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We present a new multiscale, finite deformation, electromechanical formulation to capture the response
of surface-dominated nanomaterials to externally applied electric fields. To do so, we develop and dis-
cretize a total energy that combines both mechanical and electrostatic terms, where the mechanical
potential energy is derived from any standard interatomic atomistic potential, and where the electro-
static potential energy is derived using a Gaussian-dipole approach. By utilizing Cauchy–Born kinematics,
we derive both the bulk and surface electrostatic Piola–Kirchhoff stresses that are required to evaluate
the resulting electromechanical finite element equilibrium equations, where the surface Piola–Kirchhoff
stress enables us to capture the non-bulk electric field-driven polarization of atoms near the surfaces of
nanomaterials. Because we minimize a total energy, the present formulation has distinct advantages as
compared to previous approaches, where in particular, only one governing equation is required to be
solved. This is in contrast to previous approaches which require either the staggered or monolithic solu-
tion of both the mechanical and electrostatic equations, along with coupling terms that link the two
domains. The present approach thus leads to a significant reduction in computational expense both in
terms of fewer equations to solve and also in eliminating the need to remesh either the mechanical or
electrostatic domains due to being based on a total Lagrangian formulation. Though the approach can
apply to three-dimensional cases, we concentrate in this paper on the one-dimensional case. We first
derive the necessary formulas, then give numerical examples to validate the proposed approach in com-
parison to fully atomistic electromechanical calculations.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Developing a fundamental understanding of how nanomaterials
deform and respond mechanically to externally applied electro-
magnetic fields will be critical to advancing various aspects of
nanoscale science and engineering. For example, recent research
has shown that carbon nanotubes exhibit giant electrostriction
[1,2], in which the nanotubes show significant electromechanical
energy conversion potential by undergoing extremely large defor-
mations in response to an applied electric field. Furthermore, many
nanoelectromechanical systems (NEMS), which are used for a wide
range of applications including force [3], displacement [4,5] and
mass [6,7] sensing, are actuated by means of external electro-
magnetic fields [7,8]. Finally, electric fields are also used by
experimentalists to grow and align nanostructures [9], to drive
nanostructures to resonance to measure their size-dependent elas-
tic properties [10,11], and also to deform nanostructures in order
ll rights reserved.
to examine the instability and failure mechanisms that occur with
increasing deformation [1,12–14].

The multiphysics computational modeling of electromechanical
phenomena has focused in recent years on developing techniques
to study microelectromechanical systems (MEMS). A common ap-
proach to this problem has been to utilize an electrostatic analysis
to compute the electrostatic forces, while a mechanical analysis is
required to compute the deformation of the structure in response
to the applied electrostatic forces. The semi-Lagrangian approach
is a common technique for solving the coupled electromechanical
system of equations in which the mechanical analysis is performed
using the finite element method (FEM) in the undeformed config-
uration using a Lagrangian description [15–17], while the bound-
ary element method (BEM) is typically used to perform the
electrostatic analysis on the deformed geometry. Self-consistency
between the mechanical and electrostatic simulations is achieved
using relaxation techniques [18]. However, these approaches also
have certain deficiencies; these include the fact that the geometry
of the structure must be remeshed before an electrostatic analysis
is performed [19]; the BEM interpolation functions must be recal-
culated during each relaxation iteration [20]; convergence rates for
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the coupled analysis using the relaxation scheme can falter when
deformations of the mechanical domain are large [20]. These issues
can be alleviated using the recently developed full Lagrangian
approach of Aluru et al. [18,20–22]; however, this approach still re-
quires the implicit and coupled solution of both the mechanical
and electrostatic equations, as well as the calculation of the elec-
tromechanical coupling matrices, leading to considerable compu-
tational expense, particularly for 3D problems. We note that
other approaches, including Lagrange multiplier-based staggered
techniques for solving the coupled electromechanical system of
equations [23,24], also require the solution of both the mechanical
and electrostatic governing equations in addition to electrome-
chanical coupling terms.

