calculated both the SCB and BCB Young’s moduli using Eq. (14), with
the normalized results for the constant CSA fixed/free nanowires shown in Fig. 16. The present results and the Petrova et al.
(2006) results agree in the range of the modulus values; the Petrova et al. (2006) paper reported Young’s modulus ranging
from about 67% to 93% of the bulk values for nanowire cross-sections ranging from 8 to 18 nm. However, the Petrova work
found that the nanowire Young’s modulus was independent of SAV ratio, which conflicts with the findings in this work
where the nanowire resonant frequencies vary strongly for the same SAV ratio.

In general, we emphasize that the present analysis predicts an increase in resonant frequencies (and thus elastic
stiffness) for the fixed/fixed case, while predicting a decrease in resonant frequencies (and thus elastic stiffness) for the
fixed/free case. Both of these predictions emerge naturally by correctly obtaining the nanowire state of deformation due to
the surface stresses for both fixed/fixed and fixed/free boundary conditions.
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4.3. SAV effects

We also discuss the effects of SAV ratio on the predicted nanowire resonant frequencies. To do so, we refer again to the
experiments of Verbridge et al. (2006). In that work, an additional key finding was made, in that the fixed/fixed high tensile
stress silicon carbide nanostrings were found to have resonant frequencies that did not remain constant for similar SAV
ratios. Similarly, no predictive relationship between the variation in the f scb=f bulk ratio and SAV ratio could be found for the
nanowire geometries considered in this work, which is apparent from studying Figs. 4 and 6, and the constant SAV
nanowires in Fig. 7.

Figs. 4 and 6 show opposing trends in the f scb=f bulk ratio with increasing SAV ratio, while Fig. 7 shows that for a constant
SAV ratio, the f scb=f bulk ratio varies with the aspect ratio h=a. Because the resonant frequencies of nanowires appear to be
independent of SAV ratio for both large sizes where surface stresses may not be important (Verbridge et al., 2006), and for
the current results where surface effects are critical, the implication is that surface stresses are likely to increase the
difference between the resonant frequencies of nanowires with the same SAV ratio as that ratio increases with decreasing
structural size. These results also correlate with earlier work (Park and Klein, 2007) which showed that the minimum
energy configurations of nanowires due to surface stresses are independent of the SAV ratio.

5. Effect of the strain-independent surface stress on the nanowire resonant frequencies

5.1. Motivation and methodology

Traditionally, surface stress has been defined in the mechanics and physics communities as being decomposed into
residual (strain-independent) and surface elastic (strain-dependent) parts (Gurtin et al., 1976; Shenoy, 2005; Lu et al.,
2005; Cammarata, 1994). This decomposition is typically written as

sðeÞ ¼ s0 þ C0e, (18)

C0 ¼
qs
qe

����
e¼0

, (19)

where s0 is the residual (strain-independent) part of the surface stress s, C0e is the surface elastic (strain-dependent) part
of the surface stress, and C0 is the surface elastic constant, or surface stiffness. Note that Eq. (18) is typically written in
terms of the infinitesimal strain e.

Historically, this decomposition has lead to controversy as to which parts of the surface stress actually alter the resonant
frequencies of nanostructures. More than 30 years ago, Gurtin et al. (1976) demonstrated that, within the context of linear
elastic continuum beam theory, the resonant frequency is independent of the strain-independent surface stress t0.
Correspondingly, Lu et al. (2005) recently showed that the resonant frequency of cantilevers is only impacted by the strain-
dependent part of the surface stress. However, in contrast, recent work by Lachut and Sader (2007) has also shown that
previous analytic models of surface stress effects on the resonant frequencies (McFarland et al., 2005) that are based upon
one-dimensional models violate Newton’s third law. Lachut and Sader have further noted that the effects of the strain-
independent part of the surface stress on the resonant frequencies can only be captured by fully three-dimensional models.

Recently, however, Huang and Wang (2006) and Huang and Sun (2007) considered the effects of the strain-independent
surface stress on the elastic properties of nanomaterials within a fully nonlinear, finite deformation context. In doing so,
they have conclusively shown that if nanostructure surface effects are studied using fully nonlinear, finite deformation
kinematics, there exists a residual surface stress that, unlike the linear case, impacts the overall elastic properties of the
nanostructure and which must be accounted for. However, those authors did not consider, within the finite deformation
context, the effects of the residual surface stress on the resonant frequencies.

