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Abstract

This paper presents a three-dimensional generalization of the bridging scale concurrent method, a finite temperature

multiple scale method that couples molecular dynamics (MD) to finite elements (FE). The generalizations include the

numerical calculation of the boundary condition acting upon the reduced MD region, as such boundary conditions are

analytically intractable for realistic three-dimensional crystal structures. The formulation retains key advantages

emphasized in previous papers, particularly the compact size of the resulting time history kernel matrix. The coupled

FE and reduced MD equations of motion are used to analyze dynamic fracture in a three-dimensional FCC lattice,

where interesting physical phenomena such as crack branching are seen. The multiple scale results are further compared

to benchmark MD simulations for verification purposes.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple scale methods have gained much interest lately for the potential offered in the direct numerical

coupling of disparate length and time scales. It is envisaged that multiple scale simulations offer the best

hope, for example, in extracting material properties directly using first principles atomistic simulations,
while linking that information to successively larger length scales until structural material properties of

interest can be established. In particular, the evaluation of these properties at or near material failure is

an area of much interest.
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.01.028

* Corresponding author. Tel.: +1 847 644 7779; fax: +1 847 491 3915.

E-mail addresses: hpark@alumni.northwestern.edu (H.S. Park), w-liu@northwestern.edu (W.K. Liu).

mailto:hpark@alumni.northwestern.edu
mailto:w-liu@northwestern.edu


H.S. Park et al. / Journal of Computational Physics 207 (2005) 588–609 589
The end goal of this research is to develop predictive simulation capabilities that are capable of resolving

patterns of deformation across distinct length scales, while utilizing that information to understand and

predict material failure at a structural level. Breakthroughs in this field of research could have a hugely ben-

eficial impact on the materials design and computer aided design communities. Considerable research on

this, and other important scientific advances that may be possible using multiple scale methods are cur-
rently under way. Here, we offer a brief review of the methods developed towards this goal.

Many methods have been developed to couple atomistic-level simulations to continuum-level simula-

tions. Two such methods are the quasicontinuum (QC) approach of Tadmor et al. [1], and the MAAD

(macroscopic, atomistic, ab initio dynamics) approach of Abraham et al. [2]. Other interesting approaches

have been recently developed, notably the coupled atomistic discrete dislocation (CADD) approach of

Shilkrot et al. [3], the bridging domain method of Xiao and Belytschko [4], and the coarse-grained molec-

ular dynamics (CGMD) approach of Rudd and Broughton [5]. As the present article is not intended as an

exhaustive review, the interested reader is referred to the multiple scale review papers of Liu et al. [6], and
Curtin and Miller [7].

Recently, the bridging scale was proposed by Wagner and Liu [8] to concurrently couple molecular

dynamics (MD) and finite elements (FE); the development and application of the method in two-dimen-

sions was shown in the recent work of Park et al. [9]. Important advantages of the bridging scale as com-

pared to previous methods include the fact that the FE mesh need not be graded down to the atomic

spacing, that different time steps can therefore be used for the MD and FE simulations, that a non-reflect-

ing MD boundary condition can be formulated in terms of a lattice impedance force that augments the

standard MD equations of motion, and finally that the bridging scale is valid for finite temperature, dy-
namic problems.

The focus of the current paper is a full generalization of the bridging scale to three dimensions, including

the numerical calculation of the molecular dynamics boundary condition. As a result, a time history kernel

matrix similar in form to the damping kernels of Adelman and Doll [10], Cai et al. [11], and E and Huang

[12] is found. More specifically, the time history kernel found in this work is a multiple scale generalization

of the single scale works of Wagner et al. [13], Karpov et al. [14,15], and Park et al. [16].

The time history kernel matrix in this work offers numerous advantages to previous work, namely the

compact size of the matrix, the fact that the matrix can be calculated using an automated numerical pro-
cedure involving only standard Laplace and Fourier transform techniques, and the fact that only the force

constants describing the interaction of a unit cell with its neighboring unit cells are needed before the auto-

mated numerical procedure can proceed. Furthermore, this time history kernel is a part of an MD and FE

solution-dependent impedance force which augments the standard MD equation of motion. This leads nat-

urally to a truly two-way coupled MD boundary condition, in which long wavelengths coming from the

continuum are transferred to the MD region, while high frequency MD wavelengths that cannot be repre-

sented by the continuum are dissipated away.

The layout of this paper is as follows. We first develop the coupled MD and FE equations of motion,
then motivate the need to eliminate the atomistics from large parts of the domain. We then provide the der-

ivation by which the time history kernel representing the effects of the eliminated fine scale degrees of free-

dom upon the reduced atomic lattice can be found. The numerical examples utilize the numerically

calculated time history kernel to study dynamic fracture in three dimensions using the bridging scale.

Finally, concluding remarks are made, and future research directions are discussed.
2. Bridging scale fundamentals

In this section, we briefly present the bridging scale fundamentals. As much of the following material has

been derived in previous works [8,17,9], we refer the interested reader to those works for complete detail.
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Other applications of the bridging scale can be found in [18–23]. The fundamental idea is to decompose the

total displacement field u(x) into coarse and fine scales
uðxÞ ¼ �uðxÞ þ u0ðxÞ; ð1Þ

where the total displacement u(x) is defined at all na atomic positions. For consistency, Greek indices (a,
b, . . .) will define atoms for the remainder of this paper, and uppercase Roman indices (I,J, . . .) will define
coarse scale nodes. The coarse scale is defined to be
�uðXaÞ ¼
X
I

N a
I dI : ð2Þ
Here, N a
I ¼ NIðXaÞ is the shape function of node I evaluated at the initial atomic position Xa, and dI is the

FE nodal displacement associated with node I. The summation in (2) is over all nc coarse scale nodes in the

domain, as are all such summations in this section.

At this point, it is convenient to employ a matrix representation for subsequent developments. The col-

umn vector u contains all spatial components of the total displacement at each atom, while the column vec-
tor d contains all spatial components of the coarse scale displacement at each node, i.e.
u ¼

u1x
u1y
u1z
u2x

..

.

..

.

unaz

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; d ¼

d1x

d1y

d1z

..

