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The purpose of the present work is to quantify the coupled effects of surface stresses and boundary
conditions on the resonant properties of silicon nanowires. We accomplish this by using the surface
Cauchy–Born model, which is a nonlinear, finite deformation continuum mechanics model that
enables the determination of the nanowire resonant frequencies including surface stress effects
through solution of a standard finite element eigenvalue problem. By calculating the resonant
frequencies of both fixed/fixed and fixed/free �100� silicon nanowires with unreconstructed �100�
surfaces using two formulations, one that accounts for surface stresses and one that does not, it is
quantified how surface stresses cause variations in nanowire resonant frequencies from those
expected from continuum beam theory. We find that surface stresses significantly reduce the
resonant frequencies of fixed/fixed nanowires as compared to continuum beam theory predictions,
while small increases in resonant frequency with respect to continuum beam theory are found for
fixed/free nanowires. It is also found that the nanowire aspect ratio, and not the surface area to
volume ratio, is the key parameter that correlates deviations in nanowire resonant frequencies due
to surface stresses from continuum beam theory. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2939576�

I. INTRODUCTION

Nanowires have been among the most studied nanoma-
terials in recent years. The intense interest in nanowires has
emerged for a variety of reasons, foremost because their
small sizes often lead to unique physical properties that are
not observed in the corresponding bulk material. Nonbulk
phenomena have been observed in the mechanical, electrical,
thermal, and optical properties of both metallic and semicon-
ducting nanowires.1 These unique properties have therefore
generated significant interest in using nanowires as the basic
building blocks of future multifunctional nanoelectrome-
chanical systems �NEMS�.2

With the recent explosion in NEMS research, silicon
nanowires, or silicon-based compounds �SiC, SiN�, have
been utilized most frequently as the basic building block of
NEMS. There are multiple reasons for this, including the
ability to micromachine nanometer-scale silicon nanowires,3

and the fact that silicon is the fundamental material in the
microelectronics industry coupled with its potential as an
optoelectronic material.4 Silicon nanowire-based NEMS
have been studied in a wide variety of applications, including
high frequency resonators for next-generation wireless
devices,2 force sensors,5 electrometers for charge
measurement,6 and chemical and biological mass sensors.7

Many of these applications2,5,7 require precise knowl-
edge of the nanowire resonant frequency, or variations in the
resonant frequency due to environmental changes that are to
be measured, i.e., adsorbed mass for mass sensing. However,
the understanding and design of such NEMS is significantly
complicated by the fact that the elastic properties, and thus
the resonant frequencies of nanowires are known to differ
from those of the bulk material.

Nanowire elastic properties are different from those of
bulk materials due to the presence of free surfaces. In par-
ticular, surface atoms are subject to surface stresses.8–10 Sur-
face stresses on nanomaterials arise due to an imbalance in
the forces acting on surface atoms due to their lack of bond-
ing neighbors. Because surface atoms have a different bond-
ing environment than atoms that lie within the material bulk,
the elastic properties of surfaces differ from those of the bulk
material, and the effects of the difference between surface
and bulk elastic properties on the effective elastic properties
of the nanowire become magnified with decreasing structural
size or increasing surface area to volume ratio.

The elastic properties of silicon nanowires have been
theoretically predicted to show a strong size dependence.11,12

Many experimental studies, either through resonant-based
testing7,13 or atomic force microscrope �AFM�-based
bending14,15 of the elastic properties of silicon use nanowires
with cross-sectional sizes larger than 50 nm, where surface
effects are not expected to be significant. However, experi-
ments using nanowires with cross-sectional sizes less than 20
nm �Refs. 16–18� agree with theoretical predictions11 that the
Young’s modulus of silicon decreases with decreasing size.
We note that such size dependence has also been experimen-
tally observed in metallic nanowires.19,20

Therefore, the purpose of this work is to quantify how
surface stresses impact the resonant properties of silicon
nanowires. In particular, we study �100� silicon nanowires
with unreconstructed �100� surfaces that have cross-sectional
sizes ranging from 10 to 30 nm using both the fixed/fixed
and fixed/free beam-type boundary conditions that are preva-
lent in NEMS design. The size range for the nanowire cross
sections is deliberately chosen to bridge the gap between size
scales that can be studied using atomistic calculations, and
those which are commonly studied experimentally.a�Electronic mail: harold.park@colorado.edu.

