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SUMMARY

The purpose of this article is to present a multiscale finite element method that captures nanoscale surface
stress effects on the dynamic mechanical behavior of nanomaterials. The method is based upon arguments
from crystal elasticity, i.e. the Cauchy–Born rule, but significantly extends the capability of the standard
Cauchy–Born rule by accounting for critical nanoscale surface stress effects, which are well known to have
a significant effect on the mechanics of crystalline nanostructures. We present the governing equations of
motion including surface stress effects, and demonstrate that the methodology is general and thus enables
simulations of both metallic and semiconducting nanostructures. The numerical examples on elastic wave
propagation and dynamic tensile and compressive loading show the ability of the proposed approach to
capture surface stress effects on the dynamic behavior of both metallic and semiconducting nanowires,
and demonstrate the advantages of the proposed approach in studying the deformation of nanostructures
at strain rates and time scales that are inaccessible to classical molecular dynamics simulations. Copyright
q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nanostructures such as nanowires [1] have been studied intensely in recent years due to their unique
and often superior mechanical [1–3], electrical [4, 5] and optical [6–8] properties that arise because
of their nanometer size scale. Because of these unique properties, nanowires will be utilized as
structural and optical materials, bio-sensors, force and mass detectors, as circuitry and interconnects
in future nanoscale devices, and as the basic building blocks of nanoelectromechanical systems
(NEMS) [9–11].
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In analyzing the mechanical behavior of nanowires, the key feature of interest is intrinsic surface
stresses that arise due to the fact that surface atoms have fewer bonding neighbors, or are underco-
ordinated as compared with bulk atoms [12, 13]. Surface stresses have recently been found to cause
phase transformations in gold nanowires [14], self-healing behavior in metal nanowires [15–17], and
surface reorientations in thin metallic films and wires [18, 19]. The reduced bonding environment of
surface atoms also alters the elastic properties of the surface atoms, which leads to non-bulk elastic
[2, 3, 20–26] and inelastic [27–29]mechanical behavior and properties of bothmetallic and semicon-
ducting nanowires [1]. Furthermore, the mechanical properties, i.e. Young’s modulus of nanowires
has been experimentally observed for both metals and semiconductors to deviate from the bulk value
when the nanowire cross-sectional size decreases below about 100 nm [1, 3, 20, 24–26, 28].

From a computational perspective, the mechanical properties of nanostructures and nanowires
have been studied using two distinct approaches. The first has been through classical molecular
dynamics (MD) simulations [30], which have predicted that the elastic modulus of both metallic and
semiconducting nanowires with cross-sections less than 10 nm may increase or decrease relative
to that of the bulk elastic modulus depending on both the crystallographic and surface orientation
[21, 23, 31–35]. However, scaling these results to larger nanowires while accounting for variations
in size, surface and geometry has not been achieved due to computational expense, which limits
not only the size of the nanowires that can be considered with MD simulations, but also the total
physical time that the nanowires can be simulated for, as the time step in an MD simulation is
typically about 1 fs, or 10−15 s.

The second approach which has garnered significant interest within the past decade is the
development of multiple scale methods to couple atomistics (typically MD) to continua (typically
finite elements (FE) [36]). The underlying goal of these methods is to combine the salient features
of the individual single-scale simulations, while limiting the less desirable features. For atomistic to
continuum coupling, the salient features are the detailed resolution of atomic-scale physics that is
possible using MD and the computational efficiency that is achievable through FE simulations; the
challenge traditionally has been to mathematically combine these features into a single, coherent
simulation. Toward this goal, a variety of different multiscale methods have been developed
[37–39], which couple MD to FEM either concurrently [40–49], or hierarchically [50–55].

To motivate the current work, and to illustrate the shortcomings of existing multiscale compu-
tational methods for studying the mechanics of surface-dominated nanostructures, we show in
Figure 1 a multiscale decomposition that is typically used in coupling atomistics to continua, or
MD to FE. In Figure 1, we see that the problem of interest is crack propagation through the
material. In the region of interest, the crack tip is explicitly modeled using an atomistic simulation
(MD) such that accurate fracture characterization through the atomic-scale resolution of bond
breaking is achieved. Surrounding the crack tip, and overlaying the atomistics is the continuum
(FE) region; the purpose of the continuum region in the multiscale simulation is to enlarge the
domain such that the stress �0 that is used to load the crack tip can be applied to the far-field
continuum boundaries.