There are significant complexities involved in attempting to separate, due to the large nanowire deformation resulting
from the surface stress, the effects of the strain-independent and strain-dependent parts of the surface stress on the
resonant frequencies. Due to the nonlinearity, we were not able to exactly separate the strain-independent and strain-
dependent parts of the surface stress, for multiple reasons. One reason for this is because if the surface stress is modified to
include only the strain-independent part, then by definition, the surface stiffness must also be modified (see Eqs. (10) and
(11), or alternatively Eqs. (18) and (19)), as the surface stiffness is the strain derivative of the surface stress. Within the
linearized framework that will be utilized in the upcoming discussion that entails removing the strain-dependent surface
stiffness C0 due to the definition in Eq. (19). Furthermore, even if only a strain-independent surface stress is considered, the
strain-independent surface stress will cause the nanowire to deform elastically, which causes the bulk stress and stiffness
to vary as both are strain-dependent (see Eqs. (8) and (9)). This mechanism of the surface stress causing deformation in the
bulk nanowire and thus causing variations in the bulk stress and stiffness was illustrated in the previous numerical
examples using the SCB model.

Taking into account the difficulties in delineating the effects of the strain-independent and strain-dependent parts of
the surface stress, the approach we take is to modify the surface energy density in Eq. (5) as

gðCÞ ! bðgðCÞ � 1
2aET ~C0EÞ, (20)

ARTICLE IN PRESS

H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) 3144–3166 3159



Author's personal copy

where E ¼ 0:5ðFTF� IÞ is the Green strain tensor, a and b are adjustable parameters, and ~C0 is the undeformed surface
stiffness, i.e. the surface stiffness defined in Eq. (11) evaluated at C ¼ 1. Taking derivatives of the surface energy in Eq. (20)
to get the modified surface stress and surface stiffness, the surface stress that was originally defined in Eq. (10) is
modified as

~SðCÞ ! b~SðCÞ � ba ~C0E, (21)

while the surface stiffness that was originally defined in Eq. (11) is modified as

~CðCÞ ! b ~CðCÞ � ba ~C0. (22)

The fundamental idea behind the modified surface energy in Eq. (20) leading to the modified surface stress in Eq. (21) and
surface stiffness in Eq. (22) is to, in a linearized manner, subtract the contributions from the strain-dependent surface
stress and stiffness via the parameters a and b such that the nanowires, upon relaxation to a minimum energy
configuration due to surface stresses, will have the same relaxation strain as the results obtained previously using the SCB
model, which can be obtained from the above by setting a ¼ 0 and b ¼ 1.

The reason we enforce that the relaxation strain due to surface stresses be the same in the SCB model and the modified
SCB model described by Eqs. (20)–(22) is to eliminate any variations in resonant frequency that arise due to the
deformation, and therefore the change in stiffness that occurs in the underlying bulk CB material. To find the same
relaxation strain using the above modified SCB model as was obtained using the SCB model discussed in earlier sections, we
selected a ¼ 0:5, then solved for b for each geometry to find the same relaxation strain. The choice of a was also
constrained by instabilities in the numerical simulations if the product of a and b exceeded about 0:5; therefore, we chose
a ¼ 0:5 leading to values of b that ranged from 0.84 to 0.93. We note also that this implies that we were not able to remove
the entire contribution of the strain-dependent surface stress. For a ¼ 0:5 and varying b, the surface stiffness in Eq. (22) is
reduced by approximately 55% as compared to the SCB surface stiffness for both constant CSA and constant length
nanowire geometries.

Another reason why we chose a and b such that the modified SCB model in Eqs. (20)–(22) gave the same relaxation
strain for a given geometry as the SCB model arises with respect to the SCB surface stress defined in Eq. (10) and the
modified surface stress defined in Eq. (21). If the relaxation strain is the same, then the surface stress in Eq. (10) and the
modified surface stress in Eq. (21) are equivalent because at the minimum energy configuration at the same relaxed
compressive strain, the forces in the bulk material must balance the forces arising due to the surface stress; because the
deformation of the bulk is the same, then the surface forces due to the surface stresses that the bulk forces are balancing
must also be the same. This can be justified mathematically by differentiating the energy balance in Eq. (1), which leads
directly to the bulk and surface force balance just described.

Therefore, the key result of the previous discussion, which is required to interpret the following numerical examples, is
that if the SCB surface stress as defined in Eq. (10) and the modified surface stress as defined in Eq. (21) are equivalent at
the energy minimum/fully relaxed nanowire configuration, and the bulk deformation is the same, then any difference in
resonant frequency between the SCB model and the modified SCB model in Eqs. (20)–(22) arises solely due to differences in
the surface stiffness resulting from the subtraction of the strain-dependent part of the surface stress in Eq. (21). Because
of this fact, we refer from here on to the modified SCB model described in Eqs. (20)–(22) as the ‘‘stiffness modified’’
SCB model.