Moreover, there are additional challenges that must be over-
come to extend the previously discussed computational electrome-
chanical techniques for MEMS down to the nanoscale; these
challenges pertain to capturing the appropriate surface physics
that occur in either the mechanical or electrostatic domains. For
example, due to nanoscale surface effects [25] that arise from the
undercoordinated nature of atomic bonding at surfaces, the
mechanical properties of nanostructures have been shown both
experimentally [10,26–29] and theoretically [30–34] to deviate
from the expected bulk values, particularly when the characteristic
size of the nanostructure decreases below about 50 nm [26].

In addition to the surface effects on the mechanical properties
of nanostructures, atoms that lie at surfaces respond, and in partic-
ular polarize differently due to applied electric fields as compared
to atoms that lie within the material bulk. While this has not been
studied extensively in the literature, recent atomistic calculations
have found that surface atoms for various materials exhibit a sig-
nificantly different polarizability in response to applied electric
fields [35–38] as compared to bulk atoms.

Therefore, there are two major objectives for the present work.
First, we wish to significantly reduce the computational expense of
analyzing coupled electromechanical problems by solving only one
governing equation, rather than equations for both the mechanical
and electrostatic domains. Second, we wish to incorporate the
appropriate surface-driven mechanical and electrostatic physical
phenomena into our computational model. To accomplish the first
task, we follow the recent developments of Wang et al. [39,40],
who, within a fully atomistic context, used an atomistic total en-
ergy that combined both mechanical and electrostatic energies.
In their approach, the mechanical potential energy was obtained
from the AIREBO interatomic potential for carbon [41], while the
electrostatic potential energy in response to an external electro-
static field was obtained from either the Gaussian dipole [42,43]
(for semiconducting nanostructures) or Gaussian charge-dipole
[44,45] (for metallic nanostructures) approaches. In these papers
[39,40], the self-consistent calculation of the effective charges, di-
poles, energies and electrostatic forces on every atom at each iter-
ation was made computationally tractable through analytic
expressions that involved the inversion of a single matrix, thus
eliminating the need for numerical derivations to compute the
forces. Indeed, this allowed them to find equilibrium positions by
minimizing the total atomistic potential energy fully self-consis-
tently with a single total energy functional.

To accomplish the second task, we build upon previous work by
Park et al. [46–48], who developed an extension to Cauchy–Born
techniques called the surface Cauchy–Born (SCB) model to capture
the non-bulk mechanical surface energies of nanostructures within
a continuum, FEM-based computational methodology. The SCB
model was previously shown to accurately capture nanoscale
surface stress effects on the mechanical behavior and properties
of both FCC metallic [34,47,49] and semiconducting (silicon)
[50,51] nanowires as compared to benchmark fully atomistic
calculations.
The major result of this article is then a multiscale, finite defor-
mation FEM-based methodology that enables us to study how
surface-dominated nanostructures respond to externally applied
electric fields. For the sake of clarity we restrict this first paper to
one dimensional (1D) systems and reserve the full 3D formalism
for a subsequent paper, which follows the same lines of develop-
ment but with some complications due to the tensor formalism.
We therefore begin by developing the total atomistic potential en-
ergy for 1D systems, then arrive at a single governing electrome-
chanical finite element equation that captures external electric
field effects on nanostructures. We further derive from the Gauss-
ian dipole model of electrostatics, using Cauchy–Born kinematics,
the bulk and surface electrostatic Piola–Kirchhoff stresses that
are required for the coupled electromechanical finite element gov-
erning equations. Our numerical examples in 1D validate both the
bulk electrostatic stress, and also the surface electrostatic stress by
comparison to fully coupled electromechanical atomistic
simulations.