JOURNAL OF APPLIED PHYSICS 103, 123504 �2008�

0021-8979/2008/103�12�/123504/10/$23.00 © 2008 American Institute of Physics103, 123504-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.2939576
http://dx.doi.org/10.1063/1.2939576


While it is known that the �100� surfaces of silicon tend
to undergo dimerized reconstructions,21 we focus on the un-
reconstructed �100� surfaces in the present work. In doing so,
we note that the ideal 1�1�100� and 2�1 dimerized �100�
surfaces of silicon both experience a compressive surface
stress21 leading to tensile strain. However, the compressive
surface stress experienced by the 2�1 dimerized silicon
nanowires is not as large as that of the unreconstructed �100�
surfaces due to the fact that the dimerized surface atoms have
three nearest neighbors, as compared to only two for the
unreconstructed surface atoms. Therefore, it is expected that
the trends discussed in the present work would hold qualita-
tively for dimerized silicon nanowires, with the effects of the
surface stress being slightly mitigated as compared to the
unreconstructed surfaces.

We address this goal by utilizing the recently developed
surface Cauchy–Born �SCB� model.22,23 The uniqueness of
the SCB model as compared to other surface elastic
models24–27 is that it enables, by correctly accounting for
surface stress effects on nanomaterials, the solution of three-
dimensional nanomechanical boundary value problems for
displacements, stresses and strains in nanomaterials using
standard nonlinear finite element �FE� techniques, where the
nonlinear material constitutive response obtained directly
from realistic interatomic potentials such as the Tersoff
potential.28

The resonant properties of the silicon nanowires are de-
termined by solving a standard FE eigenvalue problem for
the resonant frequencies and associated mode shapes, with
full accounting for surface stress effects through the FE stiff-
ness matrix. We quantify the effects of surface stress on the
fundamental resonant frequency for both fixed/free and
fixed/fixed boundary conditions as functions of geometry,
size, and surface area to volume ratio. We further compare
the results to those obtained on the same geometries using
the standard bulk Cauchy–Born material, which does not ac-
count for surface stress effects, to quantify how surface
stresses cause the resonant frequencies of silicon nanowires
to deviate from those predicted using continuum beam
theory.

II. THEORY

A. Bulk Cauchy–Born model for silicon

The bulk Cauchy–Born �BCB� model is a hierarchical
multiscale assumption that enables the calculation of con-
tinuum stress and moduli directly from atomistic
principles.29 The BCB formulation in this work for silicon
closely mirrors that of Tang et al.30 and Park and Klein.31

Because the SCB model for silicon is much easier to under-
stand once the bulk formulation is presented, we present an
abbreviated version of the BCB formulation later.

In the present work, we utilize the T3 form of the Tersoff
potential28 and the resulting parameters. The T3 is named as
such due to the fact that two earlier versions of the Tersoff
potential suffered from various shortcomings, including not
predicting diamond as the ground state of silicon, inaccura-

cies in the bulk elastic constants, and inaccurate modeling of
the �100� surfaces of silicon.21 The T3 potential energy U
can be written as

U =
1

2	
i�j

Vij ,

Vij = fC�rij��fR�rij� + bijfA�rij�� , �1�

where rij is the distance between atoms i and j, fC is a cutoff
function, which is used to ensure that the Tersoff potential is
effectively a nearest neighbor potential, fR is a repulsive
function, fA is an attractive function, and bij is the bond order
function, which is used to modify the bond strength depend-
ing on the surrounding environment.

The various functions all have analytic forms, which are
given as

fR�rij� = Ae−�rij , �2�

fA�rij� = − Be−�rij , �3�

bij = �1 + �n�ij
n �−1/2n, �4�

where

�ij = 	
k�i,j

fC�rik�g��ijk� , �5�

and

g��ijk� = 1 +
c2

d2 −
c2

d2 + �h − cos �ijk�2 , �6�

where �ijk represents the angle between a triplet of atoms
i− j−k.

In order to turn the atomistic potential energy into a form
suitable for the BCB approximation, two steps are taken.
First, the potential energy is converted into a strain energy
density through normalization by a representative atomic
volume �0; �0 can be calculated for diamond cubic �DC�
lattices such as silicon by noting that there are eight atoms in
a DC unit cell of volume a0

3, where a0=5.432 Å is the sili-
con lattice parameter. Thus, �0=8 /a0

3 for a �100� oriented
silicon crystal. Second, the neighborhood surrounding each
atom is constrained to deform homogeneously via continuum
mechanics quantities such as the deformation gradient F, or
the stretch tensor C=FTF. It is critical to note that due to the
usage of nonlinear kinematics through F and C, the BCB
model is a finite deformation, nonlinearly elastic constitutive
model that explicitly represents the stretching and rotation of
bonds undergoing large deformation.

