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a b s t r a c t

The objective of this paper is to quantify how nanoscale surface stresses impact the critical buckling
strains of silicon nanowires. These insights are gained by using nonlinear finite element calculations
based upon a multiscale, finite deformation constitutive model that incorporates nanoscale surface stress
and surface elastic effects to study the buckling behavior of silicon nanowires that have cross sectional
dimensions between 10 and 25 nm under axial compressive loading. The key finding is that, in contrast
to existing surface elasticity solutions, the critical buckling strains are found to show little deviation from
the classical bulk Euler solution. The present results suggest that accounting for axial strain relaxation
due to surface stresses may be necessary to improve the accuracy and predictive capability of analytic
linear surface elastic theories.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, one-dimensional nanostructures such as
nanowires have been extensively studied through both theory
and experiment. The major impetus for this widespread interest
is due to the novel optical, electrical, thermal and mechanical prop-
erties that these volume confined nanowires exhibit [1–3]. Due to
these novel physical properties, nanowires are likely to be one of
the major building blocks for future nanotechnologies and nano-
electromechanical systems (NEMS) [4–6]. For example, one emerg-
ing application of these silicon nanowires is for highly flexible and
stretchable electronics [7,8]. While initial studies utilized micron-
sized silicon structures [7], recent experimental work by Zhu
et al. [9] utilized silicon nanowires with diameter averaging around
30 nm. As the trend for the size of electronics towards smaller size
components, this suggests that the device performance of these
stretchable electronics will be strongly dependent on how surface
effects impact the buckling behavior and properties of the compo-
nent silicon nanowires.

Because they will be a basic building block for NEMS, it will be
critical to understand the mechanical properties of nanowires. As a
result, there has been significant experimental and theoretical ef-
fort put forth to understand how and why the elastic properties
of both metallic and semiconducting nanowires deviate from their
bulk values [3]. While there is often disagreement between exper-
iments, and also between experiments and theoretical predictions,
there appears to be general agreement that the elastic properties of
nanowires should be different from the bulk value due to the effect

of surface stresses [10], which act upon surface atoms due to their
undercoordinated nature as compared to bulk atoms. Because sur-
face atoms are undercoordinated, their elastic properties are ex-
pected to be different from bulk atoms [11], and thus as
nanowires become smaller with a corresponding increase in sur-
face area to volume ratio, the surface elastic properties are ex-
pected to have a significant impact on the overall elastic
properties of the nanowires.

There exist several different approaches to experimentally mea-
sure the elastic properties of nanomaterials, including tension, res-
onance and bending. All of these approaches have been utilized in
recent experiments to measure the elastic properties of nanowires
[3]. Another fundamental measurement to obtain elastic properties
is buckling, which is generally obtained through uniaxial compres-
sion of the nanowire. Recently, experimental studies of the buck-
ling of silver [12], silicon [13–15,9] and ZnO nanowires [16–18]
have all been reported. Similarly, several theoretical studies, which
have generally been performed using classical molecular dynamics
(MD) simulations have also been reported for the buckling of var-
ious nanowires, including FCC metals [19–21], iron [22], gallium
nitride [23] and silicon [24]. We also note the recent analytic work
of Wang and Feng [25] and Song et al. [26], who developed differ-
ent models to estimate the change in critical buckling force if sur-
face stress and surface elastic effects are considered.

With regards to the buckling investigations, most experimental
studies [17,13,15] have focused on larger cross section nanowires
(50–200 nm), where surface effects may be minimal. In contrast,
the atomistic studies have been limited to very small (less than
10 nm) nanowire cross sections [24,23,19,22,20,21]. Therefore,
there is currently lacking a systematic understanding of how
nanoscale surface effects impact the critical buckling strains of
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nanowires, particularly when different geometries and cross sec-
tional sizes that range between those studied experimentally and
atomistically are considered. It is worth emphasizing that the rel-
ative lack of understanding as to how surface effects impact the
buckling of nanowires is in stark contrast to the extensive litera-
ture that has recently developed regarding the buckling behavior
of other nanostructures, especially carbon nanotubes [27–33].

