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In this article, we study the potential of gold nanowires as resonant nanoscale strain sensors. The
sensing ability of the nanowires is determined by calculating the variations in resonant frequency
that occur due to applied uniaxial tensile and compressive strain. The resonant frequencies are
obtained using the surface Cauchy–Born model, which captures surface stress effects on the
nanowires through a nonlinear continuum mechanics framework; due to the continuum formulation,
the strain-dependent nanowire resonant frequencies are calculated through the solution of a standard
finite element eigenvalue problem, where the coupled effects of the applied uniaxial strain and
surface stress are naturally included through the finite element stiffness matrix. The nanowires are
found to be more sensitive to compressive than tensile strain, with resonant frequency shifts around
200–400 MHz with the application of 1% tensile and compressive strain. In general, the strain
sensitivity of the nanowires is found to increase with decreasing cross-sectional size, with additional
dependencies on their aspect ratio. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2953086�

I. INTRODUCTION

Nanowires are rapidly emerging as one of the basic
building blocks for current and future nanoelectromechanical
systems �NEMS�.1,2 The utilization of nanowires in NEMS is
mainly due to their unique optical, mechanical, electrical,
and thermal properties that result due to their small size.3

One of the areas in which nanowires are viewed as hav-
ing the greatest potential is in the general arena of sensing;
that is, nanowires, due to their small sizes and thus small
masses in conjunction with their high stiffness, have resonant
properties that are extremely sensitive to any and all envi-
ronmental changes. Consequently, experiments have demon-
strated the potential of nanowires at various types of sensing,
including optical sensing,4,5 chemical/biological mass
sensing,1,2,6–8 displacement sensing,9,10 and force and strain
sensing.11,12 Furthermore, nanowires, due to their small size,
can naturally operate at higher �gigahertz-range� resonant
frequencies than micron-size wires can, which is critical for
high-frequency sensing applications.1

In many of these sensing applications, the environmental
change of interest is determined by measuring variations in
the resonant frequencies of the nanowires. However, because
the resonant frequencies of structures depend strongly upon
their elastic properties, the implication is that any insightful
modeling of resonance-based sensing using nanowires must
accurately capture the size-dependent elastic properties of
nanowires.13–16

The size-dependent nanowire behavior occurs because
nanowires are subject to surface stresses, which arise due to
the fact that atoms that lie at the surfaces of a material have
fewer bonding neighbors than those that lie within the mate-
rial bulk.17,18 This disparity in bonding environment leads to

surfaces having different elastic properties than the bulk; the
disparity has an increasingly important effect on the effective
elastic properties of the nanowires with decreasing
size.13,14,16

The notion of mechanically tuning the resonant proper-
ties of nanowires has become reality with recent experiments
that have demonstrated the ability to create variable fre-
quency nanowire-based nanomechanical resonators through
the application of tensile and compressive stress.12,19,20 The
key findings of these works are not only that the nanowire
frequencies can be shifted up or down through the applica-
tion of stress, but that the applied stress can be used as a
tuning knob to improve the nanowire quality factors; a
higher quality factor enables nanowire-based NEMS to de-
tect ever smaller forces, masses, and environmental changes,
which is critical to extending the range of application for
nanowire-based resonant sensors.2

The purpose of this work is therefore to investigate and
quantify the coupled effects of surface stresses and applied
uniaxial strain on the resonant properties of gold nanowires.
In particular, we seek to quantify how surface effects impact
the tunability of the nanowire resonant frequencies, as this
information will determine the range of applicability for
nanowire-based resonant strain sensors. We accomplish this
by utilizing the recently developed surface Cauchy–Born
�SCB� model,21,22 which captures nanoscale surface stress
effects within a nonlinear continuum mechanics framework,
to determine the resonant frequencies of gold nanowires un-
der various degrees of uniaxial tensile and compressive
strain. The SCB model is unique as compared to other sur-
face elastic models23–27 in that it can be utilized to capture
the size-dependent mechanical behavior of surface-
dominated nanomaterials such as nanowires using standard
nonlinear finite element �FE� methods.28

The resonant frequency variations are captured naturallya�Electronic mail: harold.park@colorado.edu.
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through the solution of a standard eigenvalue problem using
the FE method, where the FE stiffness matrix captures the
coupled effects of applied strain and surface stresses on the
nanowires. We quantify the strain sensitivity as functions of
the nanowire surface area to volume ratio, aspect ratio,
length, cross-sectional size, and the nature of the applied
strain �tensile or compressive�.