As discussed previously, this philosophy of using atomistics to model critical physics of interest
(i.e. cracks and defects), while using the continuum to extend the size of the domain has consis-
tently been employed in the various quasistatic [38, 40–42, 50, 56] and dynamic [39, 43–49, 57]
multiscale methods that have been recently proposed. However, the philosophy underlying the
traditional multiscale decomposition shown in Figure 1 has led to two critical issues that cannot
be circumvented without taking a different approach to multiscale modeling; these issues will be
resolved or mitigated in the present work.
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MULTISCALE FINITE ELEMENT METHOD 1239

Figure 1. Schematic of a typical coupled atomistic–continuum multiscale decomposition, where the
atomistics exists around the crack tip, and the finite element-discretized continuum exists everywhere.

First, the decomposition shown in Figure 1 indicates that because the continuum overlaps the
atomistic region, the two simulations must be spatially as well as temporally coupled in some
manner. We note that alternative decompositions exist [38, 40, 48] in which the continuum overlaps
the atomistics only at the atomistic domain boundary. Regardless of the decomposition, to ensure
stability of the atomistic region at the boundaries where it is coupled to the continuum, ghost, or
pad atoms [38] are necessary; the effect of the ghost or pad atoms coupled with the surrounding
continuum is to remove the effects of atomistic-free surfaces on the atomistic region. Therefore,
multiscale methods formulated using this decomposition are unable to capture critical atomistic
surface stress [13] and surface elastic effects [22], and therefore the size-dependent physical
properties of nanomaterials.

The second key issue concerns the time scales that are accessible to the coupled multiscale
atomistic–continuum simulation. While the decomposition in Figure 1 limits the extent of the atom-
istic domain to a small spatial regime, the atomistic region is still present, which is problematic
because the time step for an atomistic simulation is on the order of 10−15 s. In other words, while
the multiscale decomposition in Figure 1 leads to a significant reduction in the number of atomistic
equations ofmotion to be solved, the equationsmust still be integrated using a time step (10−15 s) that
prevents the atomistic simulation from accessing physically meaningful time scales, i.e. time scales
ranging frommicro (10−6) seconds to milli (10−3) seconds, as accessing micro andmillisecond time
scales will be critical for analyzing the behavior and properties of novel NEMS [9].

Furthermore, this small MD time step leads to strain rates in MD simulations that are on the
order of �̇=107–1010 s−1, which is about 10 orders of magnitude larger than is typically observed
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experimentally. This strain rate differential may lead to unphysical or incorrect results in the MD
simulations; for example, using novel time scale bridging techniques, Zhu et al. [58] studied the
effects of strain rate and temperature on surface-driven dislocation nucleation for compressively
loaded copper nanowires. In doing so, they found that the defect nucleation stress under compression
is nearly 50% lower at room temperature and the strain rates of 10−3 s−1 as compared with the
strain rates of 108 s−1 that are typically found in MD simulations.

Therefore, even though the FE mesh sizes in Figure 1 are typically two or three orders of
magnitude larger than the atomic spacing, which implies that the FE equations of motion can be
integrated forward in time using a time step that is two or three orders of magnitude larger than the
atomistic time step, the MD time step is still the limiting factor on the overall time scales that are
accessible to the coupled multiscale simulation due to the spatial and temporal coupling between
the atomistics and continuum. Therefore, extending the time scales in multiscale simulations while
still capturing the effects of essential nanoscale surface stress effects will require embedding the
relevant atomic scale surface physics directly into the continuum simulation, thereby avoiding the
explicit solution of the MD equations of motion.