Silicon is well known to occur naturally in the DC lattice
structure, which is formed through two interpenetrating face-
centered-cubic �fcc� lattices, where the two fcc lattices are
offset by a factor of �a0 /4,a0 /4,a0 /4�. The DC lattice is
shown in Fig. 1, which illustrates the interpenetrating fcc
lattices. The complication in modeling DC lattices, which
will be resolved later, is that the interpenetrating fcc lattices
must be allowed to translate with respect to each other. This
key restriction can be accommodated through a five-atom
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unit cell, i.e., atom A and its four neighbors in Fig. 1�b�, for
which the corresponding Tersoff strain energy density � can
be written as

��r1j�C�� =
1

2�0
	
j=2

5

V1j�r1j�C�� , �7�

where i=1 in Eq. �7� because atom i is considered the center
of the unit cell �see Fig. 1�, and the summation goes over the
four nearest neighbor bonds j=2,3 ,4 ,5. The full expression
for the strain energy density ��r1j� can be written as

��r1j�C�� =
V1j

2�0
= Ae−�r1j�C� − Be−�r1j�C�

��1 + �n� 	
k�i,j

g��1jk��n�−1/2n, �8�

where again the multibody effects of the bonding environ-
ment are captured through the g��1jk� term. We enable the
interpenetrating fcc lattices to translate with respect to each
other by introducing an internal degree of freedom � asso-
ciated with all neighboring atoms of atom A in Fig. 1�b�
through the modified bond lengths r1j as

r1j = 
r1j
 = 
F�R1j + ��
, j = 2,3,4,5, �9�

where r1j is the deformed bond vector, R1j is the undeformed
bond vector between atoms 1 and j and � is the shift intro-
duced between the two interpenetrating fcc lattices �i.e., lat-
tices A and B in Fig. 1� in the undeformed configuration.

The incorporation of the internal degrees of freedom and
writing the bond lengths in terms of F results in a modified
strain energy density function as

��C� = �̃�C,��C�� . �10�

Using standard continuum mechanics relationships, we
can calculate the second Piola–Kirchoff stress �PK2� as

1

2
S =

��

�C
=

��̃

�C
+

��̃

��

��

�C
. �11�

To keep the crystal at an energy minimum, the internal de-
grees of freedom are constrained to deform according to ��,
which leads to the following relationship:

��̃

���
= 0, �12�

and changes the final expression for the PK2 stress to

S = 2
��̃

�C
. �13�

The spatial tangent modulus can be similarly calculated us-
ing standard continuum mechanics relations, and can be writ-
ten as

CIJKL = MIJKL − AIJpAKLq�D−1�pq, �14�

where

MIJKL = 4
�2�̃

�CIJ � CKL
,

Dpq =
�2�̃

�	p
� � 	q

� ,

AIJp = 2
�2�̃

�CIJ � 	p
� . �15�

B. Surface Cauchy–Born model for silicon

In this section, we present the formulation by which sur-
face stresses are accounted for through an extension of the
BCB model we call the SCB model. The SCB model was
developed previously for both fcc crystals22,23 and for DC
lattices.31 We therefore briefly summarize the relevant as-
pects of the SCB model for silicon31 in this section. We first
note that the total energy of a nanostructure can be written as
the sum of bulk and surface terms

	

=1

natoms

U
�r� � �
�0

bulk
��C�d� + �

�0

��C�d� , �16�

where U
�r� represents the potential energy for each atom 
,
��C� is the bulk energy density previously defined in Eq.
�8�, and ��C� is the surface energy density. The issue then is
to determine a representation for the surface unit cell that
will be used to calculate the surface energy density ��C�.

We accomplish this through the nine atom surface unit
cell for unreconstructed �100� silicon surfaces shown in Fig.
2. The rationale for this particular unit cell arises because
atoms 2 and 6 both have a full complement of neighbors, and
thus represent a distinct fcc lattice B. The atoms neighboring
atoms 2 and 6 therefore must be part of the interpenetrating
fcc lattice A, and thus should be able to translate with respect
to atoms 2 and 6. Therefore, we assign an internal degree of
freedom �s, where the superscript s designates an internal
surface degree of freedom, to all the black atoms
�1,3,4,7,8,9� of fcc lattice A in Fig. 2.

The resulting strain energy density � for the surface unit
cell seen in Fig. 2 can thus be written as

FIG. 1. �Color online� Illustration of the diamond cubic lattice structure of
silicon. Black atoms represent standard fcc unit cell atoms, while green
atoms represent the interpenetrating fcc lattice. The drawn bonds connect
atoms in fcc lattice B to atoms in fcc lattice A.
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� =
1