II. THEORY

A. Surface Cauchy–Born model

The Cauchy–Born �CB� model is a hierarchical multi-
scale assumption that enables the calculation of continuum
stress and moduli from atomistic principles.29 Because the
CB model does not consider surface effects, the SCB model
was developed21,22 such that the energy density of a material
would include contributions not only from the bulk but also
the material surfaces, thus leading to the incorporation of
atomistic-based surface stress effects into standard con-
tinuum stress measures.

Both the CB and SCB models are finite deformation
constitutive models that exactly represent the stretching and
rotation of bonds undergoing nonlinear elastic deformation
through continuum mechanics-based kinematic quantities
such as the deformation gradient F, or the stretch tensor C
=FTF.28 The necessity for the finite deformation kinematics
gains credence through recent work that has indicated that
surface stresses can cause elastic compressive strains on the
order of 1% or more in the nanowires.22,30

A schematic of the SCB decomposition of bulk/nonbulk
atoms near a free surface is shown in Fig. 1; note that all
atomic interactions involving bulk and nonbulk atoms are
governed entirely by the range of the interatomic potential
chosen, as would be in an atomistic simulation. Mathemati-
cally, the relationship between the continuum strain energy
density and the total potential energy of the corresponding,
defect-free atomistic system can be written as
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where Ui is the potential energy for atom i, r is the inter-
atomic distance, ��C� is the bulk strain energy density, �0

bulk

represents the volume of the body in which all atoms are
fully coordinated, ��0

a�C� is the surface strain energy density
of a representative atom in surface layer a, and natoms is the
total number of atoms in the system.

The bulk strain energy density ��C� in this work is ob-
tained using embedded atom �EAM� potentials,31 and takes
the form
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where nbrvi are the number of bonds in the representative
unit volume �0 for atom i, Fi is the embedding function, � j

is the contribution to the electron density at atom i from atom
j, �ij is a pair interaction function, and rij is the distance
between atoms i and j.

Analogous to the bulk energy density, the surface energy
densities ��C� describe the energy per representative unde-
formed area of atoms at or near the surface of a homoge-
neously deforming crystal, and is also obtained using the
same EAM potential as the bulk energy density. For fcc met-
als, choosing a surface unit cell that contains only one atom
is sufficient to reproduce the structure of each surface layer.
The surface unit cell possesses translational symmetry only
in the plane of the surface, unlike the bulk unit cell which
possesses translational symmetry in all directions. Thus, the
surface energy density ��0

a�C� for a representative atom in a
given surface layer �0

a in Fig. 1 can be written as
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where nba are the number of bonds for an atom in surface
layer a, and �0 is the representative unit area occupied by a
nonbulk atom lying at or near the free surface.

Once the bulk strain energy density is known, continuum
stress measures such as the second Piola–Kirchoff stress S
can be defined as

S = 2
���C�

�C
, �8�

while the material tangent modulus C is defined to be

FIG. 1. Illustration of bulk and nonbulk layers of atoms in a �100� / 	100
 fcc
crystal interacting by an EAM potential.
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C = 2
�S

�C
. �9�

Similarly, the surface stress on each surface layer �0
a in Fig.

1 can be defined as

S̃�a��C� = 2
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�C
, �10�

while the surface stiffness is defined as

C̃�a��C� = 2
�S̃�a��C�

�C
. �11�

The SCB model thus uses the surface unit cells based on the
surface energies ��C� to capture the undercoordination of
atoms in the surface layers. Because the surface unit cells are
undercoordinated, they are not at a minimum energy, which
results in the existence of surface stresses in Eq. �10� through
differentiation of the surface energies ��C�. As illustrated in
recent atomistic30 and SCB simulations,22 the tensile surface
stresses drive the surface atoms into the bulk such that they
can increase their number of bonding neighbors and thus
their electron density, leading to a more stable and lower
energy configuration.