5.2. Results and discussion

The comparison between the resonant frequencies calculated earlier using the SCB model (a ¼ 0, b ¼ 1) that was
detailed in Section 2.1 and those calculated using the stiffness modified SCB model described in Section 5.1 are shown in
Fig. 17 for the fixed/free constant CSA nanowires, and in Fig. 18 for the fixed/fixed constant CSA nanowires.

We pause briefly here to elaborate upon what is being plotted in the figures in this section, taking Fig. 17 as an example.
In Fig. 17, we plot both the SCB results obtained using the formulation in Section 2.1, as well as the SCB ða ¼ 0:5Þ results
obtained using the stiffness modified SCB formulation in Section 5.1. Because the stiffness modified SCB results are found
through subtracting the strain-dependent part of the surface stress and stiffness as shown in Eqs. (21) and (22), the
difference between the SCB and SCB ða ¼ 0:5Þ curves represents the resonant frequency shift caused by subtracting the
strain-dependent part of the surface stress and stiffness. As discussed earlier, we were not able to subtract the entire
contribution of the strain-dependent surface stress, which is why we do not refer to the SCB ða ¼ 0:5Þ curve as the resonant
frequency due to the strain-independent surface stress. Therefore, the actual resonant frequencies due to the strain-
independent surface stress alone are likely to be further reduced as compared to the SCB ða ¼ 0:5Þ curve in Fig. 17.

One important similarity is that for both fixed/free and fixed/fixed constant CSA nanowires, it is observed that the
resonant frequencies calculated using the stiffness modified SCB model are further reduced as compared to the bulk CB
resonant frequencies than the SCB resonant frequencies. The lower resonant frequency found using the stiffness modified
SCB model occurs, as previously discussed, due to the subtraction of the strain-dependent surface stress in Eq. (21) which
results in the reduction of the surface stiffness through Eq. (22).

However, when comparing the results of the stiffness modified SCB resonant frequencies and the SCB resonant
frequencies to the bulk value, there are differences that arise depending on the boundary condition. As can be seen for the
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fixed/free constant CSA nanowires in Fig. 17, the difference between the stiffness modified SCB and SCB resonant
frequencies is larger than the difference between the SCB resonant frequencies and the bulk value until aspect ratios larger
than about h=a ¼ 16 are reached. Even when h=a ¼ 24, the difference between the stiffness modified SCB resonant
frequency and the SCB resonant frequency is nearly 4%, which is half of the 8% difference between the SCB resonant
frequency and the bulk value; these results strongly indicate that the strain-dependent part of the surface stress has a
significant contribution in causing variations in the resonant frequencies of fixed/free constant CSA nanowires as compared
to the bulk material.

The opposite trend is observed for the fixed/fixed constant CSA nanowires in Fig. 18; there, the difference between
stiffness modified SCB and SCB resonant frequencies as compared to the bulk value is largest at small aspect ratios. As the
aspect ratio increases, the difference between the stiffness modified SCB and SCB resonant frequencies is reduced (about 4%
when h=a ¼ 24) compared to the difference between the SCB resonant frequency and the bulk value, which exceeds 40%
when h=a ¼ 24.

We also discuss the recent predictions of resonant frequency shift due solely to the strain-independent surface stress by
Lachut and Sader (2007). In that work, the following expression was derived for the resonant frequency shift of a fixed/free
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beam due to the strain-independent surface stress within the context of linear elastic beam theory:

Do
o0
¼ �0:042

nð1� nÞss

Ew

b

h

� �
b

w

� �2

, (23)

where Do is the shift in resonant frequency, n is Poisson’s ratio, ss is the strain-independent surface stress, h is the beam
length and w and b are the cross-sectional dimensions. In the present work, the nanowire cross-section is square, i.e. b ¼ w,
leading to the following simplification of (23):

Do
o0
¼ �0:042

nð1� nÞss

Eh
, (24)

which indicates that the shift in resonant frequency due to the strain-independent surface stress should be dependent only
on the nanowire length h. To test this hypothesis, we also calculated the variation in resonant frequency using the stiffness
modified SCB model for the constant length nanowires, which the Lachut and Sader equation (24) states should be constant
if the nanowire length is constant. We note that the SCB results previously shown in this work (see Figs. 5 and 6) clearly
indicated a distinct resonant frequency shift due to surface stresses for the constant length case.