This work aims to address the following issues, namely what ef-
fect do surface stresses, nanowire size and aspect ratio have on the
critical buckling strains of silicon nanowires. These results are ob-
tained using the recently developed surface Cauchy–Born (SCB)
model, which is a multiscale, nonlinear constitutive model that
incorporates surface stresses on nanostructures within a nonlinear
finite element (FE) framework [34]. We compare all results for a gi-
ven nanowire geometry both to buckling strains obtained from lin-
ear Euler buckling theory, which does not account for surface
effects, and to recent analytic buckling models that do explicitly
account for surface effects [25] to understand how surface effects
impact the buckling strains as a function of nanowire size and
geometry.

2. Surface Cauchy–Born model

2.1. Overview

The standard bulk Cauchy–Born (BCB) model is a multiscale, fi-
nite deformation constitutive model that enables the calculation of
continuum stress and stiffness directly from an underlying inter-
atomic potential energy [35,29,36,34,37,38]. However, because
the BCB model does not account for critical nanoscale surface
stress effects, the SCB model was recently developed for silicon
nanostructures by Park and Klein [34] to capture surface stress ef-
fects within the framework of the Cauchy–Born approximation. Be-
cause the SCB formulation for silicon was presented in previous
works by Park et al. [34,39,40], we refer the interested reader to
those works for a detailed exposition on the SCB model.

In general, the SCB model augments the bulk strain energy den-
sity that is present in the BCB model with a surface strain energy
density that represents the energy for a representative surface unit
cell. The key to the SCB model is obtaining a total potential energy
through the sum of the bulk and surface energy densities. By doing
so, the total potential energy can be minimized using standard
nonlinear FE techniques, which enables the application of the
SCB model to three-dimensional boundary value problems involv-
ing nanomaterials while still accounting for the effects of nano-
scale surface stresses and their effects on surface elastic
properties. We also note that because the SCB and BCB are both
nonlinear constitutive models, the effects of any deformation that
results in the nanowire bulk due to surface stresses is naturally im-
parted to the bulk stress and stiffness; previous studies have indi-
cated that such nonlinear deformation of the bulk may have a
critical effect in the resulting nanowire elastic properties [41,42].
Finally, we note that thermal effects were not considered in the
present work, though previous research has incorporated thermal
effects on both the bulk and surface stresses into the SCB model
[43].

3. Numerical examples

All numerical examples were performed on three-dimensional,
single crystal silicon nanowires of length L and square cross section
of width a. Three different parametric studies are conducted in this
work, which consider nanowires with constant cross sectional area
(CCSA), where a = 10 nm and a = 25 nm, and constant aspect ratio
(CAR) of L/a = 15; the geometries are summarized in Table 1. All

simulations were performed using the Sandia-developed simula-
tion code Tahoe [44].

All nanowires had a h100i longitudinal orientation with unre-
constructed {100} transverse surfaces, and were discretized using
regular meshes of 8-node hexahedral elements, with at least 10 fi-
nite elements through the nanowire thickness. The underlying
interatomic potential that was utilized for the SCB calculations
for silicon is the T3 model of Tersoff [45].

The compressive loading was applied by prescribing a fixed dis-
placement increment at both the +x and�x ends of the nanowire of
ranging from 0.1 Å to 0.5 Å, at which point the interior of the nano-
wire was allowed to relax in response to the applied displacement
to find an energy minimizing configuration. The loaded planes
were not allowed to deform in either the y or z directions; as noted
by Guo et al. [30], restricting in-plane (y and z) displacements are
expected to lead to higher buckling strains as compared to the case
where in-plane displacements are allowed.

After each displacement increment was applied and the nano-
wire had relaxed to the energy minimizing configuration, the sta-
bility of the nanowire was evaluated by finding the smallest
eigenvalue of the FE stiffness matrix, where the buckling strain
was determined from the point where the smallest eigenvalue of
the FE stiffness matrix becomes negative, which is equivalent to
the point at which the FE stiffness matrix loses positive definite-
ness [30]. We emphasize that through the usage of the nonlinear,
finite deformation SCB model, changes in elasticity of both the bulk
and surface due to deformation caused by the applied uniaxial
loading as well as due to surface stresses are naturally captured
by the FE stiffness matrix.

The boundary value problem thus corresponds to nanowires
that are doubly-fixed; this would correspond to nanowires that
are fabricated experimentally using a top-down etching approach,
as is commonly done for silicon-based NEMS [5]. The effect of the
doubly-fixed boundary conditions is that the axial length of the
nanowires is fixed in the initial configuration; therefore, the silicon
nanowires are effectively under compression as the nanowires are
unable to expand axially to relieve the effects of the compressive
silicon surface stresses [46,40]. As we will show, the critical buck-
ling strains of the nanowires are strongly dependent on whether
these axial strains due to surface stresses are accounted for or not.