�0
� 	

j=2,6
V1j�r1j� + 	

k=1,7,8,9
V6k�r6k�

+ 	
m=1,3,4,5

V2m�r2m�� , �17�

where �0 is the area per atom on the surface. Following Eq.
�9�, we express the bond lengths for the surface unit cell as

r1j = 
r1j
 = 
F�R1j + �s�
, j = 2,6,

r6k = 
r6k
 = 
F�R6k + �s�
, k = 1,7,8,9,

r2m = 
r2m
 = 
F�R2m + �s�
, m = 1,3,4,5. �18�

Incorporating the bond lengths that have been modified by
the deformation gradient F and the internal degrees of free-
dom �s in Eq. �18� creates a modified surface energy density
�̃�C� from Eq. �17�, where the surface energy density can be
modified analogously to the procedure outlined previously
for the bulk energy density in Eqs. �11� and �12� to enforce
the energy minimizing condition

��̃

��̃s
= 0, �19�

where �̃s, similar to the meaning in the bulk case in Eq. �12�,
represents the deformation of the surface internal degrees of
freedom necessary to minimize the surface energy. Using the
modified surface energy density �̃�C�, we arrive at the ex-
pression for the surface PK2 stress Ss�C�, where the super-
script s here and later indicates surface values

Ss�C� = 2
��̃�C�

�C
. �20�

Similarly, the surface tangent modulus can be written as

CIJKL
s = MIJKL

s − AIJp
s AKLq

s �D−1�pq
s , �21�

where

MIJKL
s = 4

�2�̃

�CIJ
s � CKL

s ,

Dpq
s =

�2�̃

��̃p
s � �̃q

s
,

AIJp
s = 2

�2�̃

�CIJ
s � �̃p

s
. �22�

C. Finite element eigenvalue problem for nanowire
resonant frequencies

The equation describing the eigenvalue problem for con-
tinuum elastodynamics is written as

�K − 2M�u = 0, �23�

where M is the mass matrix and K is the stiffness matrix of
the discretized FE equations; the solution of the eigenvalue
problem described in Eq. �23� gives the resonant frequencies
f , where f = /2� and the corresponding mode shapes u. We
note that the stiffness matrix K contains the effects of both
material and geometric nonlinearities through a consistent
linearization about the finitely deformed configuration.

We emphasize that the addition of the surface energy
terms in Eq. �16� leads naturally to the incorporation of the
surface stresses in the FE stiffness matrix K, which then
leads to the dependence of the resonant frequencies f on the
surface stresses. The eigenvalue problem was solved using
the Sandia-developed package TRILINOS,32 which was incor-
porated into the simulation code TAHOE.33

III. NUMERICAL EXAMPLES

All numerical examples were performed on three-
dimensional, single crystal silicon nanowires of length l that
have a square cross section of width a as illustrated in Fig. 3.
Three different parametric studies are conducted in this
work, which consider nanowires with constant cross-
sectional area �CSA�, constant length, and constant SAV
�SAV�; the geometries are summarized in Table I.

All wires had a �100� longitudinal orientation with unre-
constructed �100� transverse surfaces and had either fixed/
free �cantilevered� boundary conditions, where the left �−x�
surface of the wire was fixed while the right �+x� surface of
the wire was free, or fixed/fixed boundary conditions, where
both the left �−x� and right �+x� surfaces of the wire were
fixed. All FE simulations were performed using the stated

FIG. 2. �Color online� Illustration of the nine atom surface unit cell for the
surface with a �010� normal of a diamond cubic crystal. Black atoms repre-
sent fcc lattice A, while green atoms represent the interpenetrating fcc lattice
B. The drawn bonds connect atoms in fcc lattice B to atoms in fcc lattice A.

FIG. 3. Nanowire geometry considered for numerical examples.
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boundary conditions without external loading and utilized
regular meshes of eight-node hexahedral elements. The bulk
and surface energy densities in Eqs. �8� and �17� were calcu-
lated using Tersoff T3 parameters,28 while the bulk and sur-
face FE stresses were found using Eqs. �13� and �20�.

Regardless of boundary condition, the nanowires are ini-
tially out of equilibrium due to the presence of the surface
stresses. For fixed/free nanowires, the free end expands in
tension to find an energy minimizing configuration under the
influence of surface stresses. To illustrate this, we compare
the energy minimized positions of the 128�16�16 nm
fixed/free nanowire using the SCB model to a benchmark
molecular statics �MS� calculation performed using the Ter-
soff T3 potential with LAMMPS �Ref. 34� MS code. As seen in
Fig. 4, the SCB model, which required only 16 393 FE
nodes, gives a very accurate description of the minimum
energy configuration due to surface stresses as compared to
the MS calculation, which required more than 1.7�106 at-
oms. We note that the tensile strain induced in the nanowires
due to the surface stresses is about 0.1%.