The results are shown in Figs. 19 and 20 for the fixed/free and fixed/fixed constant length nanowires, respectively. As can
be seen for the fixed/free constant length case in Fig. 19, the change in resonant frequency varies even when the nanowire
length is held constant, which disagrees with the analytic expression of Lachut and Sader in Eq. (24). Fig. 20 demonstrates
that this is also the case for the fixed/fixed constant length nanowires. Furthermore, the change in resonant frequency is
observed to be strongly boundary condition-dependent; fixed/free constant length nanowires show a decrease in resonant
frequency with respect to the bulk value with increasing aspect ratio, while fixed/fixed constant length nanowires show an
increase in resonant frequency with respect to the bulk value with increasing aspect ratio.

We compare again the resonant frequencies calculated using the stiffness modified SCB model and the SCB model to the
bulk value. For the fixed/free constant length nanowires in Fig. 19, the same trend is observed as previously found for the
fixed/free constant CSA nanowires in Fig. 17. For the constant length nanowires, the difference between the stiffness
modified SCB resonant frequency and the SCB resonant frequency is larger than the difference between the SCB resonant
frequency and the bulk value for nearly the entire range of aspect ratios considered. Only when the aspect ratio is large,
i.e. h=a ¼ 24, is the difference between the stiffness modified SCB and SCB resonant frequency (about 7%) smaller than the
difference between the SCB resonant frequency and the bulk value, which is about 9%; this illustrates that the strain-
dependent part of the surface stress is significant in shifting the resonant frequencies of fixed/free constant length
nanowires as compared to the bulk material.

Furthermore, similar to the fixed/fixed constant CSA nanowires, the fixed/fixed constant length nanowires show an
opposite trend, as observed in Fig. 20. There, the difference between stiffness modified SCB and SCB resonant frequencies as
compared to the bulk value is largest at small aspect ratios. As the aspect ratio increases, the difference between the
stiffness modified SCB and SCB resonant frequencies is reduced (about 6% when h=a ¼ 24) compared to the difference
between the SCB resonant frequency and the bulk value, which exceeds 60% when h=a ¼ 24.

The preceding results collectively demonstrate that the strain-dependent surface stress has a significant effect, one that
can be comparable to or even larger than the effect of the strain-independent surface stress depending on the boundary
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condition, in shifting the resonant frequencies of the nanowires as compared to the bulk material. Furthermore, as
discussed earlier, we were not able to remove all effects of the strain-dependent surface stress; removing more of the
strain-dependent surface stress would lead to a greater reduction in surface stiffness, leading to even larger deviations in
resonant frequency as compared to the bulk material for a given boundary condition.

6. Conclusions

In conclusion, we have utilized the recently developed surface Cauchy–Born model (Park et al., 2006; Park and Klein,
2007, 2008; Park, 2008a, b) to quantify, for the first time, boundary condition and surface stress effects on the resonant
properties of fixed/free (cantilevered) and fixed/fixed h1 0 0i gold nanowires with f1 0 0g surfaces. We note that the present
analysis was conducted on ideal, non-defective nanowires and thus did not consider factors that are known to deleteriously
impact the resonant properties of nanostructures, including clamping losses, internal friction, surface losses and oxidation
effects (Ekinci et al., 2004; Cleland and Roukes, 2002; Evoy et al., 1999; Ilic et al., 2004; Yasumura et al., 2000; Carr et al.,
1999; Yang et al., 2000; Cuenot et al., 2004; Jing et al., 2006).