We also discuss here differences between the current for-
mulation for surface stress, and the traditional thermody-
namic definition of surface stress �see, for example Refs. 17
and 32�,

� = �0 + S� , �12�

where � is the surface stress, �0 is the residual �strain-
independent� portion of the surface stress, and S�, where S is
the surface elastic stiffness, is the surface-elastic �strain-
dependent� part of the surface stress.

The thermodynamic interpretation of the surface stress �
in Eq. �12� is that of an excess quantity, i.e., a measure of the
difference as compared to the equivalent bulk quantity.
Clearly, the definition of surface stress utilized in the present
work in Eq. �10� differs from Eq. �12�. In particular, the
surface stress defined in this work by Eq. �10� and the sur-
face stiffness in Eq. �11� are naturally strain dependent
through their dependence on the stretch tensor C. Further-
more, no linearization is performed to obtain the surface
stress or stiffness, in comparison to that used in Eq. �12��;
both the surface stress in Eq. �10� and surface stiffness in Eq.
�11� are fully nonlinear, finite strain-dependent quantities.

The rationale for the definition of surface stress in Eq.
�10� can also be understood by analyzing the energy balance
in Eq. �1�. Because Eq. �1� represents the total energy of the
nanostructure as decomposed into bulk and surface contribu-
tions, minimization of the energy leads directly to a force
balance,21,33 which carries the clear physical meaning that at
equilibrium, the bulk forces will balance the surface forces
that originate from the surface stress. Furthermore, starting
from an energy balance is extremely favorable for nonlinear
finite element implementation; the full details of the finite
element equations is found in Park et al.21 We note in closing
that an extensive analysis of the SCB model in calculating

the minimum energy configurations of gold nanowires as
compared to benchmark atomistic calculations can be found
in Park and Klein.22

B. Finite element eigenvalue problem for nanowire
resonant frequencies

The equation describing the eigenvalue problem for con-
tinuum elastodynamics is written as

�K − 	2M�u = 0, �13�

where M is the mass matrix and K is the stiffness matrix of
the discretized FE equations; the solution of the eigenvalue
problem described in Eq. �13� gives the resonant frequencies
f =	 /2
 and the corresponding mode shapes u. We note that
the stiffness matrix K contains the effects of both material
and geometric nonlinearities through a consistent lineariza-
tion about the finitely deformed configuration.28

As detailed in Park and Klein,22 once the total energy is
obtained by subtracting from Eq. �1� the work due to external
loads, the FE equilibrium equations can be obtained by ap-
proximating the displacement field using standard FE inter-
polation functions28 and taking the first variation of the total
energy.

We emphasize that the addition of the surface energy
terms in Eq. �1� leads naturally to the incorporation of the
surface stresses in the FE stiffness matrix K, which then
leads to the dependence of the resonant frequencies f on the
surface stresses. The eigenvalue problem was solved using
the Sandia-developed package TRILINOS,34 which was incor-
porated into the simulation code TAHOE.35

III. NUMERICAL EXAMPLES

The numerical examples were performed on three-
dimensional, single-crystal gold nanowires with square cross
sections of width a and length h as illustrated in Fig. 2. All
wires had a �100� axial orientation with 	100
 transverse sur-
faces, and were fixed at both the left �−x� and right �+x�
surfaces, similar to recent experiments utilizing strained
nanowires as nanomechanical resonators.12,19,20 Different
nanowire geometries were considered to determine the ef-
fects of variations in cross-sectional area �CSA� and length
on the nanowire strain sensitivity. Constant aspect ratio �AR�
nanowires �h /a=8� were also considered; all geometries uti-
lized in this work are summarized in Table I.

