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a b s t r a c t

We present a three-dimensional nonlinear finite element formulation for dielectric elastomers. The
mechanical and electrical governing equations are solved monolithically using an implicit time integra-
tor, where the governing finite element equations are given for both static and dynamic cases. By
accounting for inertial terms in conjunction with the Arruda–Boyce rubber hyperelastic constitutive
model, we demonstrate the ability to capture the various modes of inhomogeneous deformation, includ-
ing pull-in instability and wrinkling, that may result in dielectric elastomers that are subject to various
forms of electrostatic loading. The formulation presented here forms the basis for needed computational
tools that can elucidate the electromechanical behavior and properties of dielectric elastomers that are
used for engineering applications.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Dielectric elastomers are a class of soft active materials, enabling
electromechanical transduction and soft machines (Carpi et al.,
2010; Brochu and Pei, 2010; Suo, 2010). When a membrane of a
dielectric elastomer is sandwiched between two compliant elec-
trodes and subject to voltage, the membrane reduces thickness
and expands area. This phenomenon has led to many designs of
transducers with broad applications, including artificial muscles
for soft robots and adaptive optics, as well as generators to harvest
energy from human walking and ocean waves.

Further development of dielectric elastomer transducers
demands accurate and efficient computational methods. The trans-
ducers involve nonlinear electromechanical coupling, and are often
structures of tensegrity—hybrids of soft membranes in tension and
hard materials in compression. Voltage-induced deformation can
be very large (Pelrine et al., 2000; Keplinger et al., 2008), typically
limited by electromechanical instability (Wissler and Mazza,
2005a; Plante and Dubowsky, 2006; Zhao and Suo, 2007; Norris,
2008; Kollosche and Kofod, 2010). Furthermore, the electrome-
chanical instability can be harnessed to achieve giant voltage-in-
duced deformation (Zhao and Suo, 2010; Koh et al., 2011;
Keplinger et al., 2012).

For a computational approach to be broadly useful, finite ele-
ment method is anticipated. Several papers have appeared on the
finite element method for dielectric elastomers (Zhao and Suo,
2008; Vu et al., 2007; Zhou et al., 2008; O’Brien et al., 2009; Wissler
and Mazza, 2005b; Wissler and Mazza, 2007). The approaches of
Zhao and Suo (2008) and O’Brien et al. (2009) are similar in that
neither formulation accounted for the full electromechanical cou-
pling, i.e. electrostatic effects were accounted for via inclusion in
the mechanical free energy, while no electrostatic governing equa-
tion was solved. The approaches of Vu et al. (2007) and Zhou et al.
(2008) are similar in that both utilized finite deformation, fully
coupled electromechanical equations that were solved neglecting
inertia. While the work of Vu et al. (2007) did not consider electro-
mechanical instabilities, such effects were considered by Zhou
et al. (2008), though difficulties in tracking the entire history of
the electromechanical instability were found due to the static for-
mulation. Wissler and Mazza (2007) solved the coupled electrome-
chanical problem using Poisson’s equation for the electrostatics,
though again, electromechanical instabilities were not considered.
Overall, it is clear that a key unresolved issue in numerical model-
ing of dielectric elastomers is the ability to capture inhomogeneous
deformation accompanying electromechanical instability.

This paper presents a three-dimensional finite element method
for dielectric elastomer transducers. To capture electromechanical
instability, we include inertial effects and solve the mechanical and
electrical governing equations monolithically. We give the result-
ing finite element equations, comment on their structure as
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compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ �
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:Z
siJ
@ni

@XJ
dV ¼

Z
Bi � q

@2xi

@t2

 !
nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

�
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ � ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ �
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL � eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ �2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ �
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ � X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA�

X
€uib

Z
qNbNadV ð11Þ

�
Z

~DI
@Na

@XI
dV ¼

Z
qNadV þ

Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

� �
Du
DU

� �
¼

fm

fe

� �
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;�

Z
V

ekJL
@Na

@XJ

@Nb

@XL
dV ;�

Z
V
eJL
@Na

@XJ

@Nb

@XL
dV ð16Þ

The columns fm and fe have elements of the forms, respectively,
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Z
V

BiNadV þ
Z

A
TiNadA�

Z
V

siJ
@Na

@XJ
dV ;Z

V
qNadV þ

Z
A
xNadAþ

Z
V

~DJ
@Na

@XJ
dV

ð17Þ

The Newton–Raphson method breaks down when the Hessian in
(15) is singular. The singular Hessian also corresponds to the condi-
tion of electromechanical instability (Zhao and Suo, 2007).