Through a parametric study of various nanowire geometries, we draw the following conclusions about surface stress
and boundary condition effects on the resonant properties of h1 0 0i gold nanowires with f1 0 0g surfaces: (1) The boundary
conditions determine how the nanowires deform in response to the surface stresses. Fixed/free nanowires are able to
contract, thus relieving the tensile surface stresses, and leading to an state of compression in the nanowire core that
reduces the nanowire resonant frequencies as compared to the bulk material. Fixed/fixed nanowires are constrained such
that they cannot deform axially, causing them to exist in a state of tensile stress, and elevating their resonant frequencies as
compared to the bulk material. (2) The reduction in resonant frequencies for the fixed/free boundary condition and increase
in resonant frequencies for the fixed/fixed boundary condition indicate that those nanowires are expected to be elastically
softer, and stiffer, respectively, than the corresponding bulk material, agreeing with recent experimental results for both
free-standing (Petrova et al., 2006), and fixed/fixed nanowires (Cuenot et al., 2004; Jing et al., 2006; Husain et al., 2003).
(3) The variation in nanowire resonant frequencies due to surface stresses for the various geometries was found to be
dependent on a geometric factor, the nanowire aspect ratio h=a. In contrast, no dependence of the resonant frequencies on
the SAV ratio was found, again agreeing with recent experimental data (Verbridge et al., 2006; Petrova et al., 2006). (4) The
variation in resonant frequency for the fixed/free case occurs due to the fact the bulk h1 0 0i material softens under
compression. Because of this, the resonant frequencies of fixed/free nanowires of other orientations that stiffen under
compression, such as h1 1 0i, are expected to increase rather than decrease as compared to the corresponding bulk material.
(5) In analyzing the higher order resonant modes (second bending, stretch, twist), surface stresses cause the largest
variation in the second bending frequencies, while the twist and stretch frequencies show little variation due to surface
stresses. (6) All higher order resonant frequencies decrease with respect to the fundamental bending frequency with
increasing aspect ratio for fixed/fixed nanowires due to surface stresses, while the opposite is true, i.e. the higher order
resonant frequencies increase with respect to the fundamental bending frequency for fixed/free nanowires.

We have also, for the first time, quantified the effects of both the residual (strain-independent) and surface elastic
(strain-dependent) parts of the surface stress on the resonant frequencies of metal nanowires if fully nonlinear, finite
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deformation kinematics are utilized. We find that if finite deformation kinematics are considered, the strain-independent
surface stress substantially alters the resonant frequencies of the nanowires. However, we also find that the
strain-dependent surface stress has a significant effect, one that can be comparable to or even larger than the effect of
the strain-independent surface stress depending on the boundary condition, in shifting the resonant frequencies of the
nanowires as compared to the bulk material. In particular, we found, using the stiffness modified SCB model described in
Section 5.1 that: (1) Fixed/free nanowires, due to their state of compression resulting from the surface stresses, show
resonant frequencies that are considerably reduced as compared to a standard bulk continuum model. Furthermore, it is for
the fixed/free nanowires that the strain-dependent surface stress is found to have the largest effect on the resonant
frequencies, with the effect being comparable to or even larger than the effect of the strain-independent surface stress in
shifting the resonant frequencies of fixed/free nanowires as compared to the bulk material. (2) Fixed/fixed nanowires, due
to the state of tensile stress resulting from the fixed end boundary conditions and the tensile nature of the surface stress,
show resonant frequencies that are considerably elevated as compared to the standard bulk continuum model. It was
determined that the strain-dependent surface stress had a much smaller effect on fixed/fixed nanowires, with the largest
impact made at smaller aspect ratios.

A key point to highlight with regards to the preceding discussion is that because the surface stiffness does contribute to
the observed resonant frequency variation, it cannot be set arbitrarily. This point was gleaned through utilization of the
stiffness modified SCB model in Section 5.1 to obtain the same compressive relaxation due to surface stresses as the SCB
model. Despite the equivalence in the state of deformation, which was imposed so as to eliminate any effects on the
resonant frequency that could occur due to variations in the bulk stiffness arising from different states of deformation, the
resonant frequency predictions were significantly different, which indicates that knowledge of the amount of strain in
the nanowire after deformation due to surface stresses is not sufficient to predict the resulting resonant frequencies. This
point is also illustrated in Figs. 14 and 15, which show the variation in resonant frequency for the fixed/free nanowires
using the SCB model depended on the nanowire aspect ratio, and not the amount of compressive relaxation strain the
nanowire free end undergoes due to surface stresses. The SCB model developed in the present work thus has the distinct
advantage that the surface stiffness is derived directly from the underlying lattice structure and interatomic potential,
which is preferable to phenomenological approaches to deriving a surface elastic constitutive model.

We close by discussing the implications of the present work with regards to the standard linear elastic beam theories
that are often utilized to interpret the elastic properties of nanowires. The results we have obtained have shown in all cases
that the elastic properties of nanowires, when surface stress effects are fully accounted for using nonlinear, finite
deformation kinematics, show substantial deviations from those predicted by linear elastic continuum beam theory. This
fact is evident in the resonant frequencies predicted using the SCB model for both fixed/free and fixed/fixed boundary
conditions, and were further evident in comparing results obtained in the present work to those for the resonant
frequencies of (linear elastic) beams when both the strain-independent and strain-dependent parts of the surface stress
were considered. Considering the large, nonlinear deformations that metal nanowires are known to undergo due to surface
stresses in which the nanowire compressive strain can easily exceed 0.5% (Diao et al., 2003; Park et al., 2005; Park and
Klein, 2007), it is clear that nonlinear, finite deformation kinematics should be utilized in describing the deformation, and
thus the elastic properties of nanowires, when surface stress effects are significant.