The SCB bulk and surface energy densities in Eqs. �2�
and �5� were calculated using the Foiles EAM potential for
gold.36 The bulk FE stresses were calculated using Eq. �8�
while the surface FE stresses were found using Eq. �10�. All
SCB calculations utilized regular meshes of 8-node hexahe-

FIG. 2. Schematic of nanowire geometries considered in this work.
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dral finite elements; FE mesh sizes ranging from 13 000 to
71 000 nodes were used to model the nanowire geometries.

The calculation of the resonant frequencies under strain
were performed as follows. Initially, the nanowires are out of
equilibrium due to the surface stresses;22,37 therefore, the
fixed/fixed nanowires were allowed to first relax to an energy
minimizing configuration under the influence of surface
stresses. We note that the nanowires are in a state of tensile
stress at the minimum energy configuration; the reason for
this is that the nanowires would, without constraint, contract
axially due to surface stresses to reduce their transverse sur-
face area.37–39 Previous research has illustrated the ability of
the SCB model to accurately capture deformation arising
solely due to surface stresses as compared to benchmark ato-
mistic calculations.22

However, the fixed end boundary conditions prevent the
contraction from occurring, and thus the nanowires exist in a
tensile stress state. To illustrate the accuracy of the SCB
model for the fixed/fixed boundary conditions that are uti-
lized in this work, a comparison between the SCB model
�576 finite elements� and a fully atomistic molecular statics
calculation �145 000 atoms� of the minimum energy configu-
ration �at zero percent applied strain� for a 25�10
�10 nm fixed/fixed nanowire is shown in Fig. 3. The reso-
nant frequencies calculated for this minimum energy con-

figuration �without imposed strain, but accounting for sur-
face stress effects� are labeled f0 in the subsequent figures
and discussion.

These nonzero stress minimum energy configurations
were chosen instead of starting from zero stress configura-
tions due to the recent experimental works of Verbridge et
al.,12,19 who found that prestressing silicon carbide nano-
wires under tension leads to enhanced quality factors, which
are necessary in resonant sensing applications to enhance
sensitivity to nanoscale forces, masses, and strains. There-
fore, in the present work we utilize the fact that the fixed/
fixed boundary conditions in conjunction with the surface
stresses naturally lead to an effectively tensile prestress in
the nanowires.

From this reference configuration, the nanowires were
subjected to either uniaxial tensile or compressive strain by
elongating one end of the nanowire through a fixed displace-
ment boundary condition. The strain in both tension and
compression was applied in ten loading increments of �
= �0.1% such that a final state of 1% strain in both tension
and compression was reached. After each increment of strain
was applied, the nanowire was allowed to relax to an energy
minimizing configuration. At that point, the fundamental
resonant frequency was calculated through solution of the FE
eigenvalue problem detailed in Eq. �13�; the shifts in reso-
nant frequency occur due to the variation in the stiffness K
resulting from the tensile or compressive state of deforma-
tion of the nanowire coupled with the surface stress effects.

To quantify the effects of the surface stresses on the
resonant frequencies, resonant frequencies were also per-
formed using the bulk CB �BCB� model,29 which does not
account for surface stresses. In other words, the energy den-
sity considered for the BCB model contains only the bulk
strain energy ��C� in Eq. �1�, and neglects the surface en-
ergy densities ��C�. In the subsequent discussion, we com-
pare the resonant frequencies due to surface stresses as cal-
culated using the SCB model against the frequencies
obtained using the BCB model to quantify the effects of
surface stresses and applied strain on the nanowire resonant
frequencies.

A. Constant cross-sectional area nanowires

The first set of results for the resonant frequencies of
nanowires under strain was obtained for the case in which
the nanowire CSA was kept constant with a width of a
=16 nm as seen in Table I, leading to aspect ratios of h /a
=8, 12, and 16.