3.2. Dynamic formulation

If inertial effects are considered, the governing equations are
different in structure from those of Vu et al. (2007) and Zhou
et al. (2008), who did not consider inertial effects. We use inertia
to capture physical details that may arise during the electrome-
chanical softening and instability of the dielectric elastomer. Fur-
thermore, the simple nature of including inertial effects to
capture the electromechanical instability stands in contrast to
the complex arc-length (Belytschko et al., 2002) or continuation-
type methods that can also be utilized to capture the post-instabil-
ity response for materials.

Let tn and tn+1 be two consecutive discrete times, and let
Dt = tn+1 � tn be the time step. Write un = u(tn) and un+1 = u(tn+1),
etc. We use the Newmark implicit dynamic integrator (Belytschko
et al., 2002; Hughes, 1987):

unþ1 ¼ un þ Dtvn þ Dt2 1
2
� b

� �
an þ bDt2anþ1;

vnþ1 ¼ vn þ Dtð1� cÞan þ cDtanþ1

ð18Þ

The integrator is unconditionally stable if the parameters are set to
b = 1/4 and c = 1/2.

At time tn+1, the coupled ordinary differential equation (13) and
algebraic equation (14) become

gðunþ1;Unþ1; tnþ1Þ ¼ M
bDt2 unþ1 � un � Dtvn � Dt2 1

2
� b

� �
an

� �
ð19Þ

hðunþ1;Unþ1; tnþ1Þ ¼ 0 ð20Þ

In deriving (19), we have combined (13) and (18). Eqs. (19) and (20)
are coupled nonlinear algebraic equations for (un+1,Un+1). We solve
for (un+1,Un+1) by using the Newton–Raphson method. The iterative
equation takes the form

Kmm þ 1
bDt2 M Kme

KT
me Kee

" #
Dunþ1

DUnþ1

� �

¼ fm þ M
bDt2 un þ Dtvn þ Dt2ð12� bÞan � unþ1

� �
fe

� �
ð21Þ

This is a nonlinear algebraic equation for (Dun+1,DUn+1). The equa-
tion is solved repeatedly to improve the root of (un+1,Un+1). At each
iteration, the current values of (un+1,Un+1) are used to evaluate the
Hessian and the right-hand side. Observe that the matrix M is posi-
tive-definite. When the time step Dt is sufficiently small, the Hes-
sian will remain nonsingular.

4. Model of ideal dielectric elastomers

An elastomer is a three-dimensional network of long and flexi-
ble polymers, held together by crosslinks. Each polymer chain con-
sists of a large number of monomers. Consequently, the crosslinks
have negligible effect on the polarization of the monomers—that is,
the elastomer can polarize nearly as freely as a polymer melt. As an
idealization, we may assume that the dielectric behavior of an elas-
tomer is exactly the same as that of a polymer melt. This model of

ideal dielectric elastomers has the free energy of the form (Zhao
et al., 2007)

ŴðC; ~EÞ ¼WstretchðCÞ �
e
2

JC�1
IJ

~EI
~EJ ð22Þ

where Wstretch(C) is the free energy of the elastomer in the absence
of electric field, e is the permittivity of the material, J = det F is the
determinant of the deformation gradient.