.

dncz

0
BBBBBBB@

1
CCCCCCCA
: ð3Þ
In (3), u1y is the y component of u(X1). The size of u is then 3na · 1, while the size of d is 3nc · 1. Eq. (2) can

then be written in matrix form as
�u ¼ Nd; ð4Þ

where N is a matrix containing the FE shape functions evaluated at each initial atomic position Xa, and

whose size is 3na · 3nc. Note that this implies that the coarse scale solution �u is also defined at every atomic

position.
The fine scale is defined to be the projection of the MD displacements q onto the FE basis functions sub-

tracted from the total solution u, which is equivalent to the MD displacements q. In other words, the fine

scale represents that part of the total solution that the coarse scale cannot represent,
u0 ¼ q� Pq; ð5Þ

where the projection matrix P is defined to be
P ¼ NM�1NTMA: ð6Þ

In (6),MA is a diagonal matrix of size 3na · 3na with the atomic masses on the diagonal andM = NTMAN is
the coarse scale mass matrix of size 3nc · 3nc. We note that P satisfies the definition of a projection matrix,

i.e. PP = P. The total displacement u can finally be written as the sum of the coarse and fine scales as
u ¼ Ndþ q� Pq: ð7Þ

The final term in the above equation is called the bridging scale. It is the part of the solution that must be

removed from the total displacement so that a complete separation of scales is achieved, i.e., the coarse and

fine scales are orthogonal, or linearly independent of each other.
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The coupled MD and FE equations of motion are derived using (7) by first constructing a multi-scale

Lagrangian L, which is defined to be the kinetic energy minus the potential energy
Lðu; _uÞ ¼ Kð _uÞ � V ðuÞ: ð8Þ

The coupled multi-scale equations of motion are obtained from the Lagrangian by following the relations
d

dt
oL

o _d

� �
� oL

od
¼ 0; ð9Þ

d

dt
oL
o _q

� �
� oL

oq
¼ 0: ð10Þ
The coupled equations of motion can finally be written as:
MA€q ¼ f; ð11Þ

M€d ¼ NTfðuÞ: ð12Þ

Now that the coupled coarse and fine scale equations of motion have been derived, we make some brief

comments:

(i) The fine scale equation (11) is simply the MD equation of motion. Therefore, a standard MD solver

can be used to obtain the MD displacements q, while the MD forces f can be found using any relevant

potential energy function.

(ii) The coarse scale equation (12) is simply the FE equation of motion. Thus, we can use standard finite

element methods to find the solution to (12), while noting that the finite element mass matrix M is

defined to be a consistent mass matrix.

(iii) The coupling between the two equations is through the coarse scale internal forceNTf(u), which is a direct
function of theMD internal force f. In the region inwhichMDexists, the coarse scale force is calculatedby

extrapolating theMDforcebywayof thefinite element shape functionsN. TheMDforces can thereforebe

thought of as defining the constitutive relation for the finite element internal force.

(iv) The FE equation of motion is redundant for the case in which the MD and FE regions both exist

everywhere in the domain, because the FE equation of motion is simply an approximation to the

MD equation of motion, with the quality of the approximation governed by the finite element shape

functions N. We note that due to the kronecker-delta property of the finite element shape functions,

the coarse scale internal force NTf(u) exactly reduces to the MD forces for the case in which the finite
element nodes coexist with atomic positions. We shall remove this redundancy in the next section,

when we create coupled MD and FE equations of motion for systems where the MD region is con-

fined to a small portion of the domain.

(v) The total solution u satisfies the same equation of motion as q, i.e.
MA€u ¼ f: ð13Þ

This result is due to the fact that q and u satisfy the same initial conditions, and will be utilized in
deriving the boundary conditions on the MD simulation in the following section.

(vi) Because of the equality of q and u, it would appear that solving the FE equation of motion is unnec-

essary, since the coarse scale can be calculated directly using (7) as the projection of q, i.e. Nd = Pq.

However, because the fine scale will be eliminated from large portions of the domain in the following

section, the MD displacements q are not defined over the entire domain, and thus it is not possible to

calculate the coarse scale solution everywhere via direct projection of the MD displacements. There-

fore, the solution of the FE equation of motion everywhere ensures a continuous coarse scale dis-

placement field.
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3. MD impedance boundary condition

3.1. Linearized fine scale equation of motion

In the bridging scale approach to multiple scale modeling, we assume that the atomistic domain can be
decomposed into two distinct regions. The first region consists of cracks, lattice defects and imperfections;

in this region, a fully atomistic description is necessary to capture the physics of deformation. The second

region consists of those atoms which remain relatively unperturbed from their equilibrium positions; in this

region, a fully atomistic description is unnecessary, and continuum mechanics are sufficient to describe the

behavior of this portion of the lattice. Because the group harmonic behavior of the lattice is well-repre-

sented using continuum mechanics principles, the remainder of this section will summarize the methodol-

ogy used to eliminate those fine scale degrees of freedom which we assume to interact harmonically; we note

that the overlaying continuum is allowed to deform nonlinearly in all parts of the domain. The overall goal
of this elimination is shown in Fig. 1.

The process of eliminating the unnecessary fine scale degrees of freedom will result in a modified MD

equation of motion including an external force, termed the impedance force, which is a function of a damp-

ing matrix b(t), or equivalently its time derivative h(t), known as the time history kernel. The damping ker-

nel was first derived analytically by Adelman and Doll [10] for a harmonic one-dimensional lattice, and

calculated numerically in multiple dimensions by Cai et al. [11], and E and Huang [12]. The effect of the

damping matrix is to dissipate high frequency energy into the eliminated degrees of freedom, resulting in

a non-reflecting MD boundary condition.
+ =

MD FEM

MAq = f Md = NT f

MD + FEM

Reduced MD & Impedance Force + FEM

Md = NT f
MAq = f + f imp d,q( )

Md = NT f
MAq = f

Fig. 1. Removal of redundance of FE equation of motion by elimination of unnecessary MD degrees of freedom.
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The approach taken here differs from previous work; the key to the following process is the recognition

that crystalline lattice structures are inherently periodic and repetitive in nature. The salient feature which

results from the periodic structure is that the resulting time history kernel matrix h(t) has a compact size,

corresponding to the minimum number of degrees of freedom in each repetitive unit cell. The periodicity of

lattice structures as related to deriving non-reflecting MD boundary conditions was explored by Karpov
et al. [24], and later by Wagner et al. [13], Karpov et al. [14] and Karpov et al. [15]. This approach was

generalized in the context of two-dimensional multiple scale simulations by Park et al. [9]; the present work

extends the approach in [9] to three-dimensional multiple scale simulations.