We also compare our results to those that can be obtained from
linear elastic Euler beam theory. As is well known, the buckling for-
mula for a nanowire (beam) that is fixed at one end and axially
compressed at the other end can be written as

Pcr ¼
p2EI

ðKlÞ2
; ð1Þ

where Pcr is the critical force, E is the Young’s modulus of the nano-
wire, I is the moment of inertia, l is the nanowire length, and K is a
dimensionless coefficient known as the effective-length factor. For a
nanowire (beam) that is fixed at both ends, as in the present numer-
ical examples, K = 0.5.

To compare with the buckling strains obtained through the FE
calculations in the present work, we rewrite Eq. (1) to solve for

Table 1
Summary of silicon nanowire geometries considered: constant aspect ratio (CAR), and
constant cross sectional area (CCSA). All dimensions are in nanometers.

CAR CCSA1 CCSA2

150 � 10 � 10 100 � 10 � 10 375 � 25 � 25
225 � 15 � 15 200 � 10 � 10 750 � 25 � 25
300 � 20 � 20 300 � 10 � 10 1125 � 25 � 25
375 � 25 � 25 400 � 10 � 10
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the critical Euler buckling strain �euler
cr . This is done by noting that

Pcr ¼ E�euler
cr A, and solving for the buckling strain to obtain

�euler
cr ¼ 4p2I

Al2 ; ð2Þ

where A is the cross sectional area of the nanowire. Importantly, we
note that the buckling strain in Eq. (2) is independent of any mate-
rial properties, i.e. the Young’s modulus, and instead depends only
on the geometry of the nanowire (beam).

4. Numerical results

We summarize in Tables 2–4 the critical buckling strains for
both the BCB and SCB calculations for the CAR and CCSA geome-
tries of the silicon nanowires as compared to the predictions ob-
tained using the linear Euler buckling estimate given in Eq. (2).
Table 2 demonstrates the expected result from Euler buckling the-
ory, i.e. that the buckling strain decreases rapidly based on a 1/l2

relationship (see Eq. (2)) as the nanowire length l increases.
Tables 2–4 also show values for the normalized effective

Young’s modulus Eeff/E for each nanowire geometry, which was cal-
culated using two different means. These normalized values were
first obtained by calculating the resonant frequencies of the nano-
wires for each geometry by allowing them to relax, under fixed/
fixed boundary conditions, to a minimum energy configuration
while accounting for surface stress effects and without any exter-
nally applied loading; this SCB-based procedure is identical to that
utilized by Park [40] to calculate the elastic properties of silicon
nanowires by relating the obtained resonant frequencies to the
nanowire Young’s modulus using well-known beam theory solu-
tions for fixed/fixed beams. The obtained Eeff from this procedure

was then normalized by the bulk Young’s modulus of h100i silicon,
which is 90.44 GPa using the parameters for the T3 version of the
Tersoff potential [45].

The effective Young’s modulus was also obtained for each
geometry by using the recently obtained analytic solution of He
and Lilley (HL) [47]. This particular model was chosen as it is ob-
tained from the same set of governing Young–Laplace equations
as was solved by Wang and Feng (WF) [25] to obtain estimates
for the critical buckling force on nanostructures including surface
effects, and because we will compare the presently obtained SCB
results to the WF model in the next section. The HL effective
Young’s modulus shows similar trends as the SCB for each geome-
try, namely that the surface effects soften the material, and that an
enhancement in surface-induced elastic softening is observed for
both larger aspect ratios, and smaller nanowire cross sectional
sizes. Also worth emphasizing is the fact that the effective Young’s
modulus obtained using the HL solution is always softer for the
same geometry than the effective Young’s modulus obtained using
the SCB model; the relevance of this will be made clear in the fol-
lowing section. We note that similar trends have been recently
found in experimental studies of the Young’s modulus of silicon
nanowires, where significant elastic softening with decreasing
nanowire diameter have been reported for h110i, h111i and
h112i oriented silicon nanowires by various researchers
[48,49,3,50,51].