In an elastomer, each individual polymer chain has a finite con-
tour length. When the elastomer is subject no loads, the polymer
chains are coiled, allowing a large number of conformations. Sub-
ject to loads, the polymer chains become less coiled. As the loads
increase, the end-to-end distance of each polymer chain ap-
proaches the finite contour length, and the elastomer approaches
a limiting stretch. On approaching the limiting stretch, the elasto-
mer stiffens steeply. This effect is absent in the neo-Hookean mod-
el, but is represented by Arruda and Boyce (1993) model:

Fig. 1. Deformation of a dielectric elastomer subject to applied charge loading for
N = 2.8 as obtained using static and dynamic FEM formulations.

Fig. 2. Deformation of a dielectric elastomer subject to applied charge loading for
N = 6 as obtained using static and dynamic FEM formulations.
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Wstretch

l
¼ 1

2
ðI � 3Þ þ 1

20N
ðI2 � 9Þ þ 11

1050N2 ðI
3 � 27Þ

þ 19
7000N3 ðI

4 � 81Þ þ 519
673750N4 ðI

5 � 243Þ ð23Þ

where l is the shear modulus, N is the number of links per polymer
chain and I = CKK. The Arruda–Boyce model reduces to the Neo-
Hookean model if N ?1.

The complete expression for the dielectric elastomer free en-
ergy can be written as

ŴðC;~EÞ¼WstretchðIÞþ
1
2
kðlogJÞ2�2W 0

stretchð3ÞlogJ� e
2

JC�1
IJ

~EI
~EJ ð24Þ

The incompressibility condition that is required for accurate model-
ing of dielectric elastomers is enforced approximately through the
parameter k, which represents the bulk modulus; specifically, it is

enforced through a penalty-like manner by taking the ratio of k/l
(or the ratio of the bulk modulus to the shear modulus) to be a large
value, typically on the order of 104–106, where the upper bound va-
lue of k/l = 106 is used in the present work to maximize the conver-
gence rate.

The free energy of the ideal dielectric elastomer given in (24)
neglects creep and other dissipative effects, in particular viscoelas-
ticity and current leakage. Dissipative effects can easily be included
in the free energy, see for example see Hong (2011) and Foo et al.
(2012) for dissipative effects. We also note that a comparison be-
tween the theory of the ideal dielectric elastomer and experiment
was recently made in a simple setting by Huang et al. (2012): a
membrane under equi-biaxial dead loads and ramping voltage.

The analytic expressions of the free energy derivatives that are
needed for the various stresses and moduli are now given as
follows

2
@ŴðC; ~EÞ
@CIJ

¼ 2W 0
stretchðIÞdIJ þ ðk log J � 2W 0

stretchð3ÞÞC
�1
IJ

þ eJ~EK
~ELðC�1

KI C�1
LJ �

1
2

C�1
KL C�1

IJ Þ ð25Þ

The nominal electric displacement can be written as

~DI ¼ eJ~EJC
�1
IJ ð26Þ

The tangent moduli that are required for the weak form can be
obtained by taking the second derivatives of the free energy func-
tion to give

4
@2WðC; ~WÞ
@CIJ@CKL

¼ 4W 00
stretchðIÞdIJdKL þ ð2W 0

stretchð3Þ � kln JÞ

� ðC�1
IK C�1

JL þ C�1
IL C�1

JK Þ þ kC�1
IJ C�1

KJ

þ eJ~EM
~EN

1
2

C�1
MNðC

�1
IK C�1

JL þ C�1
IL C�1

JK Þ þ C�1
MK C�1

NL C�1
IJ

�

þ C�1
MI C�1

NJ �
1
2

C�1
MNC�1

IJ

� �
C�1

KL

�
eJ~EM

~EN½C�1
MI ðC

�1
NK C�1

JL

þ C�1
NL C�1

JK Þ þ C�1
NJ ðC

�1
IK C�1

ML þ C�1
IL C�1

MKÞ� ð27Þ

Fig. 3. Deformation of a dielectric elastomer subject to applied charge loading for
N = 20 as obtained using static and dynamic FEM formulations.