2. Atomistic electromechanical potential energy

We briefly describe in this section the atomistic electromechan-
ical potential energy that was previously developed by Wang and
Devel [39,40] to study the effect of an external electrostatic field
on the deformation of semiconducting and metallic carbon nano-
tubes. Specifically, they wrote the total energy of the nanostructure
as the sum of the mechanical and electrostatic energies as:

UtotalðrijÞ ¼
XN

i¼1

Uelec
i ðrijÞ þ

XN

i¼1

Umech
i ðrijÞ; ð1Þ

where N is the total number of atoms in the system and rij is the dis-
tance between two atoms i and j. In their approach, the mechanical
potential energy Umech was obtained using a standard interatomic
potential, i.e. the AIREBO potential for carbon [41], while the sup-
plementary electrostatic potential energy Uelec due to an externally
applied electric field was obtained using either the Gaussian dipole-
only model for semiconducting carbon nanotubes (CNTs) [39] or the
Gaussian charge-dipole model for metallic CNTs [40], which we will
discuss in further detail in the next section. It is worth noting that
there are no restrictions on the choice of the mechanical inter-
atomic potential as long as it accurately represents the behavior
of the material to be studied in the absence of an externally applied
electric field. The minimum energy configuration (i.e. the mechan-
ical deformation) of the nanotubes in the presence of the externally
applied electric field was then obtained by direct minimization of
the total energy (1).

Because the calculation of mechanical interatomic forces is rou-
tinely done in the literature, we will not overview that here, and
instead refer the reader to classic texts on molecular simulation
[52,53]. However, the analytical calculation of electrostatic forces
from the Gaussian dipole model has been much less publicized.
We will therefore discuss it in the next chapter, emphasizing the
aspects of computational difficulty and expense that motivate
the present work.

3. Atomistic electrostatic potential energy: Gaussian dipole
method

3.1. Background

In this section, we describe the theory underlying the calcula-
tion of the atomistic electrostatic potential energy arising in
response to an external field via the Gaussian dipole model
(GDM), and provide motivation for why it is critical to develop
computationally efficient, multiscale techniques for calculating
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the electrostatic stress. The GDM can be viewed as an extension of
the point dipole interaction model (PDI), which was originally
developed as a semi-phenomenological model to describe the
interaction of matter at the atomistic scale with an external elec-
tric field [54–57]. This model simply states that the response of a
dielectric to an externally applied field can be described to first or-
der by the fact that the nuclei and electrons are attracted in oppo-
site directions. Hence the macroscopic polarization of the material
is accounted for by the creation of elementary dipoles on every
atoms. The total field on a given atom is then computed self-
consistently by stating that it is the sum of the external field plus
the fields created by the other dipoles which are themselves
created by the total fields at their positions. Furthermore, the
(mesoscopic) discretization of the volume integrals occurring in
electromagnetic waves scattering by finite objects leads to the
same kind of equations, so that this method has been used in many
branches of science with so many variants bearing different names
that we can give only examples here: astrophysics [58,59], where it
is known as the discrete dipole approximation (DDA), local probe
microscopies where it is known as the generalized field suscepti-
bility technique[60,61] or electric field propagators (EFP) tech-
nique [62] or Green’s dyadic function technique as in other
domains of electromagnetism [63], biophysics and organic molec-
ular simulations [64–68].

The fact that the PDI/DDA model has been successful across this
range of length scales, from atoms to interstellar dust grains, indi-
cates its robustness and physical correctness. It is however, only a
special case of a more general multipolar approach [60,69,70]. In-
deed, for metallic materials or organic molecules with delocalized
electrons coming from conjugated double bounds, a charge + di-
pole model is better suited [44,45,71,72]. However, in all of these
models, there are numerical difficulties coming from the self-en-
ergy of the atoms and the fact that when atoms are too closely
bound, the point charge or dipole approximation is not a good
approximation for nearest neighbors, leading to so-called ‘polariza-
tion catastrophes’. Several techniques have been developed to
avoid these divergences [43–45,72–77], which allowed one to con-
sider metallic and semiconducting nanostructures including car-
bon nanotubes [14,45,78–80] and small metallic [36,38] and
silicon nanoclusters [35]. Among them, the Gaussian dipole model
(GDM) simply states that the interaction of the atoms with an
external field does not create point dipoles but Gaussian dipoles,
i.e. dipoles created from the shift of Gaussian distributions of
charges. This results in interaction tensors between dipoles which
are the convolution of the classical gradients of Green’s function for
Poisson’s equation by one [43] or two [44] Gauss normalized distri-
butions. This is in fact very similar to the Gaussian orbitals used in
quantum chemistry and to the spatial part of the Ewald summation
method for dipoles [81], and requires only knowledge of the de-
formed atomic positions to calculate the induced dipole moments
pi on each atom due to an external electric field E0.