We find in comparing the SCB results to the Euler results in Ta-
bles 2 and 3 that there are significant differences between the crit-
ical buckling strains predicted for the doubly-fixed CCSA silicon
nanowires that are not allowed to expand axially in response to
surface stress effects. Particularly noteworthy is the fact that, as
the nanowire aspect ratio increases for both the CCSA1 geometries
in Table 2 and the CCSA2 geometries in Table 3, the nanowire buck-

Table 2
Summary of critical buckling strains (in percent) obtained using linear Euler buckling theory �euler

cr

� �
from Eq. (2) for CCSA nanowires as compared to surface Cauchy–Born

calculations �scb
cr

� �
for silicon nanowires. The normalized effective Young’s modulus Eeff/E for each geometry was calculated using both the analytic solution of He and Lilley (HL)

[47], and the SCB model. The surface stress-induced axial strain �relax
scb was calculated using the SCB model using fixed/free boundary conditions for each geometry, while

�scbðtotÞ
cr ¼ �scb

cr þ �relax
scb .

Geometry �euler
cr �scb

cr �scb
cr =�

euler
cr

Eeff

E (SCB) Eeff

E (HL) �relax
scb �scbðtotÞ

cr =�euler
cr

100 � 10 � 10 3.299 3.26 0.988 1.017 0.870 0.18 1.043
200 � 10 � 10 0.822 0.67 0.815 0.863 0.694 0.1915 1.048
300 � 10 � 10 0.366 0.187 0.511 0.546 0.399 0.1953 1.044
400 � 10 � 10 0.206 0.018 0.087 0.087 �0.019 0.1972 1.044

Table 3
Summary of critical buckling strains (in percent) obtained using linear Euler buckling theory �euler

cr

� �
from Eq. (2) for CCSA nanowires as compared to surface Cauchy–Born

calculations �scb
cr

� �
for silicon nanowires. The normalized effective Young’s modulus Eeff/E for each geometry was calculated using both the analytic solution of He and Lilley (HL)

[47], and the SCB model. The surface stress-induced axial strain �relax
scb was calculated using the SCB model using fixed/free boundary conditions for each geometry, while

�scbðtotÞ
cr ¼ �scb

cr þ �relax
scb .

Geometry �euler
cr �scb

cr �scb
cr =�

euler
cr

Eeff

E (SCB) Eeff

E (HL) �relax
scb �scbðtotÞ

cr =�euler
cr

375 � 25 � 25 1.462 1.413 0.967 0.987 0.919 0.0792 1.021
750 � 25 � 25 0.3655 0.299 0.818 0.823 0.761 0.0825 1.043
1125 � 25 � 25 0.1625 0.085 0.523 0.525 0.495 0.0836 1.038

Table 4
Summary of critical buckling strains (in percent) obtained using linear Euler buckling theory �euler

cr

� �
from Eq. (2) for CAR nanowires as compared to surface Cauchy–Born

calculations �scb
cr

� �
for silicon nanowires. The normalized effective Young’s modulus Eeff/E for each geometry was calculated using both the analytic solution of He and Lilley (HL)

[47], and the SCB model. The surface stress-induced axial strain �relax
scb was calculated using the SCB model using fixed/free boundary conditions for each geometry, while

�scbðtotÞ
cr ¼ �scb

cr þ �relax
scb .

Geometry �euler
cr �scb

cr �scb
cr =�

euler
cr

Eeff

E (SCB) Eeff

E (HL) �relax
scb �scbðtotÞ

cr =�euler
cr

150 � 10 � 10 1.462 1.347 0.921 0.966 0.797 0.1876 1.049
225 � 15 � 15 1.462 1.387 0.949 0.973 0.865 0.1287 1.038
300 � 20 � 20 1.462 1.413 0.967 0.981 0.899 0.0981 1.033
375 � 25 � 25 1.462 1.413 0.967 0.987 0.919 0.0792 1.021
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ling strain decreases dramatically as compared to the Euler value.
Furthermore, it is interesting to note that the ratio of buckling
strains �scb

cr =�
euler
cr in Tables 2 and 3 appear to be related to the cor-

responding decrease in elastic stiffness due to surface effects as
shown by comparing to the Eeff/E ratios.