Fig. 4. Time history of deformation of a free-standing 3D dielectric elastomer under charge loading. (a) Undeformed configuration, (b–d) various stages of deformation after
the electromechanical instability has occurred.
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2
@2WðC; ~EÞ
@CJK@~EI

¼ eJ~ELðC�1
KL C�1

IJ � C�1
KI C�1

JL � C�1
IL C�1

JK Þ ð28Þ

and

@2WðC; ~EÞ
@~EK@~EL

¼ eJC�1
IJ ð29Þ

5. Numerical results

We embed the above model into the Sandia-developed simula-
tion code Tahoe (2011) using regular meshes of 8-node hexahedral
elements. The values for the material constants in the free energy

in (26) were l = e = 1 and k = 1,000,000. In all cases where an ap-
plied potential boundary condition was applied, it is assumed that
the electrodes are sufficiently compliant such that they do not con-
strain the deformation of the dielectric elastomer film. Further-
more, the initial conditions for the mechanical domain were
always set to zero, i.e. the initial displacements and velocities of
all nodes were set to zero for all examples considered below.

5.1. Homogeneous deformation: static vs. dynamic comparison

Our first example is the homogeneous deformation of a dielec-
tric elastomer sandwiched between two compliant electrodes. The
stability of the homogeneous deformation has been analyzed ana-
lytically in Keplinger et al. (2012). The electrostatic boundary con-
ditions were specified such that the voltage was zero at one
electrode (on the �y surface), while the charge at the other elec-
trode (the +y surface) was increased monotonically. The dimen-
sions of the dielectric elastomer were l = w = h = 1, which was
discretized by a single 8-node hexahedral finite element. The pur-
pose of this example is to demonstrate the ability to capture the
electromechanical instability through the inclusion of inertial
effects.

The results as shown in Figs. 1–3 are similar to those obtained
by Zhou et al. (2008) in that as N is increased, the quasistatic cal-
culation fails before the electromechanical instability occurs due
to non-convergence of the solution; we note that the onset of the
electromechanical instability corresponds to a softening in the
voltage-charge curve in Figs. 1–3.

However, if the dynamic formulation is utilized, the large defor-
mation behavior and electromechanical instability is captured for
various values of N. In particular, it can be seen that for Figs. 1–3,
the dynamic formulation captures not only the initial softening
of the voltage vs. charge curve, but then the subsequent stiffening
that occurs at large values of applied charge. Because the dynamic
problem is time-dependent, the values shown in Figs. 1–3 corre-
spond to the converged values of potential and charge that result

Fig. 5. Voltage vs. charge curve corresponding to the deformation of the free-
standing 3D dielectric elastomer thin film subject to charge loading shown in Fig. 4.

Fig. 6. Time history of deformation leading to pull-in instability and failure of a free-standing 3D dielectric elastomer under potential loading. (a) Undeformed configuration,
(b–d) various stages of deformation leading to failure of the dielectric elastomer film.

H.S. Park et al. / International Journal of Solids and Structures 49 (2012) 2187–2194 2191
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at each time step. We also plot in Fig. 1–3 the corresponding
analytic solution obtained for this problem (Zhao et al., 2007). It
is clear that for all values of N, the dynamic FEM formulation cap-
tures the homogeneous deformation and electromechanical insta-
bility very accurately as compared to the analytic solution.

5.2. Inhomogeneous deformation: freestanding 3D film

We now present three-dimensional examples to demonstrate
the capability of the proposed dynamic formulation in capturing
electromechanical instabilities in 3D dielectric elastomers. Our
first example is that of a free standing film, with dimensions
15 � 3 � 15 in the x, y and z-directions, respectively. 675 8-node
hexahedral finite elements with a regular edge length of 1 were
utilized to discretize the film. There were no mechanical con-
straints on the film, while two different electrostatic boundary
conditions were used. For the first, the �y surface of the film was
kept zero electric potential, while the +y surface of the film was
subject to a monotonically increasing value of applied charge. For
the second, the �y surface was also kept zero potential, while
the +y surface of the film was subject to a monotonically increasing

value of potential. The condition of using a potential difference to
induce the deformation of the dielectric elastomer is the standard
approach that has been utilized experimentally over the past dec-
ade; however, Keplinger et al. (2008) recently demonstrated a new
experimental technique by which charge, and not potential loading
could be used to deform the dielectric elastomer.