The first step in this process is to linearize the MD equation of motion (11), while using the equality of q

and u to obtain
MA€q ¼ MA€�uþMA€u
0 ¼ fð�uÞ þ Ku0; ð14Þ
where
K ¼ of

ou

����
u0¼0

: ð15Þ
The analytic solution for the time history kernel h(t) requires a matrix inverse of K, as detailed in Adelman

and Doll [10]. However, K is of size proportional to the number of MD degrees of freedom which are to be

eliminated; this number is generally on the order of millions or billions, and explains why analytic solutions
for h(t) are intractable above one dimension.

The goal in performing the linearization is to decompose the MD equation of motion into coarse and

fine scale components. In doing so, we will work exclusively with the fine scale equation such that we

can achieve our stated goal of limiting the fine scale to a small region of the domain, while keeping the

coarse scale everywhere in the domain. We make one major assumption in our derivation, which is:

� We assume that we can write the fine scale equation of motion neglecting contributions from the coarse

scale

This assumption is justified by the orthogonality of the coarse and fine scales, and also because the

coarse scale time scale is much larger than that of the fine scale, which is on the order of the atomic vibra-

tional period. Thus, we write the scale decomposed coarse and fine scale portions of the MD equation of

motion as:
MA€�u ¼ fð�uÞ; ð16Þ

MA€u
0 ¼ Ku0: ð17Þ
The fine scale portion of the MD equation of motion (17) constitutes the major result of this section, and

will be utilized in the following section to eliminate the unnecessary fine scale degrees of freedom.
3.2. Elimination of unnecessary fine scale degrees of freedom

We now generalize the ideas presented in the previous sections to three dimensions. The periodic lattice

consists of unit cells which are repeated in three directions. Each repeated cell has na atoms, each of which

can move in nSD spatial directions. The total number of degrees of freedom in each unit cell is then ndof =

na · nSD. Each unit cell can be labeled with three indices, l, m and n, indicating the position along axes in the
direction of the three primitive vectors of the crystal structure.

A two-dimensional example of a hexagonal lattice structure utilizing the unit cell numbering convention

is shown in Fig. 2. In this example, the integer triplet in each cell gives the (l,m,n) coordinates; n = 0 for this
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two-dimensional lattice. In a three-dimensional lattice, each value of n describes a plane of atoms which is

bounded by x–y planes. We note that while the summation in (18) below goes over all possible lattice sites,

clearly there will be many integer triplets (l,m,n) which do not describe an atomic position. In these cases,

the stiffness coefficient K is simply zero, implying that no contribution is made to the internal force by an

unoccupied lattice position.
Eq. (17) can thus be re-written as, for a three-dimensional lattice and including external forces
Fig. 2

bound
€u0l;m;nðtÞ ¼
Xlþ1

l0¼l�1

Xmþl

m0¼m�l

Xnþm

n0¼n�m

M�1
A Kl�l0;m�m0 ;n�n0u

0
l0;m0;n0 ðtÞ þM�1

A fextl;m;nðtÞ; ð18Þ
where fextl;m;nðtÞ is the external force acting upon unit cell (l,m,n), the constant stiffness matrices K relate the

displacements in cell (�l 0,�m 0,�n 0) to the forces in cell (l,m,n) and l and m represents the range of the

forces in the m and n coordinate directions. We note that while atoms in a given slab of constant l are cou-

pled to only neighboring cells l�1 and l + 1, the coupling in the m and n coordinate directions is not limited
to nearest neighbors. If longer ranged interactions are desired, this approximation can be relaxed simply by

increasing the interaction range of the K matrices, as is shown in Park et al. [16].

The goal of this process will be to eliminate the atoms in the l > 0 cells by solving for them in terms of the

l 6 0 degrees of freedom and resubstituting that expression into (18). In this manner, we will avoid the ex-

plicit solution for the l > 0 degrees of freedom while implicitly including their effects into the remaining sys-

tem dynamics.

The key step in removing the unwanted l > 0 fine scale degrees of freedom is in realizing that the motion

of the boundary (l = 0) atoms can be caused either by the displacements of the atoms to be kept, or by an
external force acting upon the boundary atoms. Therefore, it will be assumed that the motion of the bound-

ary atoms is in fact caused by the external force which acts only at l = 0
fextl;m;nðtÞ ¼ dl;0f
ext
0;m;nðtÞ: ð19Þ
The derivation begins by taking a Laplace transform (LT) and discrete Fourier transform (DFT) of (18),

giving
s2Û
0ðp; q; r; sÞ � sû0ðp; q; r; 0Þ � _̂u

0ðp; q; r; 0Þ ¼ Âðp; q; rÞÛ0ðp; q; r; sÞ þM�1
A F̂

ext

0 ðq; r; sÞ; ð20Þ
where p, q and r correspond to spatial indices l, m and n, the hatted notation indicates the discrete Fourier

transform and Laplace transformed variables are indicated by the transformed variable s. Âðp; q; rÞ is the
. Periodic two-dimensional hexagonal lattice structure numbered using unit cell nomenclature. The solid line represents the

ary between the MD region to be simulated (left), and the MD region to be eliminated (right).
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Fourier transform of M�1
A Kl;m;n. A summary of the important Laplace and Fourier transform operations

utilized in this section is given in Appendix A.