The purpose of this work is to present and analyze a 3D dynamic formulation for the recently
developed surface Cauchy–Born (SCB) model [53–55]. Understanding the effects of surface
stresses on the dynamics of nanowires is critical for NEMS applications, where the nanowires
will undergo oscillations at extremely high frequencies [9, 11]. The SCB model is unique as
compared with previous FE discretizations of the linear surface elastic theory of Gurtin and
Murdoch [59–62] in that it captures, within a non-linear continuum mechanics and FE frame-
work, surface stress effects on the mechanical behavior and properties of nanomaterials. The SCB
model [53] has previously been developed exclusively for quasistatic problems for both metallic
[54] and semiconducting [55] nanostructures, and applied to problems analyzing surface stress
effects on various aspects of the mechanical behavior and properties of both metallic [63, 64] and
semiconducting [65, 66] nanowires.

Recently, a 1D formulation involving dynamics and the SCB model was formulated by Yun and
Park [67]; in the present work, we significantly extend this formulation to 3D, and demonstrate
its generality by using it to analyze the dynamic mechanical behavior for both metallic and
semiconducting nanostructures while accounting for surface stress effects. We demonstrate that
nanoscale surface stress effects can be captured within the present formulation, and discuss time
step and strain rate improvements that can be gained using the FE-based SCB model as compared
with classical MD simulations.

2. DYNAMIC PRINCIPLE OF VIRTUAL WORK INCLUDING SURFACE STRESS EFFECTS

We derive the dynamic finite element governing equations by beginning with a modified principle
of virtual work as∫

�0

�u�0üd�0=
∫

�0

�u
�PB

�X
d�0+

∫
�0

�u
�PS

�X
d�0+

∫
�0

�u�0bd�0, (1)

where PB is the first bulk Piola–Kirchoff stress, PS is the first surface Piola–Kirchoff stress, b is
the body force and �u is the virtual displacement. We note that the term involving the surface
stress PS is integrated over an area rather than a volume due to the fact that the surface stress has
units of force per length, rather than force per area as does the bulk stress PB; this unit difference
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was initially discussed by Park et al. [53], and is further discussed in Section 3 of the present
work in relation to bulk and SCB theory.

The term on the left-hand side of (1) becomes the FE mass matrix upon discretization of the
displacement field, while the last term on the right-hand side of (1) becomes the body force
contribution to the external force. By integrating the first term on the right-hand side of (1) by
parts, we obtain ∫

�0

�u
�PB

�X
d�0=

∫
�0

�
�X

(�uPB)d�0−
∫

�0

��u
�X

PB d�0. (2)

The first term on the right-hand side of (2) becomes the applied traction, while the second term
on the right-hand side of (2) becomes the internal force due to the bulk portion of the first
Piola–Kirchoff stress PB.

By similarly integrating the surface term in the weak form (1) by parts, we obtain∫
�0

�u
�PS

�X
d�0=

∫
�0

�
�X

(�uPS)d�0−
∫

�0

��u
�X

PS d�0. (3)

The second term on the right-hand side of (3) becomes the internal force due to the surface
Piola–Kirchoff stress PS, while the first term on the right-hand side of (3) becomes∫

�0

�
�X

(�uPS)d�0=(�un·PS)|dx , (4)

which is a 1D analog of the surface traction that results from the bulk Piola–Kirchoff stress in (2);
we neglect this term in the present work by assuming that there are no such applied tractions. By
combining (1)–(3) and making the FE approximation to the displacement field u, we obtain the
following semi-discrete FE equations of motion

Mü= f ext−f intB −f intS , (5)

where f ext combines the body force and any applied tractions, f intB is the internal force due to
the bulk Piola–Kirchoff stress PB, and f intS is the internal force due to the surface Piola–Kirchoff
stress PS. The semi-discrete equations of motion in (5) can be integrated in time using a standard
explicit second-order central difference algorithm.

The issue that remains to be answered is how the bulk and surface Piola–Kirchoff stresses will
be calculated. We describe this in the following section.