Fig. 4 shows the time history of deformation of the elastomer
under charge loading. As can be seen going from Fig. 4(a) to (b),
the initially undeformed film in Fig. 4(a) undergoes significant con-
traction in the thickness (y)-direction and expansion in the lateral
(x and z)-directions, where the inhomogeneous deformation that
occurs due to the softening in the voltage vs. charge curve in
Fig. 5 is illustrated in Figs. 4(b)–(d). Specifically, after the peak of
the voltage vs. charge curve is passed as shown in Fig. 5, the film
begins flexing in different modes, first about the z-axis in
Fig. 4(c), and then about both the xy and xz-axes in Fig. 4(d). The
dynamic formulation enables the resolution of the time-dependent
instability modes as shown in Fig. 4 that may be obscured by ana-
lyzing the voltage vs. charge curve alone, as it can be observed that
those curves are similar for the film in Fig. 5, and for the single ele-
ment curve undergoing homogeneous deformation in Fig. 2.

Fig. 7. 3D dielectric elastomer strip. (a) Undeformed strip; (b) illustration of wrinkling instability.
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The deformation of the elastomer under potential loading is
shown in Fig. 6; it is clear that the deformation history is signifi-
cantly different than that under charge loading in Fig. 4. In partic-
ular, under potential loading, the elastomer undergoes the well-
known pull-in instability when the maximum in the voltage-
charge curve is reached whereby the elastomer expands rapidly
in the planar directions, as shown in Figs. 6(b) and (c), while under-
going a corresponding reduction in film thickness. Specifically, the
increase in film area in going from Fig. 6(a) to (c) is about 527%,
while the corresponding reduction in film thickness is nearly
94%. Due to this enormous increase in film area and thus biaxial
tensile strain shown in Fig. 6(c), the film is unstable under further
potential loading, and a snap-back wrinkling instability is then ob-
served, in Fig. 6(d), after which failure of the dielectric elastomer
film occurs. This simulation makes clear that charge loading offers
more flexibility in terms of enabling the elastomer to explore a sig-
nificantly larger configurational space of deformations and thus
possible actuation motions after the electromechanical instability
has occurred.

5.3. Inhomogeneous deformation: wrinkling of a quasi-3D strip

Our final numerical example demonstrates the ability to cap-
ture localized electromechanical instabilities, such as wrinkling
(Plante and Dubowsky, 2006). For this example, we considered a
quasi-3D strip of dielectric elastomer with dimensions
120 � 4 � 1; this geometry is similar to the ‘‘cuboid’’ geometry
studied by Kofod (2008), and also the case of an elastomer attached
to a rigid substrate, i.e. Wang et al. (2011). The strip was discret-
ized with 480 8-node hexahedral finite elements with a regular
element spacing of 1. The axial length of the strip was kept fixed
in the x-direction, while the bottom (�y) surface of the strip was
fixed from moving in the y-direction. Finally, the strip was not al-
lowed to deform in the z-direction. An electrode corresponding to
zero applied voltage was applied to the bottom (�y) surface of the
strip while the electrostatic loading was applied through an ap-
plied voltage on the top (+y) surface of the strip.

Fig. 7(a) shows the undeformed configuration, while Fig. 7(b)
shows the wrinkled configuration of the elastomeric strip. The
deformation history prior to wrinkling is interesting due to the fact
that the wrinkling in Fig. 7(b) occurs almost immediately after a
very small amount of compressive strain in the strip, on the order

of <0.01%, is achieved. This suggests that a snap-through like path
to the wrinkling instability is followed, where this hypothesis can
be verified by analyzing the voltage vs. charge curve for the 3D
elastomeric strip in Fig. 8. There, the wrinkling instability is detect-
able via the reduction in the slope of the voltage-charge curve, and
thus a reduction in the film capacitance, at a normalized voltage of
about 12. After formation of the wrinkles, the wrinkles are ob-
served to propagate along the surface of the strip under further
electrostatic loading. The remainder of the voltage-charge curve
corresponds to the time history of the wrinkling instability, with
eventual failure of the 3D strip at a normalized voltage near 16.