However, it is important to note that the critical buckling
strains �scb

cr are not measured from a stress-free configuration; as
previously discussed in a variety of works [52,53,40,54,55], the
bulk lattice constant does not correspond to the stress-free config-
uration for nanowires due to the effects of surface stress. Specifi-
cally, the zero stress configuration for FCC metal nanowires is a
reduced lattice constant because the nanowires must contract in
response to the tensile metallic surface stresses [52–55]. In con-
trast, the zero stress configuration for silicon nanowires requires
a larger lattice constant because the nanowires must expand in re-
sponse to the compressive silicon surface stresses [34,40,56].

Therefore, we also calculate the critical buckling strains from
the zero stress configuration, i.e. the one where axial elongation
due to surface stresses �relax

scb in Tables 2–4 is accounted for. In other
words, the reference configuration is one in which the lattice con-
stant of the nanowire is larger due to the expansion of the fixed/
free silicon nanowire caused by the surface stresses. If the critical
buckling strain is measured from this configuration, then as shown
in Tables 2–4 the buckling strains accounting for surface stress and
surface elastic effects �scbðtotÞ

cr =�euler
cr

� �
show little difference from

that expected from classical Euler beam theory, which does not ac-
count for surface effects.

Table 4 shows the results for the CAR geometries. The rationale
for choosing this geometry is clearly illustrated in the Euler buck-
ling results in Table 4, where despite the changes in nanowire cross
sectional area, the critical buckling strain of � = 1.462% as predicted
by linear Euler theory remains constant for all CAR nanowire
geometries. In contrast, when surface effects are accounted for
on the doubly fixed silicon nanowires, there is a nearly 10% differ-
ence in critical buckling strain �scb

cr =�
euler
cr

� �
for the smallest cross

section (a = 10 nm) nanowire in Table 4, where the reduction in
buckling strain with decreasing nanowire cross section follows a
similar trend as observed for the effective Young’s modulus Eeff/E.
However, we note that the effect of surfaces on the critical buckling
strain is clearly observed in Table 4 to decrease, as expected, as �scb

cr

approaches �euler
cr with increasing nanowire cross sectional

dimension.
The strong effect of the surface stress-induced initial strain �relax

scb

on the nanowire buckling strain is also shown in Table 4. In partic-
ular, when the relaxation strain that corresponds to a zero stress
configuration is accounted for, the critical buckling strains
accounting for surface effects �scbðtotÞ

cr

� .
�euler

cr

�
again show very little

deviation from the classical bulk value, with the deviation becom-
ing smaller with an increase in nanowire cross sectional
dimensions.

5. Discussion

Recently, Wang and Feng [25] accounted for surface stress and
surface elastic effects within the confines of the linear surface elas-
tic theory of Gurtin and Murdoch [57] to analyze surface effects on
the buckling behavior of nanostructures. Before moving forward,
we recall that, in the surface elastic theory of Gurtin and Murdoch,
the surface stress s0 and surface stiffness Es can be written as

sð�Þ ¼ s0 þ Es�; ð3Þ

Es ¼ @s
@�
j�¼0; ð4Þ

where s0 is the residual (strain-independent) part of the surface
stress s and Es� is the surface elastic (strain-dependent) part of

the surface stress. Note that Eq. (3) is written in terms of the infin-
itesimal strain tensor �.

Using this formalism, the WF model results in an equation to
predict how the critical applied force Pcr would change if surface
effects were considered. For the bulk material, the critical buckling
load Pbulk

cr can be related to the critical buckling strain �bulk
cr through

a procedure identical to that which was used to obtain Eq. (2), i.e.

Pbulk
cr ¼ E�bulk

cr A ¼ 4p2EI

l2 : ð5Þ

Similarly, the critical buckling force Psurf
cr accounting for surface ef-

fects is written as, modifying Eq. 11 in Wang and Feng [25]

Psurf
cr ¼ Eeff �surf

cr A ¼ 4p2ðEIÞ�

l2
þ 2s0h; ð6Þ

where Eeff is the effective Young’s modulus of the nanowire when
surface effects are accounted for, �surf

cr is the critical buckling strain
when surface effects are accounted for and (EI)⁄ is given as

ðEIÞ� ¼ Eh4

12
þ Esh3

2
þ Esh3

6
; ð7Þ
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Fig. 1. Comparison of SCB to analytic WF solution for critical buckling strain of CAR
silicon nanowires when tensile relaxation strains due to surface stresses: (a) are not
accounted for in the SCB results; (b) are accounted for in the SCB results.
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where h is the height of the nanowire cross section, and Es is the
surface elastic stiffness from Eq. (4). We note that values for Eeff

for each nanowire geometry were previously given in Tables 2–4.
The ratio of critical buckling strains �surf

cr =�bulk
cr can be obtained by

dividing Eq. (6) by Eq. (5). In doing so, it is important to note that
this ratio is dependent on the effective flexural rigidity (EI)⁄. We
will compare this analytic result to both the �scb

cr =�
euler
cr and

�scbðtotÞ
cr =�euler

cr ratios that were previously calculated for each nano-
wire geometry in Tables 2–4.