Acknowledgments

H.S.P. gratefully acknowledges NSF Grant no. CMMI-0750395 in support of this research. Both authors gratefully
acknowledge the assistance of Heidi Thorn, Michael Heroux, Roscoe Bartlett and the Sandia Trilinos team in support of this
research. H.S.P. also acknowledges helpful discussions with Prof. Y.-C. Chen on the resonant frequency calculations. Both
authors acknowledge the reviewers for their insightful comments.

References

Balamane, H., Halicioglu, T., Tiller, W.A., 1992. Comparative study of silicon empirical interatomic potentials. Phys. Rev. B 46 (4), 2250–2279.
Barnes, W.L., Dereux, A., Ebbeson, T.W., 2003. Surface plasmon subwavelength optics. Nature 424, 824–830.
Belytschko, T., Liu, W.K., Moran, B., 2002. Nonlinear Finite Elements for Continua and Structures. Wiley, New York.
Cammarata, R.C., 1994. Surface and interface stress effects in thin films. Progr. Surf. Sci. 46 (1), 1–38.
Canham, L.T., 1990. Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57 (10), 1046–1048.
Carr, D.W., Evoy, S., Sekaric, L., Craighead, H.G., Parpia, J.M., 1999. Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl.

Phys. Lett. 75 (7), 920–922.
Chen, Y., Dorgan, B.L., McIlroy, D.N., Aston, D.E., 2006. On the importance of boundary conditions on nanomechanical bending behavior and elastic

modulus determination of silver nanowires. J. Appl. Phys. 100, 104301.
Cleland, A.N., Roukes, M.L., 1996. Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 69 (18),

2653–2655.
Cleland, A.N., Roukes, M.L., 2002. Noise processes in nanomechanical resonators. J. Appl. Phys. 92 (5), 2758–2769.
Craighead, H.G., 2000. Nanoelectromechanical systems. Science 290, 1532–1535.
Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B., 2004. Surface tension effect on the mechanical properties of nanomaterials measured by

atomic force microscopy. Phys. Rev. B 69, 165410.
Davis, Z.J., Boisen, A., 2005. Aluminum nanocantilevers for high sensitivity mass sensors. Appl. Phys. Lett. 87, 013102.

ARTICLE IN PRESS

H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) 3144–31663164



Author's personal copy

Daw, M.S., Baskes, M.I., 1984. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29 (12),
6443–6453.

Diao, J., Gall, K., Dunn, M.L., 2003. Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2 (10), 656–660.
Diao, J., Gall, K., Dunn, M.L., Zimmerman, J.A., 2006. Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643–653.
Dikin, D.A., Chen, X., Ding, W., Wagner, G., Ruoff, R.S., 2003. Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field

excitation. J. Appl. Phys. 93 (1), 226–230.
Dingreville, R., Qu, J., Cherkaoui, M., 2005. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys.

Solids 53, 1827–1854.
Ekinci, K.L., 2005. Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small 1

(8–9), 786–797.
Ekinci, K.L., Roukes, M.L., 2005. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101.
Ekinci, K.L., Yang, Y.T., Roukes, M.L., 2004. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95 (5),

2682–2689.
Evoy, S., Carr, D.W., Sekaric, L., Olkhovets, A., Parpia, J.M., Craighead, H.G., 1999. Nanofabrication and electrostatic operation of single-crystal silicon paddle

oscillators. J. Appl. Phys. 86 (11), 6072–6077.
Evoy, S., Olkhovets, A., Sekaric, L., Parpia, J.M., Craighead, H.G., Carr, D.W., 2000. Temperature-dependent internal friction in silicon nanoelectromechanical

systems. Appl. Phys. Lett. 77 (15), 2397–2399.
Foiles, S.M., Baskes, M.I., Daw, M.S., 1986. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33 (12),