3.2. Computation of the dipoles, energies and forces

In 1D, according to the GDM, the electrostatic potential energy
Uelec corresponding to the response of the system to an external
field can be written as, for a system of N atoms that has zero net
charge (i.e. a semiconductor):

Uelec ¼ �1
2

XN

i¼1

XN

j¼1

piT
ð2ÞðrijÞpj

 !
�
XN

i¼1

piE0ðriÞ; ð2Þ

where E0 is the externally applied electric field (in units of V/Å), pi is
the dipole moment for atom i (homogeneous to a charge multiplied
by a distance), �0 is the permittivity of free space, and where T(2) is
the Gaussian dipole – Gaussian dipole interaction tensor.
The 1D vacuum dipole–dipole interaction tensor Tð2Þ0 is obtained
from Equation (A3) of Langlet et al. [43] or Eq. (3) of Mayer [45]

(with ai;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i þ R2
j

q
¼

ffiffiffi
2
p

R if all atoms are of the same chemical

nature):

Tð2Þi;j ¼
2

ð4p�0Þr3
ij

erf
rij

ai;j

� �
� 2ffiffiffiffi

p
p rij

ai;j
1þ

r2
ij

a2
i;j

 !
exp�ðrij=ai;jÞ2

 !
; ð3Þ

where Tð2Þi;j ¼ Tð2ÞðrijÞ. Thanks to the convolution with the Gaussian (s),
the quantities Tð2Þi;i are well defined (Tð2Þi;i ¼ �1=ðð3p�0Þ

ffiffiffiffi
p
p

a3
i;jÞ), which

is not the case for the classical point dipole – point dipole propagator
�rr0(1/(4p�0jr � r0j)) which diverges when jr � r0j? 0. Indeed,
coupled with the crucial remark by Mayer [72] that the diagonal
terms �ð1=2ÞpiT

ð2Þ
i;i pi should be included in the sum of Eq. (2) and

physically interpreted as the self-energy of the atom ð1=2ÞaiE
2
i ¼

ð1=2Þp2
i =ai, the isotropic polarizability is related to the width of

the Gaussian distribution of charge on each atom by Eq. (2) of
Mayer et al. [44], and takes the form:

ai

4p�0
¼ 3

ffiffiffiffi
p
p

4
a3

i;i ¼ 3
ffiffiffiffi
p
2

r
R3

i ; ð4Þ

where Ri is the width of the Gaussian distribution for atom i, with
units of Å, if ai/(4p�0) is given in Å3 as is commonly the case (which
enables one to forget the factor (4p�0) in T(2) and fall back to the
CGS–Gauss expression for it).

The distribution of dipoles is then determined by enforcing that

the actual dipole distribution p�j
n o

should correspond to the min-

imum value of Uelec. Following Wang et al. [39], this can be written
as:

8i ¼ 1; . . . ;N
oUelec

opi
p�j
n o� �

¼ 0: ð5Þ

Enforcing these conditions on Eq. (2), the actual dipole moments on
each atom p�j can be found by solving the following dense linear
system:

8i ¼ 1; . . . ;N
XN

j¼1

Tð2Þi;j p�j ¼ �E0;i; ð6Þ

where E0,i = E0(ri). One can then define a N � N matrix dTð2Þ and the
corresponding vectors cp� and cE0 and restate the linear system to
solve as:

dTð2Þcp� ¼ �cE0 : ð7Þ

By substituting (6) into (2), one gets:

Uelec ¼ �1
2

XN

i¼1

p�i ð�E0;iÞ �
XN

i¼1

p�i E0;i ¼ �
1
2

XN

i¼1

p�i E0;i ¼ �
1
2
cp� �cE0 :

ð8Þ

Using Eqs. (8) and (6) in its matrix form, the electrostatic forces on
each atom can be written as:

8i ¼ 1; . . . ;N f elec
i ¼ � oUelec

ori
¼ dE0ðriÞ

dri
p�i �

1
2
cE0 �

o
dTð2Þ� ��1

ori

cE0 ; ð9Þ

Then, using the fact that:

o
dT ð2Þ dTð2Þ� ��1

( )
ori

¼ 0)
o
dTð2Þ� ��1

ori
¼ � dTð2Þ� ��1

o
dTð2Þ
ori

dTð2Þ� ��1

; ð10Þ
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we get:

8i ¼ 1; . . . ;N f elec
i ¼ dE0ðriÞ

dri
p�i þ

1
2
cp� � odT ð2Þ

ori

cp� : ð11Þ

If we now define:

Tð3ÞðrijÞ ¼ Tð3Þðri � rjÞ ¼
oTð2Þðri � rjÞ

ori

¼ � ri � rj

ð4p�0Þr5
ij

6 erf
rij

ai;j

� �
� 4ffiffiffiffi

p
p 3

rij

ai;j
þ 2

r3
ij

a3
i;j

þ 2
r5

ij

a5
i;j

 !
exp �

r2
ij

a2
i;j

 ! !
;

ð12Þ

one can show that:

8 i; j; k ¼ 1; . . . ;N
o
dT ð2Þ� �

j;k

ori
¼ Tð3Þi;k di;j � Tð3Þj;i di;k: ð13Þ

Using this result and the antisymmetry of T(3) with respect to the
interchange of the two positions, the forces can now be written as:

8i ¼ 1; . . . ;N f elec
i ¼ p�i

dE0ðriÞ
dri

þ
XN

j¼1

T ð3Þi;j p�j

 !
; ð14Þ

We note that this result would simply be f elec
i ¼ p�i dEi=dri with

Ei ¼ E0ðriÞ þ
PN

j¼1T ð2Þi;j p�j the total electric field at ri, if the p�j would
not be functions of ri, which they are, due to (6).

From Eqs. (9) and (14), we can see that the computation of the
p�j and thus the inverse of the N � N system in (9) (3N � 3N in 3D)
is the limiting step during the calculation of the electrostatic forces
with this GDM model. As the inverse of this equation occurs for
each iteration during the energy minimization process, practical
use of it [39,40] was limited to carbon nanotubes with a number
of atoms of the order of 5000. This is still far from what would
be needed for realistic nanomaterials with sizes exceeding 10 nm
in which nanoscale surface effects still lead to unexpected mechan-
ical properties as compared to bulk materials [26].

4. Finite element equilibrium equations from total
electromechanical potential energy

To significantly alleviate the computational expense incurred in
a fully atomistic calculation of the electrostatic forces using the
GDM, we propose an alternative approach in the present work,
whereby we will obtain an FEM solution to minimizing the total
energy Utotal in (1). In essence, we will transform the problem of
minimizing Utotal from one that must be done for each and every
atom in the system, to one in which the mechanical energy Umech

and electrostatic energy Uelec are evaluated only at FEM integration
points. Furthermore, we will demonstrate below that (in 1D) the
calculation of the bulk electrostatic stress does not require the in-
verse of an N � N system, while the calculation of the surface elec-
trostatic stress requires the inverse of an Nsurf � Nsurf system only,
where Nsurf is on the order of 10 for sufficient accuracy as compared
to benchmark fully atomistic calculations.

We accomplish this by applying the standard FEM displacement
approximation to (1); doing so leads to FEM equilibrium equations
which naturally reflect the self-consistent competition between
mechanical and electrostatic forces. The details regarding the tran-
sition from the mechanical potential energy in (1) while delineat-
ing the bulk and surface energies to the FEM equilibrium equations
is given in detail by Park et al. [46]; we note that the electrostatic
potential energy including surface effects in (1) can be treated sim-
ilarly. The final electromechanical FEM equilibrium equations that
we implement and solve numerically are:
oUtotal

ouI
¼
Z

Xbulk
0

BT PmechdXþ
Z

C0

BT ~PmechdC�
Z

C0

NITdC

þ
Z

Xbulk
0

BT PelecdXþ
Z

C0

BT ~PelecdC; ð15Þ

where NI are the FEM shape functions, BT ¼ ðoNI
oX Þ

T , T are externally
applied tractions, Pmech is the bulk mechanical first Piola–Kirchhoff
stress, Pelec is the bulk electrostatic first Piola–Kirchhoff stress, ~Pmech

is the surface mechanical first Piola–Kirchhoff stress, and ~Pelec is the
surface electrostatic first Piola–Kirchhoff stress. Thus, the boundary
value problem in (15) can be stated as: given an applied electric
field E0 that is considered to be homogeneous in a given finite ele-
ment and the applied external mechanical forces, find the atomic
bond lengths rij that minimize the total electromechanical potential
energy.