We first show in Fig. 4 the resonant frequencies for both
the SCB and BCB models with h /a=16 as a function of
strain. As would be expected, both the SCB and BCB fre-
quencies increase with applied tensile strain,40 and decrease
with applied compressive strain, with the BCB results show-
ing a larger decrease in resonant frequency with increasing
compressive strain. The SCB frequencies are larger in all
cases considered because the nanowire is initially in a tensile
state of stress due to the surface stresses, as shown in Fig. 3,
which is a check on the qualitative nature of the SCB solu-
tions.

TABLE I. Summary of nanowire geometries considered: constant aspect
ratio �AR�, constant length, and constant cross-sectional area �CSA�. All
dimensions are in nanometers.

Constant AR Constant length Constant CSA

96�12�12 160�12�12 128�16�16
144�18�18 160�18�18 192�16�16
192�24�24 160�24�24 256�16�16

FIG. 3. �Color online� Comparison of �top� SCB and �bottom� molecular
statics calculations of the minimum energy configuration of 25�10
�10 nm fixed/fixed gold nanowire under the influence of surface stresses.
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Figure 4 also plots the resonant frequencies as compared
to an analytic formula derived by Cao et al.41 for the reso-
nant frequency of a fixed/fixed carbon nanotube �CNT� for a
given strain � from continuum beam theory. With minor
modifications to account for the fact that nanowires have a
different geometry than nanotubes, the frequency shift due to
strain can be expressed as

f� − f0 =
i2


2h2�EI

�A
��1 + �

Ah2

4
2I
− 1
 , �14�

where f0 is the zero strain resonant frequency, f� is the reso-
nant frequency at strain �, i is a geometric constant, where
i�1.5 for fixed/fixed beams, I is the moment of inertia, A is
the cross-sectional area, h is the length of the beam, � is the
density, and E is the Young’s modulus.

As can be observed in Fig. 4, the analytic solution and
the BCB solution match extremely well, with an overpredic-
tion by the SCB solution that occurs due to the fact that the
nanowires are in tension as the fixed end boundary condi-
tions prevent contraction due to surface stresses. However, it
is observed that there is a deviation between the BCB and
analytic solutions as the applied strain becomes large, or on
the order of about 0.2% in both tension and compression.
This occurs because the BCB model is a finite deformation,
nonlinearly elastic constitutive model, in which the stiffness
of the material is not constant with deformation as is as-
sumed in Eq. �14�, and in which the geometry �i.e., the cross-
sectional area and length� is also not constant due to defor-
mation. Thus, the analytic solution in Eq. �14� begins to
underpredict the resonant frequencies at finite strain due to
the fact that nonlinear effects are not accounted for.

Figure 5 illustrates the variation in the normalized reso-
nant frequencies for both BCB and SCB results for the con-
stant CSA nanowires under tensile and compressive strain,
where the frequencies for both were normalized by their zero
strain frequency f0. An interesting trend that is observed in
Fig. 5 that is also observed for the other parametric studies

conducted is that, while the SCB resonant frequencies are
always larger for a given geometry than the BCB frequen-
cies, the variation in the SCB resonant frequencies is always
less than the variation in the BCB resonant frequencies as a
function of both tensile and compressive strain.

The SCB nanowires exhibit a smaller variation in reso-
nant frequencies with applied strain due to the fact that the
nanowires are initially in a state of tensile stress that places
the nanowire behavior in the nonlinear elastic regime. There-
fore, the SCB nanowires show a reduction in stiffness with
increasing strain, which reduces the strain sensitivity as com-
pared to the BCB nanowires.

In all cases for the SCB nanowires as shown in Fig. 6,
the strain sensitivity is greater in compression than tension.
For the h /a=16 SCB nanowire, the resonant frequency shift
at 1% compression is 134 MHz, while the frequency shift at
1% tension is 104 MHz. The strain sensitivity is larger for

FIG. 4. �Color online� SCB and BCB predictions of the resonant frequencies
of constant cross-sectional area nanowires �h /a=16� as a function of strain
as compared to analytic solution in Eq. �14�.

FIG. 5. �Color online� SCB and BCB predictions of the normalized resonant
frequencies of constant cross-sectional area gold nanowires as a function of
strain.