Eq. (20) can be solved to give the Laplace transformed/discrete Fourier transformed displacements in

terms of the external force
Û
0ðp; q; r; sÞ ¼ Ĝðp; q; r; sÞ M�1

A F̂
ext

0 ðq; r; sÞ þ sû0ðp; q; r; 0Þ þ _̂u
0ðp; q; r; 0Þ

� �
; ð21Þ
where
Ĝðp; q; r; sÞ ¼ s2I� Âðp; q; rÞ
� ��1

: ð22Þ
Taking the inverse Fourier transform of (21) in the x direction gives the displacement in the x direction at

atomic position l
~U
0
lðq; r; sÞ ¼ M�1

A
~Glðq; r; sÞF̂

ext

0 ðq; r; sÞ þ ~R
d

l ðq; r; sÞ; ð23Þ

where
~R
d

l ðq; r; sÞ ¼ s
XL=2

l0¼�L=2þ1

~Gl�l0 ðq; r; sÞU0
l0 ðq; r; 0Þ þ

XL=2
l0¼�L=2þ1

~Gl�l0 ðq; r; sÞ _U
0
l0 ðq; r; 0Þ: ð24Þ
Here, the tilde notation implies mixed Fourier images, which depend on both the original and transform

values.

Eq. (24) is typically called the random component of the displacement; this is because it depends upon

the initial conditions of the eliminated degrees of freedom, which randomly depend upon the temperature.

The randomness of the initial conditions occurs because they are calculated from a temperature-dependent

distribution function, typically the Maxwell–Boltzmann distribution in MD simulations. Further details on

this term are given in the discussion later in this section.
By writing (23) for both l = 0 and l = 1, we can obtain the displacements ~U

0
1 in terms of ~U

0
0, thereby elim-

inating F̂
ext

0 and obtaining
~U
0
1ðq; r; sÞ ¼ ~Qðq; r; sÞ ~U

0
0ðq; r; sÞ � ~R

d

0ðq; r; sÞ
� �

þ ~R
d

1ðq; r; sÞ; ð25Þ
where
~Qðq; r; sÞ ¼ ~G1ðq; r; sÞ~G
�1

0 ðq; r; sÞ: ð26Þ

By inverting the Fourier transform in (25) and using the convolution property of the DFT, we get
U0
1;m;nðsÞ ¼

XM=2

m0¼�M=2þ1

XN=2

n0¼�N=2þ1

Qm�m0;n�n0 ðsÞ U0
0;m0;n0 ðsÞ � Rd

0;m0 ;n0 ðsÞ
� �

þ Rd
1;m;nðsÞ; ð27Þ
where the random component of the displacements Rd
l;m;nðsÞ acting upon plane l is
Rl;m;nðsÞ ¼ s
XL=2

l0¼�L=2þ1

XM=2

m0¼�M=2þ1

XN=2

n0¼�N=2þ1

~Gl�l0 ;m�m0 ;n�n0 ðsÞU0
l0 ;m0 ;n0 ð0Þ

þ
XL=2

l0¼�L=2þ1

XM=2

m0¼�M=2þ1

XN=2

n0¼�N=2þ1

~Gl�l0 ;m�m0 ;n�n0 ðsÞ _U
0
l0 ;m0 ;n0 ð0Þ; ð28Þ
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where L, M and N are the number of unit cells in the x-, y- and z-directions, respectively. Eq. (27) becomes

useful when it is recalled that the linearized forces acting on layer l = 0 due to layer l = 1 can be written as,

recalling (18)
F1!0
m;n ðsÞ ¼

Xmþl

m0¼m�l

Xnþm

n0¼n�m

K�1;m�m0 ;n�n0U
0
1;m0 ;n0 ðsÞ: ð29Þ
Substituting (27) into (29) and taking the inverse Laplace transform, the force boundary condition of the

layer l = 1 atoms acting upon the layer l = 0 atoms becomes
f1!0
m;n ðtÞ ¼

XM=2

m0¼�M=2þ1

XN=2

n0¼�N=2þ1

Z t

0

hm�m0;n�n0 ðt � sÞ u00;m0 ;n0 ðsÞ � Rd
0;m0;n0 ðsÞ

� �
dsþ R

f
0;m;nðtÞ; ð30Þ
where the time history kernel h is defined to be
hm;nðtÞ ¼ L�1ðHm;nðsÞÞ; ð31Þ

Hm�m0 ;n�n0 ðsÞ ¼
Xmþl

m0¼m�l

Xnþm

n0¼n�m

K�1;m�m0;n�n0Qm0 ;n0 ðsÞ; ð32Þ
and the random force Rf
0;m;nðtÞ is defined to be
Rf
0;m;nðtÞ ¼

X Xmþl

m0¼m�l

Xnþm

n0¼n�m

K�1;m�m0 ;n�n0R
d
1;m0 ;n0 ðtÞ: ð33Þ
As can be seen, the exact evaluation of the first term on the right-hand side of (30) requires a summation

over all other unit cells along the boundary. Clearly, it would be computationally inefficient to perform the
exact summation in practice, particularly if the lattice is large. Therefore, we rewrite (30) as
f1!0
m;n ðtÞ ¼

Xmc

m0¼m�mc

Xnc
n0¼n�nc

Z t

0

hm�m0 ;n�n0 ðt � sÞ u00;m0;n0 ðsÞ � Rd
0;m0;n0 ðsÞ

� �
dsþ Rf

0;m;nðtÞ; ð34Þ
where nc and mc refer to a maximum number of atomic neighbors which will be used to compute the imped-

ance force, which we define to be the first term on the right-hand side of (34). In the numerical examples

presented later, nc and mc are taken to be zero, meaning that the impedance force acting upon a boundary

atom depends only on the displacements of the same boundary atom. Now, the fine scale equation of mo-
tion (18) for the boundary l = 0 atoms can be rewritten as
€u00;m;n ¼ A0;m;nu
0
0;m;n þM�1

A

Xmc

m0¼m�mc

Xnc
n0¼n�nc

Z t

0

hm�m0 ;n�n0 ðt � sÞ u00;m0 ;n0 ðsÞ � Rd
0;m0 ;n0 ðsÞ

� �
dsþM�1

A Rf
0;m;nðtÞ:

ð35Þ
Note that the time history kernel h(t) on the right-hand side of (35) contains the implicit effects of the l > 0
cells which have been eliminated. Adding (35) and (16), using the equality of q and u and noting that
M�1
A0 f0;m;nð�uÞ þ A0;m;nu