As noted previously, no external forces were applied to
obtain the results seen in Fig. 4; all deformation is solely due

to surface stresses. In analyzing the results in Fig. 4, we
emphasize that the SCB model accurately predicts the tensile
expansion of the free end due to surface stresses, in addition
to capturing the inhomogeneous nature of the tensile expan-
sion, which occurs due to the noncentrosymmetric nature of
the DC silicon lattice. The results are in agreement with first
principles calculations,11,21 which also indicate that �100�
silicon nanowires with �100� surfaces have compressive sur-
face stresses that cause the nanowires to expand.

Fixed/fixed nanowires, on the other hand, are con-
strained such that the nanowire is unable to expand due to
the boundary conditions. The boundary condition constraint
therefore causes the minimum energy configuration of fixed/
fixed nanowires to be a state of compression, which we will
demonstrate is critical to understanding how surface stresses
and boundary conditions couple to alter the resonant proper-
ties of fixed/fixed nanowires as compared to continuum
beam theory predictions.

Once the minimum energy configuration for either
boundary condition is known, the eigenvalue problem de-
scribed in Eq. �23� is solved using the FE stiffness matrix
from the equilibrated �deformed� nanowire configuration to
find the resonant frequencies. Resonant frequencies were
also found using the standard BCB model �without surface
stresses� on the same geometries for comparison to quantify
how surface stresses change the resonant frequencies as com-
pared to the bulk material for a given geometry and bound-
ary condition. For all resonant frequencies reported in this
work, the fundamental or lowest mode frequencies corre-
sponded to a standard bending mode of deformation.

A. Constant cross-sectional area

To validate the accuracy of the calculations for the BCB
material, we compare in Tables II and III the BCB and SCB

TABLE I. Summary of geometries considered: constant SAV ratio, constant
length, and constant CSA. All dimensions are in nanometers �nm�.

Constant SAV Constant length Constant CSA

64�16�16 240�8�8 64�16�16
110�15.2�15.2 240�12�12 128�16�16
170�14.9�14.9 240�18�18 256�16�16
230�14.7�14.7 240�24�24 384�16�16
290�14.5�14.5 240�30�30 512�16�16

FIG. 4. �Color online� Minimum energy configuration of a fixed/free 128
�16�16 nm silicon nanowire due to surface stresses as predicted by �top�
MS calculation, �bottom� SCB calculation.

TABLE II. Summary of constant CSA nanowire fundamental resonant fre-
quencies for fixed/free boundary conditions as computed from: �1� The ana-
lytic solution given by Eq. �24�, �2� BCB, and �3� SCB calculations. All
frequencies are in megahertz �MHz�, the nanowire dimensions are in nm.

Geometry Eq. �24� BCB SCB

64�16�16 3933 3912 4008
128�16�16 983 990 1013
256�16�16 246 248 253
384�16�16 109 110 112
512�16�16 62 62 63

TABLE III. Summary of constant CSA nanowire fundamental resonant fre-
quencies for fixed/fixed boundary conditions as computed from: �1� The
analytic solution given by Eq. �25�, �2� BCB, and �3� SCB calculations. All
frequencies are in MHz, the nanowire geometry is in nm.

Geometry Eq. �25� BCB SCB

64�16�16 24 842 21 618 22 165
128�16�16 6211 6074 6166
256�16�16 1553 1565 1528
384�16�16 690 698 635
512�16�16 388 393 317
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resonant frequencies to those obtained using the well-known
analytic solutions for the fundamental resonant frequency for
both fixed/free �cantilevered� and fixed/fixed beams.35 For
the fixed/free beam

f0 =
B0

2

2�l2EI

�A
, �24�

where B0=1.875 for the fundamental resonant mode, E is the
modulus for silicon in the �100� direction, which can be
found to be 90 GPa,28 I is the moment of inertia, l is the
nanowire length, A is the cross-sectional area, and � is the
density of silicon. The FE calculations used to calculate the
BCB and SCB resonant frequencies involved regular meshes
of eight-node hexahedral elements; the mesh sizes ranged
from about 8000 to 65 000 nodes for the constant CSA nano-
wires considered.

The BCB resonant frequencies compare quite well to
those predicted by the analytic formula, with increasing ac-
curacy for increasing aspect ratio l /a, as would be expected
from beam theory. We note that the SCB resonant frequen-
cies are consistently larger than the BCB resonant frequen-
cies and thus the analytic solution; reasons for this trend will
be discussed later.

For the fixed/fixed beam, the analytic solution is given
as35

f0 =
i2�

2l2EI

�A
, �25�

where i�1.5 is a mode shape factor for fixed/fixed beams.
Table III shows that the BCB and analytic solutions again
agree nicely. However, in contrast to the fixed/free case, the
SCB resonant frequencies are found to decrease with increas-
ing aspect ratio relative to the bulk material; again, reasons
for this will be discussed later. A key point to emphasize here
is that due to the accuracy of the BCB results for both
boundary conditions as compared to the analytic solutions,
normalizing the SCB resonant frequencies by the BCB reso-
nant frequencies can be considered to be equivalent to nor-
malizing by the solution expected from continuum beam
theory.