FIG. 6. �Color online� SCB and BCB predictions of the strain sensitivity of
constant cross-sectional area nanowires.
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the smaller aspect ratios; for the h /a=8 SCB nanowire, the
frequency shift is 163 MHz at 1% compression, and 146
MHz at 1% tension.

This is further quantified in Table II, which quantifies the
overall strain sensitivities of the nanowires through a mea-
sure we call the total strain sensitivity. The strain sensitivity
is an important parameter as it measures the change in reso-
nant frequency that occurs for a given increment of strain;
we define the total strain sensitivity to be the difference be-
tween the resonant frequency at 1% tensile strain and at 1%
compressive strain. Table II shows that the largest strain sen-
sitivity occurs for both SCB and BCB nanowires for the
smallest aspect ratio �h /a=8� nanowires, with total strain
sensitivities exceeding 300 MHz in both the SCB and BCB
cases; the strain sensitivity is observed to decrease for in-
creasing aspect ratio h /a.

B. Constant length nanowires

The results for the constant length nanowires under im-
posed uniaxial strain are shown in Figs. 7 and 8. As in the
constant CSA case, the nanowires show an increase in reso-
nant frequency with increasing tensile strain, while showing
a decrease in resonant frequency with increasing compres-
sive strain. Also of interest as shown in Fig. 7, the nanowires
exhibit similar trends in normalized resonant frequency shift
as a function of h /a with respect to the initial configuration,
as did the constant CSA nanowires in Fig. 5.

Figure 8 and Table III illustrate the total strain sensitivity
of the constant length nanowires. For the constant length
case, both the SCB and BCB nanowires are observed to
show an increase in total strain sensitivity with a decrease in
cross-sectional area, or increasing h /a, which differs from
the constant CSA nanowires. For the 24 nm cross section, the
SCB nanowires exhibit a total strain sensitivity of 226 MHz,
while halving the cross-sectional length to 12 nm increases
the total strain sensitivity to 322 MHz. In contrast, the BCB
nanowires at 24 nm have a total strain sensitivity of 233
MHz, with an increase to a total strain sensitivity of 400
MHz at 12 nm.

The SCB constant length nanowires also show greater
strain sensitivity in compression than tension, with the dif-
ference increasing with increasing aspect ratio. For example,
the 12 nm cross-section SCB nanowire has a resonant fre-
quency shift of 175 MHz at 1% compression, and 147 MHz
at 1% tension. In comparison, the 24 nm cross-ection SCB
nanowire has a resonant frequency shift of 119 MHz at 1%
compression, and 107 MHz at 1% tension.

C. Constant aspect ratio nanowires

Finally, we discuss the resonant frequencies for the con-
stant aspect ratio �AR� nanowires under strain to augment
and clarify the size-dependent results that were found for the
constant length nanowires; the results are summarized in
Figs. 9 and 10. Again, as shown in Fig. 9, the constant AR
nanowires follow the trends observed for the constant CSA

TABLE II. BCB and SCB predictions of the total strain sensitivity �differ-
ence in resonant frequency between 1% compressive strain and 1% tensile
strain� of constant CSA nanowires. Dimensions in nanometers, total strain
sensitivity in megahertz.

Geometry BCB SCB

128�16�16 328.81 308.96
192�16�16 305.55 265.89
256�16�16 314.80 238.75

FIG. 7. �Color online� SCB and BCB predictions of the normalized resonant
frequencies of constant length nanowires as a function of strain.

FIG. 8. �Color online� SCB and BCB predictions of the strain sensitivity of
constant length nanowires.

TABLE III. BCB and SCB predictions of the total strain sensitivity �differ-
ence in resonant frequency between 1% compressive strain and 1% tensile
strain� of constant length nanowires. Dimensions in nanometers, total strain
sensitivity in megahertz.