3. BULK AND SCB THEORY

In the present work, the bulk and surface stresses that are necessary to evaluate the dynamic FE
momentum equation in (5) are obtained using the Cauchy–Born hypothesis. The bulk Cauchy–Born
(BCB) model is a hierarchical multiscale assumption that enables the calculation of continuum
stress and moduli directly from atomistic principles; the BCB model has successfully been applied
to diverse crystal structures such as FCC metals [50], diamond cubic semiconductors such as
silicon [68], and carbon nanotubes and graphene sheets [51, 52]. Because the BCB model does
not consider surface effects, the SCB model was developed by Park et al. [53–55] such that the
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strain energy density of a material would include contributions not only from the bulk, but also
the material surfaces thus leading to the incorporation of atomistic-based surface stress effects into
standard continuum stress measures.

Both the BCB and SCBmodels are finite deformation constitutive models that explicitly represent
the stretching and rotation of bonds undergoing large deformation through continuum mechanics-
based kinematic quantities such as the deformation gradient F, or the stretch tensor C=FTF. Under
deformations which can be represented as homogeneous over the unit cell scale, the approximation
exactly reproduces the response of the corresponding, fully atomistic representation of the crystal.
The necessity for the finite deformation kinematics gains credence through recent work that has
indicated that surface stresses can cause non-linearly elastic compressive strains on the order of
one percent or more in nanostructures [23, 54, 69].

For crystalline materials, the Cauchy–Born approximation is obtained through construction of a
strain energy density function by considering the bonds in a representative volume of the crystal,
and for a particular interatomic potential energy function U ; the discussion below represents a
concise treatment of the more detailed exposition given in Park et al. [53]. For the case of a
centrosymmetric crystal modeled using only pair interactions, the bulk strain energy density �(C)

is defined in terms of the interatomic potential U as [70]

�(C)= 1

2

1

�a
0

nb∑
i=1

U (r (i)(C)). (6)

In (6), nb is the total number of bonds to a representative bulk atom, �a
0 is the representative atomic

volume in the undeformed configuration and r (i) is the deformed bond length which follows the
relationship

r (i) =
√
R(i)
0 ·CR(i)

0 , (7)

where R0 is the undeformed bond vector, and the factor of 1
2 in (6) comes from splitting the energy

of each bond.
The strain energy density (6) is exact in describing the change in energy per volume of a

bulk atom in a corresponding defect-free atomistic system subject to homogeneous deformation.
From (6), the bulk second Piola–Kirchoff stress SB(C) is given by

SB(C)=2
��(C)

�C
= 1

�a
0

nb∑
i=1

(
U ′(r (i))

�r (i)

�C

)
, (8)

where the first and second Piola–Kirchoff stresses are related by the deformation gradient F as

PB=SBFT. (9)

For the SCB model, a surface strain energy density is needed; this surface strain energy density
can be generally written as

�(C)= 1

2

1

�a
0

nsl∑
i=1

nbi∑
j=1

U (r ( j)(C)), (10)

where nsl is the number of surface layers, nbi is the number of bonds for atoms in surface layer i ,
�a
0 is the representative area of the entire surface layer cluster and the factor of 1

2 again comes
due to splitting the energy of each bond.
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Figure 2. Illustration of difference between bulk and surface contributions to surface Cauchy–Born model.

We can immediately define the surface second Piola–Kirchoff stress SS(C) resulting from the
surface energy in (10) as

SS(C)=2
��(C)

�C
= 1

�a
0

nsl∑
i=1

nbi∑
j=1

(
U ′(r ( j))

�r ( j)

�C

)
. (11)

Figure 2 summarizes the basic idea of the SCB model. For both bulk and surface components, the
underlying atomistic potential energy is obtained by subjecting the bulk or surface unit cell to the
continuum stretch tensor C. Once the strain energy density of the deformed unit cell is known,
the bulk stress can be calculated using (8), while the surface stress can be calculated using (11).
Figure 2 demonstrates that both the bulk and surface unit cells are subject to the Cauchy–Born
approximation, i.e. a homogeneous deformation of the unit cell.