0
0;m;n ¼ M�1

A0 f0;m;n; ð36Þ
where MA0 is a diagonal matrix containing the masses of the boundary (l = 0) atoms, we obtain the mod-

ified equation of motion for the boundary atoms which does not involve any unknown l > 0 degrees of

freedom
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MA0€q0;m;nðtÞ ¼ f0;m;nðtÞ þ
Xmc

m0¼m�mc

Xnc
n0¼n�nc

Z t

0

hm�m0 ;n�n0 ðt � sÞ u00;m0;n0 ðsÞ � Rd
0;m0 ;n0 ðsÞ

� �
dsþ R

f
0;m;nðtÞ: ð37Þ
The final step to writing the MD equations of motion for the boundary atoms is to note that the fine scale
component of the MD displacements can be written as
u00;m0 ;n0 ðsÞ ¼ q0;m0 ;n0 ðsÞ � �u0;m0 ;n0 ðsÞ: ð38Þ
The final form for the coupled MD and FE equations of motion thus can be written as
MA€qðtÞ ¼ fðtÞ þ f
imp
0;m;nðtÞ þ R

f
0;m;nðtÞ; ð39Þ

M€d ¼ NTfðuÞ; ð40Þ
where
f
imp
0;m;nðtÞ ¼

Xmc

m0¼m�mc

Xnc
n0¼n�nc

Z t

0

hm�m0 ;n�n0 ðt � sÞ q0;m0;n0 ðsÞ � �u0;m0 ;n0 ðsÞ � Rd
0;m0 ;n0 ðsÞ

� �
ds; ð41Þ
Eq. (39)–(41) represent the major results of this section. With these key equations having been derived, sev-

eral remarks are in order:

(i) The first Eq. (39) defines the modified MD equation of motion. The additional terms on the right-

hand side of (39) result from the elimination of the fine scale degrees of freedom; the meaning of these

terms is discussed in detail below. The first term on the right-hand side of (39), f(t), is just the standard

nonlinear interatomic force that is calculated in the MD simulation. It is important to note that this

force is the standard nonlinear interatomic force; the assumption of linearity was only used in describ-
ing the motion of the l > 0 cells which were eliminated. Specifically, the assumption of linearity man-

ifests itself in the time history kernel h(t � s).
(ii) The second term on the right-hand side of (39), the impedance force f imp

0;m;nðtÞ, contains the time history

kernel h(t � s), and acts to dissipate fine scale energy from the MD simulation into the surrounding

continuum. It is important to note that this force acts only on the boundary MD atoms. The numer-

ical result is a non-reflecting boundary between the MD and FE regions, as the time history kernel

dissipates away short wavelengths that cannot be represented by the surrounding continuum. Further-

more, the dependence of the impedance force on the coarse scale solution �u0;m0 ;n0 ðsÞ indicates a two-
way coupled MD equation of motion, i.e., that coarse scale information originating in the continuum

can be passed to the MD region. This will prove essential in later numerical examples, where the

boundary conditions are applied to the surrounding continuum.

(iii) The revised MD equation of motion contains both a random displacement Rd
0;m0 ;n0 ðtÞ and a random

external force Rf
0;m;nðtÞ. These are thermally motivated terms which arise due to the fact that the

thermal effects of the eliminated fine scale degrees of freedom must be kept on the reduced MD

domain, and again act only on the boundary atoms. These terms are considered stochastic due

to the infinite number of initial conditions which are possible based on the temperature of the elim-
inated degrees of freedom; the existence of these terms indicates that the bridging scale method can

be considered a coupled finite temperature method. Techniques for applying this stochastic force

were proposed by [10]. In the examples presented in this paper, we neglect the random terms, indi-

cating that the temperature of the surrounding continuum is 0 K. However, three of the current

authors have developed a method to apply the random displacement and force; this work will be

presented in a separate paper [25].
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(iv) We note that the time history kernel h(t) is a 3 · 3 matrix, corresponding to the minimum number of

degrees of freedom in each unit cell. The compact size of h(t) distinguishes this approach from other

methods, such as that of Cai et al. [11]. Furthermore, once the K matrices have been determined, the

time history kernel h(t) can be calculated using an automated numerical procedure, as detailed in the

work of Wagner et al. [13]. This is in contrast to the work of E and Huang [12], in which the geometry
of the lattice explicitly enters the formulation in determining which angles of incidence along the MD

boundary it is desirable to minimize reflection for. Moreover, it is unclear how all angles of incidence

can then be easily represented within the context of the E and Huang approach. The small size of h(t)

enables us to achieve large computational savings by eliminating large portions of the lattice where an

explicit atomistic representation is not desired. Specifically, even as the number of eliminated fine scale

degrees of freedom grows, the size of h(t) remains constant, leading to computational scalability.

(v) In order to ensure that the reduced atomistic system does not relax due to spurious free surface effects,

ghost atoms, or those atoms whose displacements are not determined by integrating the MD equation
of motion, are utilized in the simulation. The positions of the ghost atoms are instead determined

using the finite element shape functions, which is identical to that adopted to control the motion of

the pad, or ghost atoms in [3].
4. Staggered time integration and coarse scale internal force

Two issues which require attention to complete the discussion about the bridging scale theory are the
subjects of staggered time integration, and the calculation of the coarse scale internal force where the

MD region has been eliminated.

Due to the fact that the coarse scale need not be meshed down to the MD atomic spacing, the FE equa-

tion of motion can be integrated using a larger time step than the MD simulation. This process is termed

subcycling, or staggered time integration. Furthermore, standard time integrators can be used for the FE

and MD simulations; the velocity verlet algorithm is used to update the MD simulation, while the explicit

central-difference method is used to update the FE simulation. Details can be found in the works of Wagner

and Liu [8], Park and Liu [17] and Park et al. [9].
The issue regarding the coarse scale internal force (i.e., the NTf(u) term in (12)) is that in the region of the

domain from which the MD degrees of freedom have been eliminated, the question arises on how to eval-

uate NTf(u), because the MD internal force f(u) is not available. Due to the desire to use the same inter-

atomic potential to calculate the internal forces even in the absence of the MD region, the Cauchy–Born

rule, similar to that utilized in the quasicontinuum method [1] is used. Again, details regarding the appli-

cation of the Cauchy–Born rule to the bridging scale can be found in the works of Wagner and Liu [8], and