Geometry BCB SCB

160�12�12 400.78 322.43
160�18�18 286.20 267.35
160�24�24 232.60 225.78
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and length nanowires in that the normalized resonant fre-
quencies increase in tension, and decrease in compression. It
is interesting to find that, despite having the same AR, the
nanowires exhibit large differences between their resonant
frequencies as a function of strain. In addition, similar to
previous cases, the constant AR nanowires show greater
strain sensitivity in compression than tension.

Figure 10 and Table IV show the total strain sensitivity
for the constant AR nanowires. As can be seen, though the
aspect ratio is kept constant at h /a=8, the strain sensitivity
for the SCB nanowires clearly increases with a decrease in
cross-sectional size; the total strain sensitivity is reduced by
nearly 50% from 403 to 214 MHz by doubling the cross-
sectional length from 12 to 24 nm. These results in conjunc-
tion with those found for the constant length nanowires
clearly indicate the gain in sensing performance, i.e., an in-
crease in the total strain sensitivity, that may be exploited by
simply decreasing the size of the nanowires.

D. Discussion

After having presented the results from all three para-
metric studies, we have found information to assist in the
design of highly strain sensitive nanowires. In general,
smaller cross sections �for a given nanowire length or aspect
ratio� and smaller aspect ratios �for a given nanowire cross
section� appear to lead to greater total strain sensitivity. We
additionally quantify a potential design variable that appears
to hold constant over all cases; that is, all nanowires appear
to be more sensitive to compressive strain than tensile strain.
This is quantified in Fig. 11, which plots the ratio of the
frequency shift at 1% compressive strain to that at 1% tensile
strain for all three geometry types �constant CSA, AR,
length� for the SCB nanowires, i.e., when surface stresses are
accounted for; we note that similar trends are found for the
BCB nanowires.

We also plot in Fig. 11 the results for constant surface
area to volume �SAV� ratio nanowires, which varied in cross-
sectional size from 14.7 to 15.2 nm while having lengths that
ranged from 110 to 230 nm; the surface area to volume ratio
was kept constant at 0.28 nm−1. As can be seen, Fig. 11
shows that for the constant CSA, length, and SAV nanowires,
the selective strain sensitivity of nanowires to compression
can be increased dramatically by increasing the nanowire
aspect ratio h /a. Also of interest, Fig. 11 shows that, for the
constant AR nanowires, the selective strain sensitivity to
compression remains relatively constant �around 1.12 times�

FIG. 9. �Color online� SCB and BCB predictions of the normalized resonant
frequencies of constant aspect ratio nanowires as a function of strain.

FIG. 10. �Color online� SCB and BCB predictions of the resonant frequency
shift of constant aspect ratio nanowires due to applied strain.

TABLE IV. BCB and SCB predictions of the total strain sensitivity �differ-
ence in resonant frequency between 1% compressive strain and 1% tensile
strain� of constant aspect ratio nanowires. Dimensions in nanometers, total
strain sensitivity in megahertz.

Geometry BCB SCB

96�12�12 436.41 403.07
144�18�18 295.02 279.78
192�24�24 222.38 213.63

FIG. 11. �Color online� Ratio of the frequency shift at 1% compressive
strain to that at 1% tensile strain vs the nanowire aspect ratio h /a for SCB
nanowires.
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despite the doubling in cross-sectional dimension, though a
small increase is found with increasing cross-sectional di-
mension.

We also quantify the potential of nanowires as ultrasen-
sitive strain sensors, similar to that done by Cao et al.,41 and
Li and Chou,42 calculating the strain sensitivity of the nano-
wires at the level of nanostrain, or �=10−11. The nanostrain
sensitivity is calculated using Eq. �14� for the constant CSA
nanowires considered in this work, with the results plotted in
Fig. 12. As shown, gold nanowires with the dimensions ana-
lyzed in this work have a nanostrain sensitivity on the order
of 0.1 Hz, with the strain sensitivity increasing with decreas-
ing cross-sectional area. Thus, so long as the experimental
equipment that is being used to detect the resonant frequency
has a sensitivity of about 0.01 Hz, gold nanowires may be
used as nanoscale strain sensors.