7893–7991.
Gurtin, M.E., Murdoch, A., 1975. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323.
Gurtin, M.E., Markenscoff, X., Thurston, R.N., 1976. Effects of surface stress on the natural frequency of thin crystals. Appl. Phys. Lett. 29 (9), 529–530.
Haiss, W., 2001. Surface stress of clean and adsorbate-covered solids. Rep. Progr. Phys. 64, 591–648.
Hasmy, A., Medina, E., 2002. Thickness induced structural transition in suspended FCC metal nanofilms. Phys. Rev. Lett. 88 (9), 096103.
Heidelberg, A., Ngo, L.T., Wu, B., Phillips, M.A., Sharma, S., Kamins, T.I., Sader, J.E., Boland, J.J., 2006. A generalized description of the elastic properties of

nanowires. Nano Lett. 6 (6), 1101–1106.
Hoffmann, S., Utke, I., Moser, B., Michler, J., Christiansen, S.H., Schmidt, V., Senz, S., Werner, P., Gosele, U., Ballif, C., 2006. Measurement of the bending

strength of vapor–liquid–solid grown silicon nanowires. Nano Lett. 6 (4), 622–625.
Houston, B.H., Photiadis, D.M., Marcus, M.H., Bucaro, J.A., Liu, X., Vignola, J.F., 1976. Thermoelastic loss in microscale oscillators. Appl. Phys. Lett. 80 (7),

1300–1302.
Huang, Z.P., Sun, L., 2007. Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to

infinitesimal strain analysis. Acta Mech. 190, 151–163.
Huang, Z.P., Wang, J., 2006. A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195–210.
Huang, G.Y., Gao, W., Yu, S.W., 2006. Model for the adsorption-induced change in resonance frequency of a cantilever. Appl. Phys. Lett. 89, 043506.
Huang, X.M.H., Zorman, C.A., Mehregany, M., Roukes, M.L., 2003. Nanodevice motion at microwave frequencies. Nature 42, 496.
Husain, A., Hone, J., Postma, H.W.C., Huang, X.M.H., Drake, T., Barbic, M., Scherer, A., Roukes, M.L., 2003. Nanowire-based very-high-frequency

electromechanical oscillator. Appl. Phys. Lett. 83 (6), 1240–1242.
Ilic, B., Craighead, H.G., Krylov, S., Senaratne, W., Ober, C., Neuzil, P., 2004. Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95 (7),

3694–3703.
Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P., 2006. Surface effects on elastic properties of silver nanowires: contact atomic-

force microscopy. Phys. Rev. B 73, 235409.
Kondo, Y., Ru, Q., Takayanagi, K., 1999. Thickness induced structural phase transition of gold nanofilm. Phys. Rev. Lett. 82 (4), 751–754.
Lachut, M.J., Sader, J.E., 2007. Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. 99, 206102.
Lavrik, N.V., Sepaniak, M.J., Datskos, P.G., 2004. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75 (7),

2229–2253.
Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A., 2003. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83 (14), 2934–2936.
Li, M., Mayer, T.S., Sioss, J.A., Keating, C.D., Bhiladvala, R.B., 2007. Template-grown metal nanowires as resonators: performance and characterization of

dissipative and elastic properties. Nano Lett. 7 (11), 3281–3284.
Li, X., Ono, T., Wang, Y., Esashi, M., 2003. Ultrathin single-crystalline-silicon cantilever resonators: fabrication technology and significant specimen size

effect on Young’s modulus. Appl. Phys. Lett. 83 (15), 3081–3083.
Liang, H., Upmanyu, M., Huang, H., 2005a. Size-dependent elasticity of nanowires: nonlinear effects. Phys. Rev. B 71, 241403(R).
Liang, W., Zhou, M., Ke, F., 2005b. Shape memory effect in Cu nanowires. Nano Lett. 5 (10), 2039–2043.
Lieber, C.M., 2003. Nanoscale science and technology: building a big future from small things. MRS Bull. 28 (7), 486–491.
Lu, P., Lee, H.P., Lu, C., O’Shea, S.J., 2005. Surface stress effects on the resonance properties of cantilever sensors. Phys. Rev. B 72, 085405.
McFarland, A.W., Poggi, M.A., Doyle, M.J., Bottomley, L.A., Colton, J.S., 2005. Influence of surface stress on the resonance behavior of microcantilevers. Appl.

Phys. Lett. 87, 053505.
Miller, R.E., Shenoy, V.B., 2000. Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147.
Nam, C.Y., Jaroenapibal, P., Tham, D., Luzzi, D.E., Evoy, S., Fischer, J.E., 2006. Diameter-dependent electromechanical properties of GaN nanowires. Nano

Lett. 6 (2), 153–158.
Namazu, T., Isono, Y., Tanaka, T., 2000. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using