Figure 5�a� shows the normalized resonant frequencies
fscb / fbulk plotted against both the nanowire aspect ratio l /a
and the SAV ratio, for both fixed/fixed and fixed/free bound-
ary conditions. As can be observed, the surface stress effects
on the resonant frequencies depend strongly upon the corre-
sponding boundary conditions. For the fixed/free nanowires,
the resonant frequencies predicted using the SCB model are
about 2% higher than those of the BCB model for all aspect
ratios. In contrast, the fixed/fixed nanowires show com-
pletely different behavior. In that case, the resonant frequen-
cies predicted by the SCB model dramatically decrease with
increasing aspect ratio l /a, with the resonant frequencies due
to surface stress decreasing to nearly 20% lower than the
corresponding bulk material when the aspect ratio l /a�30.

The resonant frequency calculations are also plotted with
respect to the SAV ratio in Fig. 5�b�. As can be seen, the

fixed/free nanowires show little variation with the SAV ratio,
while the fixed/fixed nanowires show a decrease in resonant
frequency with decreasing SAV ratio.

B. Constant length

We next investigate the resonant frequencies of nano-
wires in which the length of the nanowire was fixed at 240
nm, while the square cross section was varied in size. The FE
calculations to determine the resonant frequencies required
mesh sizes ranging from about 13 000 nodes for the smallest
�8 nm� cross section to about 71 000 nodes for the largest
�30 nm� cross section considered.

As with the constant CSA nanowires, we plot the
fscb / fbcb ratio against both the aspect ratio l /a and the SAV
ratio in Fig. 6�a�. When plotted against the aspect ratio l /a,
the trends for the constant length nanowires are similar to
those of the constant CSA nanowires, particularly for the
fixed/fixed boundary conditions, for which surface stresses
cause the resonant frequencies to decrease rapidly with in-
creasing l /a. In fact, for l /a=30 for the 8 nm cross-section
nanowire, surface stresses cause the resonant frequency to be
less than 65% of the bulk value. The surface stresses cause a

FIG. 5. �Color online� Normalized resonant frequencies for constant CSA
silicon nanowires.
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slightly different trend for the fixed/free case. There, the
resonant frequencies are observed to increase slightly with
respect to the bulk value with increasing l /a, while the trend
was a very minute decrease in the constant CSA case.

However, when plotted against the SAV ratio, as in Fig.
6�b�, the results for constant length nanowires differ strongly
from the constant CSA nanowires. In particular, the result is
most noticeable for the fixed/fixed nanowires; in the constant
CSA case, surface stresses caused an increase in resonant
frequency with increasing SAV ratio. However, for the con-
stant length nanowires, the opposite trend is observed; the
surface stresses cause the resonant frequencies to decrease
with increasing SAV ratio. The trends are also reversed,
though not as dramatically, for the fixed/free boundary con-
ditions.

C. Constant surface area to volume ratio

Due to the variation in surface stress and boundary con-
dition effects on the nanowire resonant frequencies, we con-
sider those coupled effects for nanowires that have the same
SAV ratio, 0.28 nm−1. The FE mesh sizes ranged in this case

from about 15 000 nodes �for the 15.2 nm cross-section
nanowire� to about 41 000 nodes �for the 14.5 nm cross-
section nanowire�.

Because the SAV ratio is kept constant, we plot the reso-
nant frequencies for both boundary conditions only against
the nanowire aspect ratio l /a in Fig. 7. Figure 7 thus shows
one of the fundamental findings of this work, in that the
resonant frequencies of fixed/fixed silicon nanowires do not,
due to surface stresses, depend on the SAV ratio. The results
for the fixed/free nanowires are more ambiguous judging
solely from Fig. 7. However, Figs. 5�a� and 6�a� indicate that
the resonant frequencies of fixed/free silicon nanowires,
similar to fixed/fixed silicon nanowires, do not scale accord-
ing to SAV ratio.

In particular, in all cases, it appears that the nanowire
aspect ratio l /a is a much stronger predictor of how the
boundary conditions and surface stresses couple to vary the
resonant frequencies as compared to the corresponding bulk
material than the SAV ratio. This finding corresponds to re-
sults recently published by Verbridge et al.36 and Petrova et
al.37 The Verbridge work analyzed the resonant properties of
SiN nanostrings, with cross-sectional dimensions around 100
nm. While the surface stress effects observed in the present
work are unlikely to have a significant impact on 100 nm
cross-section nanowires, it is interesting that even when sur-
face effects become significant, as they do for the nanowires
considered in the present work, that the resonant frequencies,
and thus the elastic properties, are largely independent of
SAV ratio. The Petrova work offers a comparison at a differ-
ent length scale �cross sections on the order of 10–20 nm�
and for a different material, gold. However, that work also
found weak dependence of the resonant frequencies and thus
elastic properties on the SAV ratio; these results, on different
materials at different sizes, lend credibility to the results ob-
tained in the present work.