To evaluate the analytic equations in Eqs. (5) and (6), values for
the surface stress and surface stiffness are needed. The surface
stress and surface elastic constants for the Tersoff T3 potential,
which we have utilized for the SCB simulations in this work, were
recently evaluated by Izumi et al. [58]. They reported the following
values: s0 = �0.88 N/m and Es = �8.07 N/m for unreconstructed
{100} surfaces of silicon. We note that we have considered only
the isotropic components of the surface stress and stiffness in
the present work, which is an acceptable approximation for com-
parative purposes as the analytic expression of the WF model are
based upon the one-dimensional (scalar) form of the surface stress
and stiffness, and also because the buckling deformation is essen-
tially one-dimensional (axial).

We show comparisons in Figs. 1–3 between the two SCB results
to the analytic WF model for all nanowire geometries considered.
There are several interesting and salient points, which we now
discuss.

First, it can be observed for all geometries that we have consid-
ered that the analytic solution of the WF model predicts that the crit-
ical buckling strains when surface effects are accounted for will be
very slightly reduced as compared to that expected from classical
Euler beam theory. Specifically, the largest deviation that is ob-
served is about 2%, for the smaller (10 nm cross section) CCSA nano-
wires in Fig. 3b. We contrast the WF model results to the instability
strains predicted using the SCB model for the fixed/fixed nanowires
without accounting for the initial axial relaxation strains due to sur-
face stresses �relax

scb ; these are found in Figs. 1a, 2a, and 3a. As can be
seen in those figures, the SCB model predicts a significantly larger
decrease in critical buckling strain for all nanowire geometries.

However, the situation appears on the surface to be different if
the critical buckling strains for the SCB model are measured with
respect to the zero stress reference configuration, where we have
previously noted that capturing this axial tensile strain due to sur-
face stresses has a significant effect on the critical buckling strain
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Fig. 2. Comparison of SCB to analytic WF solution for critical buckling strain of
CCSA1 silicon nanowires when tensile relaxation strains due to surface stresses: (a)
are not accounted for in the SCB results; (b) are accounted for in the SCB results.
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Fig. 3. Comparison of SCB to analytic WF solution for critical buckling strain of
CCSA2 silicon nanowires when tensile relaxation strains due to surface stresses: (a)
are not accounted for in the SCB results; (b) are accounted for in the SCB results.
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that is predicted. Thus, we show in Figs. 1b, 2b and 3b that if the
tensile relaxation strain due to surface stresses �relax

scb is accounted
for in the SCB model, that the WF model and the SCB calculations
give similar, though not identical, predictions for the bulk-normal-
ized critical buckling strains, where the normalization for both the
WF and SCB models was by the bulk critical Euler buckling strain.
However, we should emphasize that this agreement is quite seren-
dipitous because the analytic WF model, as previously noted, does
not account for surface stress-induced axial strains. We also note
the recent MD studies of the buckling of gold nanowires by Olsson
and Park [21], who also found that the critical buckling strains
showed very little deviation from the expected bulk Euler predic-
tions, even for very small nanowire diameters (<5 nm). Overall,
these comparisons suggest that existing linear surface elastic the-
ories may need to account for axial strain relaxation due to surface
stresses to improve their accuracy and predictive capabilities.

We also compare our results to existing experimental data on
the buckling of silicon nanowires presented by Hsin et al. [13]. In
that work, VLS-grown silicon nanowires with diameters ranging
from 40 to 90 nm were compressed by pushing a tungsten probe
against the nanowire. We note that the axial orientation of the
nanowire was not specified, and that the nanowires considered
had a 5 nm thick native oxide layer that is not accounted for in
the current SCB calculations. In doing so, they found that the crit-
ical force needed to buckle the nanowires for the entire range of
nanowire diameters agreed with that predicted from classical Euler
theory. This finding correlates with what was found for the silicon
nanowires in the present work, and implies that if axial strain due
to surface stress are accounted for, as would be the case in VLS-
grown nanowires, then the critical buckling strains are quite sim-
ilar to those expected from classical Euler theory. However, we
note that the diameters that were considered in the work of Hsin
et al. are larger than what was considered in the present work.
Therefore, it is possible that their nanowires were too large to ex-
hibit surface effects, though we note that a plethora of recent
experiments [3,51,50,40] have shown that silicon nanowires show
a strong size-dependence in the elastic properties for nanowires
with diameter below about 100 nm.