We also considered a quasi-3D strip with both active and pas-
sive regions, to conduct simulations similar in spirit to recent
experimental studies (Pelrine et al., 2000; Plante and Dubowsky,
2006) in which the voltage was applied to only the (active) central
region of the 3D strip, which was one half the total length of the
strip, while two outer (passive) regions of the strip, each of which
was one quarter the total length of the strip, were not subject to
any applied electrostatic loading. This type of decomposition is
typically performed experimentally to access the true material re-
sponse of the dielectric elastomer by limiting the effects of stress
concentrations that occur at the fixed ends of the dielectric elasto-
mer. There were no kinematic constraints between the active and
passive regions except the usual displacement continuity that is
mandated and automatically enforced by the finite element
approximation. Even for this case, we found that while the buck-
ling instability initiated in the active region, it soon propagated
to the passive region, thereby causing instability and buckling of
the entire strip, similar to what is demonstrated in Fig. 7(b).

6. Conclusions

In conclusion, we have presented a nonlinear finite element for-
mulation for the analysis of dielectric elastomers. We have demon-
strated that by accounting for inertial effects in the governing
mechanical equation of motion, inhomogeneous deformation
modes, such as the pull-in instability and wrinkling, that result
from electromechanical instabilities and that are the key factors
in limiting the performance and reliability of dielectric elastomer
transducers, can be captured and analyzed. Having demonstrated
the robustness of the proposed finite element formulation, it is
clear that it is suitable for future implementation in commercial fi-
nite element codes like ABAQUS or COMSOL to study electrome-
chanical instabilities in dielectric elastomer transducers.

Acknowledgements

HSP acknowledges startup funding from Boston University in
support of this research, and the assistance from Dr. Alejandro
Mota with the Tahoe code. JZ acknowledges the support of NSFC
through grants 10872157, 11072185, and 11021202. ZS acknowl-
edges the support of ARO through contract W911NF-09-1-0476),
DARPA through contract W911NF-10-1-0113, and MRSEC.

References

Arruda, E.M., Boyce, M.C., 1993. A three-dimensional constitutive model for the
large stretch behavior of rubber elastic models. Journal of the Mechanics and
Physics of Solids 41, 389–412.

Belytschko, T., Liu, W.K., Moran, B., 2002. Nonlinear Finite Elements for Continua
and Structures. John Wiley and Sons.

Brochu, P., Pei, Q.B., 2010. Advances in dielectric elastomers for actuators and
artificial muscles. Macromolecular Rapid Communications 31, 10–36.

Carpi, F., Bauer, S., De Rossi, D., 2010. Stretching dielectric elastomer performance.
Science 330, 1759–1761.

Foo, C.C., Cai, S., Koh, S.J.A., Bauer, S., Suo, Z., 2012. Model of dissipative dielectric
elastomers. Journal of Applied Physics 111, 034102.

Fig. 8. Normalized voltage vs. charge curve for the quasi-3D wrinkling example
shown in Fig. 7.

H.S. Park et al. / International Journal of Solids and Structures 49 (2012) 2187–2194 2193



Author's personal copy

Hong, W., 2011. Modeling viscoelastic dielectrics. Journal of the Mechanics and
Physics of Solids 59, 637–650.

Huang, J., Li, T., Foo, C.C., Zhu, J., Clarke, D.R., Suo, Z., 2012. Giant, voltage-actuated
deformation of a dielectric elastomer under dead load. Applied Physics Letters
100, 041911.

Hughes, T.J.R., 1987. The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Prentice-Hall.