We make two relevant comments regarding the definition of surface energy in (10) and surface
stress in (11). The traditional thermodynamic definition of surface stress (see for example [13, 22])
is written as

�=�0+C0e, (12)

where � is the surface stress, �0 is the residual (strain-independent) portion of the surface stress, and
C0e is the surface-elastic (strain-dependent) part of the surface stress, where C0 is the (constant)
surface elastic stiffness. We note that the definition of surface stress in (12) is based upon linear
elastic assumptions; the importance of finite deformation kinematics in modeling surface stress
effects on the mechanical behavior and properties of metal nanowires was recently elucidated by
Park and Klein [63], while the importance of utilizing finite deformation kinematics in studying
the mechanical properties of silicon nanowires was recently demonstrated by Park [66].

The thermodynamic interpretation of both the surface stress � in (12) and that of the surface
energy density �(C) in (10) is that of an excess quantity, i.e. a measure of the difference as
compared with the equivalent bulk quantity. The SCB surface energy density �(C) in (10) differs
from the conventional definition in that it does not represent the excess, or difference in energy
density as compared with a typical bulk atom; instead, it represents the actual potential energy
density of an atom lying at the surfaces of a nanostructure. We note that there has recently appeared
multiple finite element formulations based upon the surface elastic formulation of Gurtin and
Murdoch [59–62].

However, the definition of surface energy density utilized in the present work in (10) is extremely
favorable for non-linear FE calculations. In particular, in an actual MD simulation, the force on a
given atom, whether it lies within the bulk or on the surface, is obtained by differentiating its actual
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potential energy, and not its excess energy, i.e. the difference of potential energy as compared with
an ideal bulk atom. Therefore, the SCB definition of surface energy density in (10) leads directly
to a surface stress, and thus an internal surface force f intS in (5) that is similar in meaning to the
force obtained on a surface atom in an MD calculation.

As previously discussed, the SCB model has been developed previously for both FCC metals
using embedded atom (EAM) potentials [54, 63], and diamond cubic semiconductors such as
silicon using Tersoff potentials [55, 65]. Both the bulk stress in (8) and surface stress in (11) can
be obtained for either crystal structure and interatomic potential by deriving the appropriate energy
densities �(C) and �(C); details on the EAM and Tersoff potentials as well as the SCB formulation
for each can be found in [54, 55].

4. NUMERICAL EXAMPLES

We perform numerical examples on both gold and silicon nanowires using both the BCB and
SCB methods; both approaches are utilized to demonstrate the effects of including surface stress
effects within the SCB formulation for dynamic simulations. In all cases, the bulk and surface
energy densities for the gold nanowires were computed using the EAM potential developed by
Foiles [71], while the bulk and surface energy densities for the silicon nanowires were computed
using the T3 version of the Tersoff potential [72]. Both gold and silicon nanowires are assumed
to have a 〈100〉 axial orientation, with ideal, unreconstructed {100} transverse surfaces.

The non-linear, dynamic finite element simulations were performed using the Sandia-developed
simulation code Tahoe [73]. A lumped mass matrix and standard explicit central-difference time
integrator were used for all dynamic FE simulations; the explicit central-difference time integrator
was also used to integrate the MD equations of motion.

We note that the dynamic behavior of nanomaterials including surface effects, for example wave
propagation and uniaxial deformation, have rarely been studied within a continuum mechanics
framework. Examples of the previous work include that of Wu and Dzenis [74], who studied wave
propagation in nanofibers including surface effects. However, they only included surface tension
�, and did not consider the effects of either the residual (strain-independent) surface stress �0
or the surface elastic (strain-dependent) part of the surface stress C0e. Song et al. [75] studied
wave propagation in nanowires including surface effects via a higher order continuum theory.
However, they only considered the effects of the residual surface stress �0. Neither formulation
accounted for finite deformation effects due to surface stress, which has been shown to be critical
in understanding the elastic properties of both metallic [63] and semiconducting nanowires [66].