6. Conclusions

In conclusion, we have utilized recently developed nonlinear
multiscale computational techniques to study the effects of surface
stresses on the critical buckling strains of silicon nanowires with
cross sectional sizes ranging from 10 to 25 nm. The key finding
of the present work is that the buckling strains of nanowires are
controlled by the initial state from which they are tested, where
the initial state is strongly influenced by surface stress effects. Spe-
cifically, the critical buckling strains for doubly-fixed silicon nano-
wires, which cannot expand axially to relieve the effects of the
compressive surface stresses of silicon, are significantly lower than
that expected from classical Euler theory, which does not consider
surface effects. In contrast, if the tensile axial strains due to surface
stresses are accounted for, and buckling begins from a zero-stress
configuration, then the critical buckling strains are found to show
little deviation from that expected from Euler theory. Finally, com-
parisons to existing linear surface elastic theories suggest that
accounting for axial strain relaxation due to surface stresses may
be necessary to improve their accuracy and predictive capability.

Acknowledgment

H.S.P. acknowledges support from NSF Grant CMMI-0750395.

References

[1] C.M. Lieber, Z.L. Wang, MRS Bulletin 32 (2007) 99–108.
[2] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan,

Advanced Materials 15 (2003) 353–389.
[3] H.S. Park, W. Cai, H.D. Espinosa, H. Huang, MRS Bulletin 34 (2009) 178–183.
[4] H.G. Craighead, Science 290 (2000) 1532–1535.
[5] K.L. Ekinci, M.L. Roukes, Review of Scientific Instruments 76 (2005) 061101.
[6] K. Eom, H.S. Park, D.S. Yoon, T. Kwon, Physics Reports 503 (2011) 115–163.
[7] D.-Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, Science 311 (2006) 208–212.
[8] J.A. Rogers, T. Someya, Y. Huang, Science 327 (2010) 1603–1607.
[9] F. Xu, W. Lu, Y. Zhu, ACS Nano 5 (2011) 672–678.

[10] R.C. Cammarata, Progress in Surface Science 46 (1994) 1–38.
[11] V.B. Shenoy, Physical Review B 71 (2005) 094104.
[12] R. Gunawidjaja, H. Ko, C. Jiang, V.V. Tsukruk, Chemistry of Materials 19 (2007)

2007–2015.
[13] C.-L. Hsin, W. Mai, Y. Gu, Y. Gao, C.-T. Huang, Y. Liu, L.-J. Chen, Z.-L. Wang,

Advanced Materials 20 (2008) 3919–3923.
[14] B. Li, M.K. Kang, K. Lu, R. Huang, P.S. Ho, R.A. Allen, M.W. Cresswell, Nano

Letters 8 (2008) 92–98.
[15] S.Y. Ryu, J. Xiao, W.I. Park, K.S. Son, Y.Y. Huang, U. Paik, J.A. Rogers, Nano Letters

9 (2009) 3214–3219.
[16] L.-W. Ji, S.-J. Young, T.-H. Fang, C.-H. Liu, Applied Physics Letters 90 (2007)

033109.
[17] M. Riaz, O. Nur, M. Willander, P. Klason, Applied Physics Letters 92 (2008)

103118.
[18] M. Riaz, A. Faluti, L.L. Yang, O. Nur, M. Willander, P. Klason, Journal of Applied

Physics 104 (2008) 104306.
[19] H.A. Wu, A.K. Soh, International Journal of Nonlinear Sciences and Numerical