Park and Liu [17]. Further details on the Cauchy–Born rule can be found in the work of Tadmor et al. [1]

and Klein and Gao [26].
We close by noting that the Cauchy–Born rule is not the only available method to calculate the internal

force in the absence of the MD internal forces; recently, a virtual atom cluster (VAC) model has been pro-

posed by Qian et al. [21,27] which does not require a hyperelastic stress update. Therefore, the bridging

scale method retains applicability to many interesting structures, including carbon nanotubes.
5. Numerical example: three-dimensional dynamic crack propagation

In this section, we show numerical examples for the bridging scale in three-dimensions. Specifically, we

validate the method on dynamic crack propagation within an FCC crystal. For the MD simulation, we
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utilize the Lennard-Jones (LJ) 6-12 potential, though with a slightly altered form. The LJ potential we uti-

lize contains a smooth cut-off, such that the revised potential takes the form
Fig. 3.

bottom
UðrijÞ ¼ ULJðrijÞ � ULJðrcÞ � ðrij � rcÞU0
LJðrcÞ; ð42Þ
where ULJ(rij) is the standard, unshifted LJ 6–12 potential which is a function of the distance rij between two

atoms i and j, U0
LJðrcÞ is the derivative of the unshifted LJ potential evaluated about the shifted distance rc

and the shifted distance rc is defined to be
rc ¼ ar: ð43Þ

The shifted LJ potential described in (42) has a smooth cut-off in both the force and energy at the value

rij = a. For this shifted LJ potential, we utilize parameter values r = � = 1, a = 1.50; all atomic masses

are taken to be unity.

The dynamic fracture problem schematic is shown in Fig. 3. As is shown, the specimen under consideration

is covered by finite elements everywhere, while the atomistic region is confined to the central region of the cube.

Apre-crack is specified in the atomistic region byprescribing that twoadjacent planes of atoms donot interact,
and the crack opens naturally in amode-I type failure under the tensile ramp velocity loading shown in Fig. 4.

The normalized velocity applied to the top and bottom FE surfaces was taken to be Vmax = .035.

We note that the pre-crack is initially fully contained within the interior of the MD domain; the inter-

actions between the crack and the surfaces shown later result from the propagation of the crack. A visual

image of the pre-crack is given in Fig. 5. For visualization purposes, the images in this section only display

those atoms whose potential energy is greater than 90% of the equilibrium value; this technique is useful for

highlighting the defective parts of the lattice which may be of interest in fracture and failure simulations.

The simulations were run using nearest neighbor atomic interactions; the bridging scale simulation em-
ployed 1024 eight-node hexahedral finite elements and 117,121 atoms, while the full MD simulation was

comprised of 225,121 atoms. Different time steps were used for both simulations; the MD time step was

taken to be Dtmd = .014, and 20 MD time steps were run for each FEM time step. The MD impedance force

(41) was applied to the top and bottom planes of the reduced MD region as shown in Fig. 3. All other

boundary faces of the reduced MD region were taken to be free surfaces. The numerical examples shown

in this paper were performed using the Sandia-developed simulation code Tahoe [28].
Left: Schematic of 3D bridging scale crack propagation example. Right: Application of MD impedances forces (41) to top and

(001) planes of reduced MD domain.
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Fig. 4. Description of ramp velocity boundary condition applied to FEM.

Fig. 5. Initial pre-crack for dynamic crack propagation example. Contours of potential energy shown. Only those atoms with potential

energy greater than 90% of the equilibrium value are shown.
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The time history kernel h(t) was numerically calculated for an FCC lattice structure and the shifted LJ

potential for the (001) plane of atoms. The 3 · 3 h(t) matrices in (41) for the top and bottom surfaces of the

reduced MD region in Fig. 3 are related as
h
top
11 ðtÞ h

top
12 ðtÞ h

top
13 ðtÞ;

h
top
21 ðtÞ h

top
22 ðtÞ h

top
23 ðtÞ;

h
top
31 ðtÞ h

top
32 ðtÞ h

top
33 ðtÞ;

0
B@

1
CA ¼

hbot11 ðtÞ hbot12 ðtÞ �hbot13 ðtÞ;
hbot21 ðtÞ hbot22 ðtÞ �hbot23 ðtÞ;
�hbot31 ðtÞ �hbot32 ðtÞ hbot33 ðtÞ

0
B@

1
CA: ð44Þ
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Similar relationships relating the h(t) matrices for opposite faces of the FCC cube can also be

determined.

Fig. 6 shows the diagonal components of h(t) in 3D with nc = 0 and mc = 0. As can be seen, h33(t) is the

most important component to consider in the calculations, while h11(t) = h22(t). We neglect higher order

values of h(t) corresponding to nc > 0 and mc > 0 as those values for h(t) are at most 10% of the values
shown in Fig. 6.

The ability of the impedance force (41) to dissipate high frequency MD energy for nc = 0 was demon-

strated in the two-dimensional work of Park et al. [9]; setting nc = 0 and mc = 0 in (41) also leads to max-

imum computational efficiency. The three-dimensional time history kernel exhibits many of the salient

features seen in the two-dimensional time history kernels for the LJ potential [9], specifically the quick de-

cay in the amplitude of h(t), which allows the truncation of the kernels after short time durations.

A comparison between the bridging scale simulation and the full MD simulation is given in four distinct

snapshots, which chronicle the time history of the crack propagation. For clarity, the figures show a com-
parison between the reduced MD region in the bridging scale simulation and that portion of the full MD

domain that corresponds to that simulated using the bridging scale.

In the first snapshot seen in Fig. 7, the initially square pre-crack has evolved under loading to resemble a

penny-shaped crack. Fig. 7 shows the crack just before propagation initiates; this figure and all subsequent

figures show contours of potential energy, while the atomic displacements have been magnified by a factor

of five for easy viewing.

After the crack propagation has initiated and the crack nears the surfaces of the MD domain, the onset

and subsequent branching of the crack is seen in Figs. 8 and 9. In this simulation, it is important to note
that the branching is a surface effect, i.e., the branching is caused when the crack front approaches the free

surface. The branching is caused by a lack of constraint as the crack approaches the surface; in essence, a

truly mode-I type loading does not exist near the surface, hence the crack is not constrained to propagate

directly through the surface, and instead branches to cause material failure.