4.1. Surface stress effects on the dynamic tensile and compressive loading of gold and silicon
nanowires

We first consider the dynamic tensile and compressive loading of both metallic and semiconducting
nanowires. The geometry considered for both materials was a 160×10×10nm nanowire, which
was discretized with a regular mesh of 16 000 8-node hexahedral elements, leading to almost
20 000 FE nodes. The time step used for both the BCB and SCB simulations of the gold nanowire
was 0.1 ps, while the time step for the BCB and SCB simulations of the silicon nanowire was
0.08 ps. Thus, to achieve a total simulation time of 500 ps, 5000 time steps were required for the
gold nanowire, while 6250 time steps were required for the silicon nanowire.
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For the gold nanowires, we also conducted classical MD simulations at zero temperature to
compare against the SCB and BCB results. The precise geometry for the gold nanowires studied via
MD was 156.67nm×9.792nm×9.792nm for a total of 923 185 atoms; the same EAM potential
of Foiles [71] as was used for the BCB and SCB simulations was used in the MD simulations. The
MD simulations were run for 125 000 steps with a time step of 0.004 ps, which is 25 times smaller
than the FEM-based BCB and SCB time step; the total simulation time was 500 ps, the same
as for the SCB calculations. We note that no surface reconstructions were observed in the MD
simulations, thereby enabling a direct comparison between MD and SCB for the elastic behavior
of the nanowires under applied tensile loading.

The nanowires were held fixed at the −x end, while the +x end was loaded using a force
boundary condition where the applied force increased linearly from zero applied force on each
FE node when t=0 to a total applied (tensile or compressive) force per FE node of 0.8 nN at
the completion of the simulation. A force boundary condition was used instead of a displacement
or velocity boundary condition as those would lead to the same tensile or compressive strain in
both the BCB and SCB nanowires; the force boundary condition does not impose that the strain
is equal in both SCB and BCB nanowires, and therefore will enable us to delineate the effects of
surface stresses on the tensile and compressive deformation of the nanowires.

The results for the gold nanowire are shown in Figure 3, while the results for the silicon nanowire
are shown in Figure 4. Both figures plot the displacement time history for the center node on the
+x face of the nanowires, and demonstrate the significant effect that surface stresses have on the
dynamic uniaxial deformation of metallic and semiconducting nanowires.

For the tensile loaded gold nanowire in Figure 3(a), the BCB result, which neglects the effects
of surface stresses, demonstrates a non-linear, but generally increasing displacement as a result
of the applied tensile force; the total tensile strain in the BCB gold nanowire reaches almost 2%
after 500 ps. However, the SCB result, which does account for surface stresses, is significantly
different. One key difference is that for the first 250 ps of the simulation, the displacement of
the tensile loaded end is actually negative, or in compression, despite the applied tensile force.
The reason for this is because surface stresses on FCC metals are tensile [76], which means
that the surface can lower its energy by contracting; the surface stresses thus oppose the applied
tensile force in the gold nanowire. Previous studies on metal nanowires have clearly demonstrated
that the tensile surface stresses at nanometer length scales are strong enough to cause significant
compression in the nanowires leading to unique multifunctional nanomaterial behavior including
phase transformations, shape memory, and pseudoelasticity [14–16]. The SCB results in Figure 3(a)
thus demonstrate that it is only around t=240ps that the applied tensile force of 0.4 nN on each
FE node of the gold nanowire is sufficiently large to counteract the effects of the surface stress,
thus eventually leading to tensile expansion of the nanowire.

Figure 3(a) also demonstrates the accuracy of the SCB calculation as compared with the bench-
mark MD simulation for the tensile loaded gold nanowire. The MD simulation exhibits all of
the same features as the SCB calculation, including the initial compressive deformation of the
nanowire due to surface stresses, and subsequent tensile elongation once the applied tensile force
exceeds the compressive surface stresses.

Figure 3(b) compares the BCB, SCB, and full MD results for compression of the gold nanowire.
In the case of compression, the surface stresses induce the opposite effect as compared with tensile
loaded gold nanowire, i.e. the tensile surface stresses augment the applied axial compression to
cause the SCB and MD nanowires to exhibit a significantly larger compressive deformation for the
same applied force as the BCB nanowire. Furthermore, we observe very good qualitative agreement
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Figure 3. Displacement time history of a 160×10×10nm gold nanowire loaded by (a) applied tensile
force and (b) applied compressive force as computed using BCB and SCB models, and classical MD.

between the SCB and MD results, while emphasizing the reduction in computational cost obtained
through using the SCB calculations both through a reduction in the number of degrees of freedom,
as well as the significantly larger time integration step that can be used.