The present results for gold nanowires can be compared
with existing results for the strain sensitivity of CNTs.41,42 In
comparison, the CNTs have a nanostrain sensitivity on the
order of kilohertz as compared to hertz for the nanowires,
with the likely reason for this being the fact that the CNT
modulus is on the order of TPa, while the �100� nanowire
modulus is on the order of 36 GPa.

We also discuss the present results in the context of the
recent experimental work of Verbridge et al.,12,19 who stud-
ied the effects of applied stress on the resonant frequencies
and quality factors of 100 nm cross-section silicon nitride
and single-crystal silicon nanowires. While frequency sensi-
tivity as a function of strain was not explicitly given in that
work, the largest frequency shift that was obtained due to
stress was about 40 MHz. If the dimensions of the nanowires
considered in this work are increased by an order of magni-
tude to match those in the Verbridge work �for example mak-
ing the 192�16�16 nm wire in this work a 1920�16
�16 nm nanowire�, we find that the total strain sensitivity
would be about 30 MHz, which is comparable to that found
experimentally.

We also discuss the lack of surface area to volume ratio
dependence on the strain sensitivity that is found in this
work. To further elaborate this point, we plot in Fig. 13 the
variation in normalized resonant frequencies for the constant
SAV nanowires considered in this work. It would appear
from the similarities between Figs. 5, 7, and 13 that the nor-
malized resonant frequencies of nanowires under uniaxial
strain are strongly dependent on the aspect ratio h /a, while
showing little to no dependence on SAV. Indeed, these results
correlate with the fact that no dependence of the strain sen-
sitivity on the surface area to volume ratio has been found
experimentally.12

IV. CONCLUSIONS

The purpose of this work has been to perform a detailed
study as to the coupled effects of surface stresses and applied
uniaxial deformation on the resonant frequencies and thus
the strain sensitivity of gold nanowires. This was accom-
plished by utilizing the SCB model21,22 to study the effects of
uniaxial tensile and compressive strain on the fundamental
resonant frequency of gold nanowires at zero temperature.
Because it captures nanoscale surface stress effects within a
continuum mechanics framework, the SCB model can be ef-
ficiently utilized to predict the resonant properties of the
nanowires through the solution of a standard FE eigenvalue
problem with a full accounting of the surface stress effects
and applied strain through the FE stiffness matrix; such cal-
culations would be nearly intractable using fully atomistic
calculations.

By subjecting gold nanowires of various geometry �con-
stant cross-sectional area, length, surface area to volume ra-
tio, and aspect ratio� to uniaxial tensile and compressive
strain, we draw the following conclusions: �1� The resonant
frequencies of the nanowires increase with tensile strain and
decrease with compressive strain. �2� The nanowires were
shown to have a strain sensitivity on the order of 0.01 Hz at
the level of nanostrains. �3� For design purposes, we find that
nanowires with smaller aspect ratios �for a given cross-

FIG. 12. �Color online� Beam theory prediction based on Eq. �14� of the
effects of axial nanostrain on the fundamental resonant frequency of a gold
nanowire.

FIG. 13. �Color online� SCB and BCB predictions of the normalized reso-
nant frequencies of constant SAV nanowires as a function of strain.
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sectional size� or smaller cross-sectional sizes �for a given
length or aspect ratio� are more sensitive to changes in strain.
These findings have positive ramifications for strain-
sensitive nanowire-based NEMS, in that they imply that de-
creasing the nanowire size leads to significant improvements
in strain sensitivity. �4� The total strain sensitivity, measured
by the difference in resonant frequency at 1% compressive
and 1% tensile strain, was found to be on the order of 200–
400 MHz for the nanowire sizes considered in this work. �5�
The nanowires were found in all cases to be more sensitive
to compressive as compared to tensile strain. Furthermore,
the relative sensitivity to compression can be increased for
all nanowire geometries considered simply by increasing the
nanowire aspect ratio. �6� The major effect of surface
stresses is to reduce the total strain sensitivity of the nano-
wires as compared to the corresponding bulk material.
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