Simulation 4 (2003) 233–238.
[20] H.A. Wu, Computational Materials Science 31 (2004) 287–291.
[21] P.A.T. Olsson, H.S. Park, Acta Materialia 59 (2011) 3883–3894.
[22] P.A.T. Olsson, S. Melin, C. Persson, Physical Review B 76 (2007) 224112.
[23] Z. Wang, X. Zu, L. Yang, F. Gao, W.J. Weber, Physica E 40 (2008) 561–566.
[24] Y. Jing, Q. Meng, Y. Gao, Computational Materials Science 45 (2009) 321–326.
[25] G.-F. Wang, X.-Q. Feng, Applied Physics Letters 94 (2009) 141913.
[26] F. Song, G.L. Huang, H.S. Park, X.N. Liu, International Journal of Solids and

Structures 48 (2011) 2154–2163.
[27] A. Sears, R.C. Batra, Physical Review B 73 (2006) 085410.
[28] A. Pantano, D.M. Parks, M.C. Boyce, Journal of the Mechanics and Physics of

Solids 52 (2004) 789–821.
[29] M. Arroyo, T. Belytschko, Journal of the Mechanics and Physics of Solids 50

(2002) 1941–1977.
[30] X. Guo, A.Y.T. Leung, H. Jiang, X.Q. He, Y. Huang, Journal of Applied Mechanics

74 (2007) 347–351.
[31] G. Cao, X. Chen, Nanotechnology 17 (2006) 3844–3855.
[32] K.M. Liew, C.H. Wong, X.Q. He, M.J. Tan, S.A. Meguid, Physical Review B 69

(2004) 115429.
[33] C. Li, T.-W. Chou, Mechanics of Materials 36 (2004) 1047–1055.
[34] H.S. Park, P.A. Klein, Computer Methods in Applied Mechanics and Engineering

197 (2008) 3249–3260.
[35] E. Tadmor, M. Ortiz, R. Phillips, Philosophical Magazine A 73 (1996) 1529–

1563.
[36] P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, International Journal

of Solids and Structures 39 (2002) 3893–3906.
[37] Z. Tang, H. Zhao, G. Li, N.R. Aluru, Physical Review B 74 (2006) 064110.
[38] E.B. Tadmor, G.S. Smith, N. Bernstein, E. Kaxiras, Physical Review B 59 (1999)

235–245.
[39] H.S. Park, Nanotechnology 20 (2009) 115701.
[40] H.S. Park, Journal of Applied Physics 103 (2008) 123504.
[41] H. Liang, M. Upmanyu, H. Huang, Physical Review B 71 (2005) 241403(R).
[42] H.S. Park, P.A. Klein, Journal of the Mechanics and Physics of Solids 56 (2008)

3144–3166.
[43] G. Yun, H.S. Park, Computer Methods in Applied Mechanics and Engineering

197 (2008) 3337–3350.
[44] Tahoe, 2011. <http://sourceforge.net/projects/tahoe/>.
[45] J. Tersoff, Physical Review B 39 (1989) 5566–5568.
[46] H. Balamane, T. Halicioglu, W.A. Tiller, Physical Review B 46 (1992) 2250–

2279.
[47] J. He, C.M. Lilley, Nano Letters 8 (2008) 1798–1802.
[48] X. Li, T. Ono, Y. Wang, M. Esashi, Applied Physics Letters 83 (2003) 3081–3083.
[49] H. Sadeghian, C.K. Yang, J.F.L. Goosen, E. van der Drift, A. Bossche, P.J. French, F.

van Keulen, Applied Physics Letters 94 (2009) 221903.
[50] X. Han, K. Zheng, Y.F. Zhang, X. Zhang, Z. Zhang, Z.L. Wang, Advanced Materials

19 (2007) 2112–2118.
[51] Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, W. Lu, Nano Letters 9 (2009) 3934–3939.
[52] H.S. Park, K. Gall, J.A. Zimmerman, Physical Review Letters 95 (2005) 255504.
[53] J. Diao, K. Gall, M.L. Dunn, Nature Materials 2 (2003) 656–660.
[54] W. Liang, M. Zhou, F. Ke, Nano Letters 5 (2005) 2039–2043.
[55] H.S. Park, C. Ji, Acta Materialia 54 (2006) 2645–2654.
[56] B. Lee, R.E. Rudd, Physical Review B 75 (2007) 195328.
[57] M.E. Gurtin, A. Murdoch, Archives of Rational Mechanics and Analysis 57

(1975) 291–323.
[58] S. Izumi, S. Hara, T. Kumagai, S. Sakai, Thin Solid Films 467 (2004) 253–360.

H.S. Park / Computational Materials Science 51 (2012) 396–401 401