Because Park and co-authors have previously discussed how to
obtain the bulk and surface mechanical stresses using the surface
Cauchy–Born model [46], we will not cover that in this work,
and will focus only on what is new, i.e. calculation of the bulk
and surface electrostatic stresses. Furthermore, the method of eval-
uating both the bulk and surface integrals for the electrostatic
stresses are identical to how the bulk and surface integrals are
evaluated for the mechanical stresses; details are again given in
Park et al. [46].

The FEM governing equations in (15) are novel and important
because they demonstrate that: (1) a coupled electromechanical
analysis of surface-dominated nanomaterials is possible solving
only one governing equation, which fully accounts for the external
electric field induced polarization-strain coupling between
mechanical and electrostatic forces, including surface effects, and
which obtains the required mathematical relationships for both
the mechanical and electrostatic fields directly from underlying
atomistic principles. (2) By changing the problem formulation from
one that is computationally intractable, i.e. fully atomistic and
involving millions of degrees of freedom, to one that is tractable,
i.e. based on well-established FEM techniques with a significantly
reduced number of degrees of freedom, we will achieve significant
computational savings, as the FEM element size is typically 100–
1000 times larger than the atomic spacing [47]. (3) The coupled
electromechanical FEM governing equations are cast naturally in
a total Lagrangian formulation, which ensures that no remeshing
of the domain is required. (4) Because the FEM governing equation
in (15) eliminates the need for any atomistic equations of motion,
we will avoid both the time step and time scale issues that arise
when using atomistic simulation techniques, though this implies
that the externally applied electric field is constrained to be homo-
geneous within each finite element. We note that because the GDM
approach, and specifically the electrostatic potential energy is, sim-
ilar to mechanical interatomic potentials, dependent only on the
distance rij between two atoms i and j, there is no issue applying
the GDM approach to dynamic, or finite temperature problems so
long as an appropriate parameterization of the atomic polarizabil-
ities is available.

We now discuss how, using multiscale Cauchy–Born-based
techniques, the bulk and surface mechanical and electrostatic
stresses that are needed to solve (15) can be calculated in an effi-
cient and accurate manner.

5. Bulk electrostatic Piola–Kirchhoff stress

5.1. Cauchy–Born kinematics

After having derived the expression for the electrostatic poten-
tial energy in (8), we utilize Cauchy–Born principles to first convert
the electrostatic potential energy into an electrostatic energy
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density, which we can then differentiate to obtain the electrostatic
Piola–Kirchhoff stresses.

The Cauchy–Born model [46,82–84] has been utilized in recent
years as a multiscale, hyperelastic material model that originates
from a given interatomic potential energy function. The multiscale
link between atomistics and continua is achieved by normalizing
the interatomic potential by a representative volume and enforcing
that the bond lengths between atoms rij are constrained to deform
via the local value of the continuum deformation gradient F or
stretch tensor C. In doing so, continuum stress and stiffness, which
are needed for nonlinear FEM simulations, can be directly obtained
by taking one and two derivatives, respectively, of the strain en-
ergy with respect to the continuum deformation measure. Because
of the fact that continuum stress and stiffness can be derived di-
rectly from an atomistic interatomic potential, the Cauchy–Born
model is regarded as a hierarchical multiscale constitutive model.
However, it should be noted that while the Cauchy–Born hypothe-
sis does lead to a multiscale link between atomistics and continua,
it does also place a key restriction upon the deformation of the
underlying crystal. Specifically, it enforces a locally homogeneous
deformation assumption upon the underlying crystal by defining
the deformed bond length r = Fr0 between two atoms to be a func-
tion of the deformation gradient or stretch tensor at the corre-
sponding finite element integration point.