IV. DISCUSSION AND ANALYSIS

We now present an analysis of the boundary condition
and surface stress effects on the nanowire elastic properties,

FIG. 6. �Color online� Normalized resonant frequencies for constant length
silicon nanowires.

FIG. 7. �Color online� Normalized resonant frequencies for constant SAV
silicon nanowires.
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and in particular the Young’s modulus. To calculate the
Young’s modulus, we utilize the beam theory expressions
that relate the resonant frequencies to the modulus in Eqs.
�24� and �25�. The beam theory expressions for the modulus
are utilized as they are also ubiquitous in the experimental
literature to calculate the Young’s modulus for
nanostructures.3,7,16,36–38

Figure 8 depicts the variation in the Young’s modulus, as
normalized by the bulk value, for both the fixed/fixed and
fixed/free constant CSA nanowires. As can be observed, the
Young’s modulus for the fixed/free case shows about a 5%
variation from the bulk value, which can be expected from
the fact that the fixed/free resonant frequencies, when bulk
normalized, also showed a small increase with respect to the
bulk resonant frequencies.

However, there is a dramatic variation in the fixed/fixed
Young’s modulus with increasing aspect ratio l /a, as shown
in Fig. 8. In particular, due to the nature of the resonance
formula in Eq. �25�, the modulus that is calculated is actually
significantly reduced as compared to the bulk Young’s modu-
lus than the bulk-normalized resonant frequencies. For ex-
ample, fscb / fbulk=0.81 for l /a=30, as seen in Fig. 5�a�. How-
ever, when surface stresses are accounted for, the Young’s
modulus drops to only 65% of the bulk modulus when l /a
=32.

Furthermore, this observed reduction of the Young’s
modulus has been observed in other theoretical studies for
fixed/fixed silicon nanowires. In particular, we note the re-
cent density functional theory studies by Lee and Rudd for
ultrasmall ��4 nm� fixed/fixed silicon nanowires,11 which
also predicted a decrease in Young’s modulus due to the fact
that the surface stresses in conjunction with the fixed/fixed
boundary conditions cause the nanowire to exist in a state of
compression; we note that the variation of the Young’s
modulus accounting for length was not performed in that
work. Molecular dynamics simulations of the resonant fre-
quencies of fixed edge silicon oxide nanoplates by Brough-
ton et al.39 also revealed a distinct reduction in the resonant
frequencies with decreasing size.

We also seek to quantify the variations due to surface
stresses in the resonant frequencies for the fixed/fixed case.
To do so, Fig. 9, which plots the normalized resonant fre-
quencies fscb / fbulk for all fixed/fixed nanowires �constant
CSA, length, SAV� against the nanowire aspect ratio l /a,
demonstrates one of the major findings of this work. As can
be seen, for the nanowire sizes considered in this work, the
resonant frequencies for all nanowires as compared to the
resonant frequencies of the bulk material overlap on a similar
curve as a function of the aspect ratio, with the trend being a
decreasing resonant frequency with increasing aspect ratio.
The enhanced effect of surface stresses for the constant
length nanowire with aspect ratio of l /a=30 is likely due to
the fact that it was the smallest cross section considered, i.e.,
8 nm, where the surface stress effects are particularly strong.
Figure 9 can therefore serve as a design guide for predicting
how surface stresses will change the resonant frequencies of
nanowires as compared to the continuum beam theory in Eq.
�25� which does not account for surface effects.

We attempted to determine similar relationships for the
fixed/free nanowires in linking the observed variations of the
nanowire resonant frequencies due to surface stresses to geo-
metric parameters. Unfortunately, as illustrated in Fig. 10,
such a relationship was not found in this work. We also stud-
ied the variation in resonant frequencies due to surface
stresses as compared to the tensile strain in the nanowires,
but a similarly inconclusive result was obtained. However,
Fig. 10 does indicate that surface stresses are likely not to
strongly impact �more than 2%� the resonant frequencies of
fixed/free nanowires unless very small cross sectional areas
��10 nm� and large aspect ratios are utilized.

A. Comparison to experiment

An extensive literature search has revealed that most
studies utilizing resonating silicon nanowires involve nano-
wires with cross-sectional sizes generally exceeding 50
nm.3,7,38 At those sizes, both the experimental results and
extrapolation of the current SCB results indicate that surface

FIG. 8. �Color online� Normalized Young’s modulus for both fixed/fixed
and fixed/free boundary conditions for constant CSA nanowires.