Keplinger, C., Kaltenbrunner, M., Arnold, N., Bauer, S., 2008. Capacitive
extensometry for transient strain analysis of dielectric elastomer actuators.
Applied Physics Letters 92, 192903.

Keplinger, C., Li, T., Baumgartner, R., Suo, Z., Bauer, S., 2012. Harnessing snap-
through instability in soft dielectrics to achieve giant voltage-triggered
deformation. Soft Matter 8, 285–288.

Kofod, G., 2008. The static actuation of dielectric elastomer actuators: how does
pre-stretch improve actuation? Journal of Physics D: Applied Physics 41,
215405.

Koh, S.J.A., Li, T., Zhou, J., Zhao, X., Hong, W., Zhu, J., Suo, Z., 2011. Mechanisms of
large actuation strain in dielectric elastomers. Journal of Polymer Science Part
B: Polymer Physics 49, 504–515.

Kollosche, M., Kofod, G., 2010. Electrical failure in blends of chemically identical,
soft thermoplastic elastomers with different elastic stiffness. Applied Physics
Letters 96, 071904.

Norris, A.N., 2008. Comment on ‘‘Method to analyze electromechanical stability of
dielectric elastomers’’ [Applied Physics Letters 91, 061921 (2007)]. Applied
Physics Letters 92, 026101.

O’Brien, B., McKay, T., Calius, E., Xie, S., Anderson, I., 2009. Finite element modelling
of dielectric elastomer minimum energy structures. Applied Physics A:
Materials Science and Processing 94, 507–514.

Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J., 2000. High-speed electrically actuated
elastomers with strain greater than 100%. Science 287, 836–839.

Plante, J.-S., Dubowsky, S., 2006. Large-scale failure modes of dielectric elastomer
actuators. International Journal of Solids and Structures 43, 7727–7751.

Suo, Z., Zhao, X., Greene, W.H., 2008. A nonlinear field theory of deformable
dielectrics. Journal of the Mechanics and Physics of Solids 56, 467–486.

Suo, Z., 2010. Theory of dielectric elastomers. Acta Mechanica Solida Sinica 23, 549–
578.

Tahoe, 2011. Available at: <http://sourceforge.net/projects/tahoe/>.
Vu, D.K., Steinmann, P., Possart, G., 2007. Numerical modelling of non-linear

electroelasticity. International Journal for Numerical Methods in Engineering
70, 685–704.

Wang, Q., Zhang, L., Zhao, X., 2011. Creasing to cratering instability in polymers
under ultrahigh electric fields. Physical Review Letters 106, 118301.

Wissler, M., Mazza, E., 2005a. Modeling of a pre-strained circular actuator made of
dielectric elastomers. Sensors and Actuators A 120, 184–192.

Wissler, M., Mazza, E., 2005b. Modeling and simulation of dielectric elastomer
actuators. Smart Materials and Structures 14, 1396–1402.

Wissler, M., Mazza, E., 2007. Mechanical behavior of an acrylic elastomer used in
dielectric elastomer actuators. Sensors and Actuators A 134, 494–504.

Zhao, X., Hong, W., Suo, Z., 2007. Electromechanical hysteresis and coexistent states
in dielectric elastomers. Physical Review B 76, 134113.

Zhao, X., Suo, Z., 2007. Method to analyze electromechanical stability of dielectric
elastomers. Applied Physics Letters 91, 061921.

Zhao, X., Suo, Z., 2008. Method to analyze programmable deformation of dielectric
elastomer layers. Applied Physics Letters 93, 251902.

Zhao, X., Suo, Z., 2010. Theory of dielectric elastomers capable of giant deformation
of actuators. Physical Review Letters 104, 178302.

Zhou, J., Hong, W., Zhao, X., Zhang, Z., Suo, Z., 2008. Propagation of instability in
dielectric elastomers. International Journal of Solids and Structures 45, 3739–
3750.

2194 H.S. Park et al. / International Journal of Solids and Structures 49 (2012) 2187–2194