Similarly, the SCB results for the tensile loaded silicon nanowire in Figure 4(a) are significantly
different from the BCB results, which again demonstrate a non-linear, but generally increasing
displacement of the tensile loaded end. However, in contrast to the tensile loaded gold nanowire
SCB results in Figure 3(a), the displacement of the silicon SCB nanowire is generally larger than
that of the silicon BCB nanowire. The reason for this is because the surface stress for {100} silicon
is compressive [77], which means that the surface can lower its energy by expanding. Thus, in
the silicon SCB case, the surface stress actually enhances the applied tensile force, leading to the
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Figure 4. Displacement time history of a 160×10×10nm silicon nanowire loaded by (a) an applied
tensile force and (b) an applied compressive force as computed using BCB and SCB models.

larger displacements for the silicon SCB nanowire as compared with the BCB case where surface
stress effects are ignored.

The results for the compressively loaded silicon nanowire are shown in Figure 4(b). There, it is
observed that because the compressive surface stresses oppose the compressive axial force that is
applied, the SCB nanowire deformation under compression is smaller than the BCB deformation.
While a comparison with a benchmark MD simulation was not performed for the silicon nanowires,
we note that the previous quasistatic calculations have found that the SCB model gives extremely
accurate energy minimizing positions of nanowires due to surface stresses as compared with
atomistic calculations [55, 65].
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One of the distinct features for both the BCB and SCB silicon nanowire results in Figure 4 is the
periodic oscillations, which are observed in both tension and compression, and are more distinct for
the SCB results than the BCB results. The likely reason for this is due to the non-centrosymmetric
nature of the silicon lattice; for example, as seen in the work of Park and Klein [55], fixed/free
silicon nanowires show a non-uniform elongation strain due to the non-centrosymmetric nature of
the silicon lattice. Therefore, the oscillations in the SCB results are expected to be greater than
those in the BCB results due to the coupling between the undercoordinated nature of surface atoms
and the non-centrosymmetric nature of both the bulk and surface atoms.

We also wish to make a few relevant remarks with regards to the dynamic simulations. First,
we note that the time steps used above for the BCB and SCB calculations were very close to
the maximum time step that is allowable numerically. We verified that just as in standard FE
calculations, larger time steps can be used simply by increasing the element size. Second, it is
worth mentioning that the stable time step for the BCB calculations is slightly larger than that of
the SCB calculations. The likely reason is because in the SCB calculations the elements that lie
on the surfaces are split, and receives contributions from both the bulk and surface energies; the
splitting leads to slightly different material properties, i.e. stiffness and density due to the blending
of bulk and surface properties, which causes the slight reduction in stable time step for the SCB
calculations as compared with the BCB calculations.

We also comment on the time step in the FE simulation, and the reduction in strain rate as
compared with classical MD. First, the time step in the FE simulation, which is about 0.1 ps, is
about 100 times larger than the time step of 0.001 ps that is typically used in an MD simulation.
Because of this, the FE-based SCB model can access significantly longer time scales than can MD
simulations. Second, by approximating that the tensile deformation occurred uniformly for the
gold and silicon nanowires, a strain rate of about �̇=3×106 s−1 is obtained for the FE-based SCB
simulations. We note that by reducing the rate of applied loading, the strain rate can be reduced
to something on the order of �̇=102 or 103 s−1, which while being larger than that obtained
experimentally, is 4–6 orders of magnitude smaller than that which is possible in MD.

4.2. Surface stress effects on flexural wave propagation in metal nanowires

The final numerical example considers surface stress effects on flexural wave propagation in gold
nanowires. For this wave propagation example, the nanowires had square cross-sections of length
12 nm, while the nanowire length varied between 384 and 1152 nm depending upon the period
of the input wave. The nanowires were discretized using a regular mesh of 8-node hexahedral
elements, leading to FE mesh sizes that ranged from 32 000 to 170 000 elements.