FIG. 9. �Color online� Normalized resonant frequencies for fixed/fixed con-
stant CSA, SAV, and length nanowires plotted against the nanowire aspect
ratio.

123504-8 Harold S. Park J. Appl. Phys. 103, 123504 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



effects will not have a dominant role on the resonant fre-
quencies, and that continuum beam theory should be valid
for interpreting the resonant properties.

We did find one study involving the resonant properties
of sub-30 nm cross-section silicon nanowires, that of Li et
al.16 The silicon nanowires in that work were of the �110�
orientation and were fabricated in the fixed/fixed configura-
tion. The nanowires were found to have a sharp decrease in
Young’s modulus, with a 53 GPa Young’s modulus reported
for 12 nm diameter nanowires. In comparison, using the re-
sults in Fig. 8, we find that the SCB model predicts a 58.5
GPa Young’s modulus for a 16 nm cross-section �100� nano-
wire. We note that a direct comparison cannot be made due
to the fact that the nanowires in the present work were axi-
ally aligned in the �100� direction.

Two other studies involving the mechanical properties of
sub-30 nm cross-section silicon nanowires were found, with
both involving tensile deformation. Kizuka et al.17 used an
AFM to perform tensile elongation of single crystal �100�
silicon nanowires with cross sections less than 10 nm; the
measured Young’s modulus was on the order of 18 GPa,
which is considerably smaller than the 90 GPa Young’s
modulus for bulk �100� silicon.

More recently, Han et al.18 also performed in situ trans-
mission electron microscopy observation of the tensile fail-
ure of �110� silicon nanowires. Nanowire sizes down to 15
nm cross sections were considered; using the activation en-
ergy for dislocation nucleation, they also obtained a strong
size dependence in the Young’s modulus, with a modulus
value of 55 GPa reported for 15 nm cross-section nanowires.
Again, the 58.5 GPa modulus obtained using the SCB model
for 16 nm cross-section �100� nanowires agrees well, though
as before, a direct comparison cannot be made due to the
different crystallographic orientations.

Despite the small amount of experimental data to which
to compare the present results, the present results are quali-
tatively consistent with available experimental data16–18 and

theoretical results11,39 in predicting a relative decrease in
resonant frequencies, and thus Young’s modulus, for fixed/
fixed nanowires.

V. CONCLUSIONS

In conclusion, we have utilized the recently developed
surface Cauchy–Born model to quantify how boundary con-
ditions and surface stresses couple to cause variations in the
resonant properties of silicon nanowires as compared to
those expected from continuum beam theory. The resonant
properties were found through solution of a standard finite
element eigenvalue problem, where the effects of surface
stresses are naturally captured within the finite element stiff-
ness matrix. The usage of a three-dimensional nonlinear fi-
nite element formulation thus efficiently enabled the analysis
of a variety of nanowire geometries to quantify surface stress
effects on nanowire resonant properties.

With regards to the effects of surface stresses on the
silicon nanowire resonant frequencies, we have found that:
�1� Surface stresses cause significant deviations in the reso-
nant frequencies of nanowires as compared to those that are
found using standard continuum beam theory with bulk ma-
terial properties, with the deviation having a different trend
depending on whether fixed/fixed or fixed/free boundary
conditions are used. We find that the resonant frequencies of
nanowires with cross-sectional lengths greater than about 30
nm show little deviation from those predicted from con-
tinuum beam theory. We also find that surface stresses most
strongly impact the resonant properties of fixed/fixed silicon
nanowires, which are found to decrease substantially as com-
pared to predictions from continuum beam theory. In con-
trast, surface stresses do not cause substantial deviations
from beam theory for fixed/free silicon nanowires unless
nanowires with very small cross-sectional lengths
��10 nm� and large aspect ratios are considered. �2� For
fixed/fixed silicon nanowires, accounting for the compressive
state of stress resulting from the coupled effects of surface
stresses and boundary conditions is critical to capturing the
observed reductions in the resonant frequencies as compared
to continuum beam theory. �3� The deviation that surface
stresses cause in the resonant properties of fixed/fixed nano-
wires as compared to beam theory scales proportional to the
nanowire aspect ratio l /a. �4� No such scaling relationship
was found for surface stress effects on the resonant proper-
ties of fixed/free nanowires. �5� The present finding that the
resonant properties of fixed/fixed silicon nanowires, and
therefore the elastic properties such as the Young’s modulus
decrease with respect to the bulk value qualitatively agrees
with recent experimental16–18 and theoretical11,39 results.
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