The final configurations of the bridging scale simulation and the full MD simulation are shown in

Fig. 10. Again, the bridging scale simulation matches the full MD simulation well, including the final con-

figuration of the crack branches, and potential energy. We note that the crack initiation time and position

of the crack and its branches during propagation appear to correctly match the results of the full MD sim-
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Fig. 6. Components of h(t) for 3D FCC lattice interacting via Lennard-Jones 6–12 potential.



Fig. 7. Onset of crack growth for (left) full MD simulation and (right) bridging scale simulation.

Fig. 8. Onset of crack branching in (left) full MD simulation and (right) bridging scale simulation.

Fig. 9. Out of plane crack branching for (left) full MD simulation and (right) bridging scale simulation.
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ulation, as measured visually. Unlike the two-dimensional multiple scale simulations of dynamic fracture

considered by the same authors [9], the crack tip position has not been detailed as a function of time,

due to the inherent difficulty in tracking a branching crack front in three dimensions.



Fig. 10. Final crack configuration in (left) full MD simulation and (right) bridging scale simulation.
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Fig. 11 shows the deformed FE mesh within the coupled MD/FE region after the crack branches have

reached the MD domain boundaries. The extreme distortion of the elements at the surface which contain a
crack branch can be seen. We note that the finite elements within the coupled MD/FE region can sustain

deformations not typically allowed by standard finite elements due to the fact that the internal forces for

those elements are only a function of the underlying MD forces, as in (40). In other words, no constitutive

relationship which requires the calculation of inverse Jacobian mappings is needed for these elements,

allowing them to deform along with the underlying lattice structure. This extreme deformation of finite ele-

ments was also noted in the two-dimensional multiple scale work of Park et al. [9].

In comparing the computational time for the full MD and bridging scale simulations, the bridging scale

simulation took about 76% of the time for the full MD simulation. While the computational time was in-
deed reduced, it was not reduced by half, as might be expected; the ideal value of half could only be

achieved were there exactly half the number of degrees of freedom in the reduced/coupled system. For

the coupled system, additional computational cost is incurred for two major reasons. First, the solution

of the coarse scale degrees of freedom is required. More importantly, the additional cost is due to the cou-

pling terms between the coarse and fine scales, particularly the impedance force in (41), which requires the

storage of displacement histories for both coarse and fine scales. Similar results for computational efficiency
Fig. 11. Left: deformed FE mesh in coupled MD/FE region. Right: corresponding crack propagation within MD domain.
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were seen in the two-dimensional work of Park et al. [9], in which it was demonstrated that computational

efficiency improved as the eliminated number of MD degrees of freedom increased. This is due to the fact

that the size of the time history kernel h(t) stays constant regardless of the number of eliminated MD de-

grees of freedom.

As was demonstrated in this and previous works [9,17], despite the assumption of linearity at the MD
boundary, the boundary atoms are allowed to undergo large, elastic deformations. The assumption of lin-

earity precludes the advancement of defects through the boundary; in these types of situations in which a

defect or crack tip migrates to the boundary of the MD domain, an adaptive procedure is required such

that the MD domain can support the long-ranged propagation of crystal defects. This is indeed the subject

of current research.

However, as can be seen in this work and the two-dimensional work of Park et al. [9], despite the large

displacements, the external loading on the FEM is correctly transferred to the MD region, as the crack ini-

tiates at the correct time and propagates along the correct direction, i.e., similar to the benchmark full MD
simulation. This indicates that the linearized assumption still allows correct transfer of boundary conditions

from the FEM to MD along with eliminating high frequency waves emitted by the propagating crack tip.

Finally, Figs. 7–10 powerfully demonstrate the utility of multiple scale methods. In these images, it is

clearly seen that only a small percentage of the atoms are largely perturbed from their equilibrium posi-

tions, even during catastrophic material failure processes such as fracture. Due to the fact that only a small

percentage of the atoms play a critical role in describing the onset and subsequent propagation of cracks

and defects, it seems clear that multiple scale methods are well-suited to eliminate the unnecessary atomistic

degrees of freedom in favor of a continuum representation, as is done here.
6. Conclusions

This paper has presented a generalization of the bridging scale concurrent method to three dimensions.

Central to the generalization is the numerical calculation of the time history kernel matrix h(t), which acts

upon the reducedMD system, and results in a non-reflectingMDboundary condition. Furthermore, the cou-

pling of the MD equation of motion to the overlaying coarse scale allows boundary conditions that are ap-
plied to the continuum to be transferred naturally to the atomistic region. This feature is essential in multiple

scale simulations, where the goal is to simulate realistic-sized problems that cannot be solved by MD alone.

In comparison to existing multiple scale methods, the bridging scale offers the following advantages. Un-

like the quasicontinuummethod [1], the bridging scale is valid for dynamic, finite temperature papers. Unlike

the MAAD method of Abraham et al. [2], the finite element mesh need not be graded down to the atomic

spacing at the MD/FEM interface. Finally, unlike the coarse-grained MD (CGMD) method of Rudd and

Broughton [5], the MD equation of motion contains the correct damping term, Eq. (41), that is necessary

to eliminate high frequency wave reflection at the MD/FEM boundary. This deficiency in CGMDwas noted
in the work of Rudd [29], but a literature search found no recent work utilizing the new formulation.

The form of the time history kernel matrix h(t) also offers distinct advantages to previous works. By utiliz-

ing the inherent periodicity of crystalline lattice structures, h(t) was shown to have a compact size, which is of

theminimumnumber of degrees of freedom in each unit cell. Therefore, for the three-dimensional FCC lattice

considered in this work, h(t) is a 3 · 3 matrix. Additional benefits to the current approach for numerically cal-

culating h(t) include the fact that an automated numerical procedure involving only standard Laplace and

Fourier transform techniques has been established [13], and that only the force constants K that describe

the interactions between neighboring unit cells are needed to run the automated numerical procedure.
The bridging scale was applied to three-dimensional dynamic fracture problems in an FCC crystal. It was

demonstrated that within the bridging scale calculations, characteristic physics of crack propagation such as

branching are fully captured, and allowed to occur. High frequency wavelengths emitted by the propagating
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crack plane as atomic bonds are broken are dissipated away by the impedance force acting on the reduced

MD system. Finally, comparisons to a full MD simulation showed the accuracy of the bridging scale simu-

lation; the energy patterns and features of the crack initiation and branching compared extremely well.