AFM. J. Microelectromechanical Syst. 9 (4), 450–459.
Ohnishi, H., Kondo, Y., Takayanagi, K., 1998. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783.
Park, H.S., 2008a. Strain sensing through the resonant properties of deformed metal nanowires. J. Appl. Phys. 104, 013516.
Park, H.S., 2008b. Surface stress effects on the resonant properties of silicon nanowires. J. Appl. Phys. 103, 123504.
Park, H.S., Klein, P.A., 2007. Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys. Rev. B 75, 085408.
Park, H.S., Klein, P.A., 2008. A surface Cauchy–Born model for silicon nanostructures. Comput. Methods Appl. Mech. Eng. 197, 3249–3260.
Park, H.S., Gall, K., Zimmerman, J.A., 2005. Shape memory and pseudoelasticity in metal nanowires. Phys. Rev. Lett. 95, 255504.
Park, H.S., Klein, P.A., Wagner, G.J., 2006. A surface Cauchy–Born model for nanoscale materials. Int. J. Numer. Methods Eng. 68, 1072–1095.
Petrova, H., Perez-Juste, J., Zhang, Z.Y., Zhang, J., Kosel, T., Hartland, G.V., 2006. Crystal structure dependence of the elastic constants of gold nanorods.

J. Mater. Chem. 16 (40), 3957–3963.
Rubio, G., Agrait, N., Vieira, S., 1996. Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett. 76 (13), 2302–2305.
Sader, J.E., 2001. Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: rectangular plates. J. Appl. Phys.

89 (5), 2911–2921.
Sharma, P., Ganti, S., Bhate, N., 2003. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82 (4), 535–537.
Shenoy, V.B., 2005. Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys. Rev. B 71, 094104.
Sun, C.T., Zhang, H., 2003. Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys. 92 (2), 1212–1218.
Sundararajan, S., Bhushan, B., Namazu, T., Isono, Y., 2002. Mechanical property measurements of nanoscale structures using an atomic force microscope.

Ultramicroscopy 91, 111–118.
Tadmor, E., Ortiz, M., Phillips, R., 1996. Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 1529–1563.
Tahoe, hhttp://tahoe.ca.sandia.govi.

ARTICLE IN PRESS

H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) 3144–3166 3165



Author's personal copy

Tang, Z., Zhao, H., Li, G., Aluru, N.R., 2006. Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures. Phys. Rev. B 74,
064110.

Trilinos, hhttp://software.sandia.gov/trilinos/index.htmli.
Verbridge, S.S., Parpia, J.M., Reichenbach, R.B., Bellan, L.M., Craighead, H.G., 2006. High quality factor resonance at room temperature with nanostrings

under high tensile stress. J. Appl. Phys. 99, 124304.
Verbridge, S.S., Shapiro, D.F., Craighead, H.G., Parpia, J.M., 2007. Macroscopic tuning of nanomechanics: substrate bending for reversible control of

frequency and quality factor of nanostring resonators. Nano Lett. 7 (6), 1728–1735.
Wan, J., Fan, Y.L., Gong, D.W., Shen, S.G., Fan, X.Q., 1999. Surface relaxation and stress of FCC metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb. Modelling Simulation

Mater. Sci. Eng. 7, 189–206.
Wang, J., Duan, H.L., Huang, Z.P., Karihaloo, B.L., 2006. A scaling law for properties of nano-structured materials. Proc. R. Soc. A 462, 1355–1363.
Weaver, W., Timoshenko, S.P., Young, D.H., 1990. Vibration Problems in Engineering. Wiley, New York.
Wei, G., Shouwen, Y., Ganyun, H., 2006. Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17,

1118–1122.
Wiley, B.J., Wang, Z., Wei, J., Yin, Y., Cobden, D.H., Xia, Y., 2006. Synthesis and electrical characterization of silver nanobeams. Nano Lett. 6 (10), 2273–2278.
Wong, E.W., Sheehan, P.E., Lieber, C.M., 1997. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277,

1971–1975.
Wu, B., Heidelberg, A., Boland, J.J., 2005. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529.
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., 2003. One-dimensional nanostructures: synthesis, characterization, and

applications. Adv. Mater. 15 (5), 353–389.
Yang, J., Ono, T., Esashi, M., 2000. Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers. Appl. Phys. Lett. 77 (23), 3860–3862.
Yang, J., Ono, T., Esashi, M., 2001. Investigating surface stress: surface loss in ultrathin single-crystal silicon cantilevers. J. Vac. Sci. Technol. B 19 (2),

551–556.
Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W., Stipe, B.C., Rugar, D., 2000. Quality factors in micron- and submicron-thick cantilevers.

J. Microelectromechanical Syst. 9 (1), 117–125.
Zhou, L.G., Huang, H., 2004. Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84 (11), 1940–1942.

ARTICLE IN PRESS

H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) 3144–31663166