In order to obtain the dispersion relationship, we follow the methodology described by Wang
and Hu [78]. To do so, we applied sinusoidal transverse (flexural) displacements with a period
of oscillation ranging from T =10−100 fs at one end of the nanowires, while the FE nodes at
the other end of the nanowire were held fixed. Upon propagating a transverse wave through the
nanowire, the propagation duration �t of the wave from a point x1 to a point x2 along the nanowire
can be written as

�t= (t32− t31)+(t42− t41)+·· ·+(tn2− tn1)

n−2
, (13)

where t32 is the time of the third peak of oscillation measured at x2, and t31 is the time for the
third peak of oscillation to reach x1. In the present numerical examples, x1 corresponds to a point
that is 6 nm from the end of the nanowire where the sinusoidal wave is input, while x2 corresponds
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Figure 5. Wave propagation history at different sections along the gold nanowire length for input sinusoidal
flexural wave of period T =30 ps for both SCB and BCB models.

to a point that is 12 nm from the end of the nanowire where the sinusoidal wave is input. We
show in Figure 5 the displacement time history at points x1 and x2 for the input longitudinal wave
of period T =30 fs; the time for different peaks of oscillation (t31, t32, etc.) that are needed to
evaluate the propagation duration �t are labeled for clarity.

Once the propagation duration �t is known, the phase velocity c and the wave number k, which
are required to calculate the dispersion relationship, can be found as

c= x2−x1
�t

, (14)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1237–1254
DOI: 10.1002/nme



1250 H. S. PARK

0.5 1 1.5 2 2.5 3

x 108

650

700

750

800

850

900

950

Wave number (1/m)

P
h

as
e 

ve
lo

ci
ty

 (
m

/s
)

Dispersion Relationship for 12nm Gold Nanowire

BCB
SCB

Figure 6. Dispersion relationship for a 12 nm square cross-section gold nanowire.

and

k= 2�

	
= 
T

	
= 


c
, (15)

where the angular frequency 
 is related to the period T by the relationship


= 2�

T
. (16)

The dispersion relationship for the 12 nm square cross-section gold nanowire is shown in
Figure 6. As can be observed, both the BCB and SCB results demonstrate an increase in phase
velocity with an increase in wave number; furthermore, the wave speeds in the SCB simulation are
always greater than those in the BCB model. The reason for this is because the gold nanowires are
held in a position in which the nanowires are under tension. In other words, due to one end being
fixed while the other end is subjected to the input sinusoidal wave, the gold nanowires are unable
to contract to relieve the tensile surface stresses, and thus naturally exist in a state of tension, thus
leading to enhanced flexural wave speeds.

5. CONCLUSIONS

In conclusion, we have presented a dynamic finite element formulation which accounts for atomisti-
cally based surface stress effects on the mechanical response of nanomaterials. The finite element
formulation is inherently multiscale through the usage of the Cauchy–Born hypothesis to obtain the
constitutive response for both the bulk and surfaces of the nanostructure directly from underlying
atomistic principles. The presented approach offers distinct computational advantages as compared
with classical MD, including a time step that is about two orders of magnitude larger than that
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used in atomistics, which enables both the simulation of strain rates (�̇=102−106 s−1) that are
significantly lower than those attainable in MD simulations, and thus are closer to those that are
attainable experimentally, and also the attainment of time scales (i.e. micro and milliseconds) that
are relevant for the study and analysis of NEMS.

The numerical examples of dynamic tension and compression of metallic and semiconducting
nanowires, as well as flexural wave propagation in metal nanowires demonstrated the significant
effect that surface stresses have on the dynamic mechanical behavior and response of both metallic
and semiconducting nanostructures. Furthermore, the numerical examples quantified the advantages
of the dynamic SCB model, i.e. accuracy as compared with fully atomistic calculations coupled
with a significant reduction in computational expense.
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