To briefly overview Cauchy–Born kinematics, we note that in
Green elastic theory, stress is derived by differentiating the mate-
rial strain energy density function. In order to satisfy material
frame indifference, the strain energy density must be expressed
as a function of the right stretch tensor C:

WðFÞ ¼ UðCÞ; ð16Þ

where

C ¼ FTF; ð17Þ

and F is the deformation gradient. From the strain energy density,
one can obtain the first (P) and second (S) Piola–Kirchhoff stresses
as:

P ¼ oWðFÞ
oFT and S ¼ 2

oUðCÞ
oC

; ð18Þ

where the Piola–Kirchhoff stresses are related by

P ¼ SFT: ð19Þ

In the previous Cauchy–Born literature [46,82,83], the strain energy
density was assumed to be a mechanical energy density which was
obtained from an underlying atomistic interatomic potential, for
example an embedded atom (EAM) potential for FCC metals
[47,82], Brenner potentials for carbon [83,85], or Tersoff potentials
for silicon [48,86].

In contrast to previous research that has utilized the Cauchy–
Born hypothesis for mechanical problems, we utilize it here to ob-
tain the electrostatic Piola–Kirchhoff stresses. To do so, we first
consider the 1D bulk case, which can be interpreted as consider-
ation of an infinite bulk chain of atoms in which all atoms have
the same bonding environment, such that surface effects are not
considered; we note that this is standard for Cauchy–Born approx-
imations and that it is the reason why the surface Cauchy–Born
model of Park et al. [46–48] was developed to account for the fact
that the standard Cauchy–Born mechanical model does not admit
surface effects.

Therefore, within this 1D electrostatic bulk idealization, all
atoms have the same dipole moment p, and thus we can derive
the electrostatic energy density by normalizing (2) by the equilib-
rium atomic lattice spacing r0, and by enforcing the Cauchy–Born
hypothesis upon the deformed atomic lattice spacing r ¼ r0

ffiffiffi
C
p

to
give:
UelecðCÞ ¼ 1
r0
�1

2

X1
n¼�1

p0Tð2ÞðCÞpn

� �
� p0E0

( )
; ð20Þ

where for all n, pn = p0 = p⁄ at electrostatic equilibrium for an infi-
nite, periodic bulk system of identical atoms. Therefore, the electro-
static equilibrium condition, i.e. dUelec

dp ðp�Þ ¼ 0 reduces to:

�p�
X1

n¼�1
Tð2Þðnr0

ffiffiffi
C
p
Þ � E0 ¼ 0: ð21Þ

Therefore the bulk dipoles p⁄ take the value:

p�ðCÞ ¼ �E0

X1
n¼�1

Tð2Þ nr0

ffiffiffi
C
p� �,

; ð22Þ

and the electrostatic energy density can then be written using (20)
as:

UelecðCÞ ¼ E2
0 2r0

X1
n¼�1

Tð2Þ nr0

ffiffiffi
C
p� � !,

: ð23Þ

From (23), we can obtain the bulk electrostatic second Piola–Kirch-
hoff stress as:

SelecðCÞ ¼ 2
dUelec

dC

¼ � E2
0

r0

d
dC

X1
n¼�1

Tð2Þ nr0

ffiffiffi
C
p� � !, X1
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Tð2Þ nr0

ffiffiffi
C
p� � !2

;

ð24Þ

which using definition (12) can be rewrittten as:

SelecðCÞ ¼ � E2
0

r0

X1
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2
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: ð25Þ

Finally, the bulk electrostatic first Piola–Kirchhoff stress can be ob-
tained by using the standard continuum mechanics relationship in
(19), while noting that in 1D, F ¼ FT ¼

ffiffiffi
C
p
¼ r=r0 and

Pelec ¼ �F
E2

0r0

2r

X1
n¼�1

Tð3ÞðnrðFÞÞn
� �. X1

n¼�1
Tð2ÞðnrðFÞÞ

 !2

;