Future research on the bridging scale is currently focussed on two directions. First, the bridging scale

is being extended to allow non-nearest neighbor atomic interactions using the recently developed MD
boundary condition for non-nearest neighbor interactions [16]. This feature is essential in large deforma-

tion and high strain-rate physics, as demonstrated by Holian et al. [30]; it was shown in that work that

the generation of defects is greatly influenced by the number of atomic interactions considered for var-

ious interatomic potentials. Even for longer-ranged interactions, the size of the time history kernel h(t)

remains the same as for nearest neighbor interactions. The computational effort to apply the impedance

force does increase, as the impedance forces must be applied to multiple planes of boundary atoms com-

mensurate with the interaction distance of the potential. However, the computational savings incurred

by this method improves as the number of eliminated MD degrees of freedom increases due to the con-
stant size of h(t).

A related issue deals with the issue of double counting the energy at the MD/FEM interface. Such double

counting of energy can lead to so-called ghost forces, in which an atomic lattice that should be at equilibrium

relaxes spuriously due to additional forces on the boundary atoms [7]; these forces result from coupling a non-

local atomistic region with a local continuum. The bridging scale does not suffer from ghost forces, as ghost

atoms are utilized to ensure that atoms at the crystal boundary see a full complement of atomic neighbors.

However, care must be taken to ensure that the continuum nodal forces are correctly computed when non-

nearest neighbor atomic interactions are utilized. This issue has been addressed by Klein and Zimmerman
[31], and will be incorporated into any bridging scale simulations which utilize long-ranged interactions.

Secondly, research is underway to incorporate a finite temperature coupling using the random, or sto-

chastic terms R(t) [25]. We note that there is no limitation in the temperature that can currently be sup-

ported within the MD region; however, there is currently no method by which the energy dissipated out

of the MD region by the time history kernel h(t) is represented in the surrounding continuum. The random

terms R(t) are needed to allow the continuum to exert a thermal dependence on the reduced MD system

such that the reduced MD system remains at the desired temperature of simulation. In this manner, the

performance of the bridging scale, and specifically the time history kernel h(t), can be analyzed for anhar-
monic effects such as thermal expansion.
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Appendix A. 3D Lennard-Jones stiffness matrices

We show here the numerically calculated K matrices for a 3D FCC lattice structure with nearest

neighbor Lennard-Jones interactions. The schematic for a unit cell with its 12 nearest neighbors is shown
in Fig. 12. For potential parameters r = � = 1, we define the interaction coefficient k to be
k ¼ 28:5725: ðA:1Þ



Fig. 12. Schematic of unit cell (000), and its 12 nearest neighbors for an FCC lattice.
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In terms of k, the K matrices can be written as
K0;0;0 ¼ 8k

�1 0 0

0 �1 0

0 0 �1

0
B@

1
CA; ðA:2Þ

K1;1;0 ¼ K�1;�1;0 ¼ k

1 1 0

1 1 0

0 0 0

0
B@

1
CA; ðA:3Þ

K1;�1;0 ¼ K�1;1;0 ¼ k

1 �1 0

�1 1 0

0 0 0

0
B@

1
CA; ðA:4Þ

K1;0;1 ¼ K�1;0;�1 ¼ k

1 0 1

0 0 0

1 0 1

0
B@

1
CA; ðA:5Þ

K1;0;�1 ¼ K�1;0;1 ¼ k

1 0 �1

0 0 0

�1 0 1

0
B@

1
CA; ðA:6Þ

K0;1;1 ¼ K0;�1;�1 ¼ k

0 0 0

0 1 1

0 1 1

0
B@

1
CA; ðA:7Þ
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K0;1;�1 ¼ K0;�1;1 ¼ k

0 0 0

0 1 �1

0 �1 1

0
B@

1
CA; ðA:8Þ
Appendix B. Discrete Fourier transform

The discrete Fourier transform (DFT) is used to transform functions from real space to wavenumber

space. Assuming that the function f can be defined at all atomic positions l, we denote the value of f

and position l as fl. The DFT of f, which is described using the hatted notation, is defined to be
f̂ ðpÞ ¼ Fl!pfflg �
XL

2

l¼�L
2
þ1

fle�i2ppl=L; ðB:1Þ
where L denotes the number of lattice sites, and p can take any integer value between �(L/2) + 1 and L/2.

The inverse Fourier transform (IFT) is then defined to be
fl ¼ F�1
p!lff̂ ðpÞg � 1

L

XL
2

p¼�L
2
þ1

f̂ ðpÞei2ppl=L: ðB:2Þ
We close by noting the convolution property of the DFT, i.e., that the transform of the convolution of two
functions in space is equal to the product of the transforms of the individual functions
Fl!p

XL
2

l0¼�L
2
þ1

fl�l0gl0

0
@

1
A ¼ f̂ ðpÞĝðpÞ: ðB:3Þ
Appendix C. Laplace transform

The Laplace transform (LT) is used to transform functions of time t into the transform variable s. The

LT of a function f(t) is defined to be
F ðsÞ ¼ Lff ðtÞg �
Z 1

0

f ðtÞe�st dt: ðC:1Þ
The inverse Laplace transform (ILT) is defined to be
f ðtÞ ¼ L�1fF ðsÞg � 1

2pi

Z cþi1

c�i1
F ðsÞest ds; ðC:2Þ
where c is a constant greater than the real parts of all singularies of F(s). We give two other important def-
initions for the LT, first the transform of the time derivative of a function
L
dnf ðtÞ
dtn

� �
¼ snF ðsÞ � sn�1f ð0Þ � sn�2 df

dt
ð0Þ � � � � � dn�1f

dtn�1
ð0Þ: ðC:3Þ
Finally, similar to the DFT, the LT of a convolution integral of two functions is equal to the product of the

transforms of the individual functions
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Lf
Z t

0

f ðt � sÞgðsÞdsg ¼ F ðsÞGðsÞ: ðC:4Þ
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