¼ �E2
0

X1
n¼1

nTð3ÞðnrðFÞÞ
� �. X1

n¼�1
Tð2ÞðnrðFÞÞ

 !2

: ð26Þ
5.2. Comparison of bulk electrostatic stress to MD electrostatic force

It is important to compare here the computational advantages
gained in the expression for the bulk electrostatic stress in (25)
in comparison to the electrostatic forces (14). First, we note that
no matrix inverse is required to compute the bulk electrostatic
stress in (25). Instead, only the calculation of discrete sums for
the dipole interaction tensors T(2) and T(3) are required, where we
have found that extending both summations to about n = 20 is suf-
ficient to obtain a converged response. These sums of interaction
tensors will be called periodized interaction tensors. We note that
for 3D problems, the inverse of a 3Nper � 3Nper system will be
needed at each FEM integration point, where Nper is the number
of atoms in the 3D lattice unit cell (i.e. 1 for an FCC crystal), pro-
vided periodized 3D interaction tensors are used.
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Second, we note that the computational expense in calculating
the electrostatic stress in (25) is reduced dramatically as compared
to the computation of the forces in the full system of N atoms not
only because the system size is significantly smaller, but also be-
cause the electrostatic stress is calculated only at FEM integration
points, such that it is evaluated at far fewer points in the domain
than the electrostatic force, which is evaluated (at significantly
greater computational expense) for every atom in the domain.

6. Surface electrostatic stress

The final aspect to the coupled electromechanical formulation is
to calculate the surface electrostatic stress; we now present the
derivation in 1D. In nanomechanics, surface effects play a signifi-
cant role in causing nanostructures to exhibit non-bulk mechanical
properties as compared to the corresponding bulk material [26].
The surface effects arise because atoms at or near the surfaces of
the material have fewer bonding neighbors than do atoms in the
bulk, which alters their elastic properties as compared to the bulk
atoms.

Similar effects occur in electrostatics; specifically, because
atoms at the surface have fewer bonding neighbors, their effective
dipolar polarizability tensor ai is different, which leads to atoms at
or near the surface polarizing differently and thus having a differ-
ent dipole moment in response to an applied electric field as com-
pared to bulk atoms [35–38].

In the present work, we assume that, for each surface finite ele-
ment integration point, we have nsurf surface atoms with indices
i 6 0, while atoms i > 0 are bulk atoms, i.e. they all have the same
dipole moment p⁄, as computed using (22). We assume that the
atoms initially have positions xi = ir0 before the homogeneous
deformation due to the deformation gradient F and that the exter-
nal electrostatic field E0 is also homogeneous in the small volume
corresponding to the integration point. Then, the system of equa-
tions to solve for the surface dipoles ps

j is based upon a modifica-
tion of the bulk dipole solution in (22) to give, for all i 6 0:X0

j¼�nsurfþ1

T ð2Þ ði� jÞr0Fð Þps
j ¼ �E0 �

X1
n¼1

Tð2Þ ði� nÞr0Fð Þp�: ð27Þ

The surface energy density (energy per unit surface area) is then
written as:

~UelecðFÞ ¼ �1
2
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Consequently, we define the surface electrostatic first Piola–Kirch-
hoff stress as:

ePelecðFÞ ¼ d ~Uelec

dFT ¼ �
E0

2

X0

i¼�nsurfþ1

dps
i

dFT ; ð29Þ

where for all i 6 0 by solving (27):
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and thus the surface electrostatic first Piola–Kirchhoff stress is:

ePelecðFÞ ¼ � E0
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To evaluate the derivative in (31), we use an approach similar to
what was done for the computation of the forces in Section 3.2.
Using Eq. (12), we first get:

dTð2Þi;j

dF
¼ dT ð2Þ ði� jÞFr0ð Þ

dF
¼ ði� jÞr0Tð3Þ ði� jÞFr0ð Þ: ð32Þ

Now, using this and the fact that:
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we get:
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Furthermore, since p� ¼ �E0=
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Putting (34) and (35) into (31) and using (27), the surface electro-
static stress can be written as:
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There are several relevant points to be discussed before moving
onto the numerical examples. First, it is seen in both (36) and
(30) that the inverse of the dipole–dipole interaction tensor T(2) is
required to calculate both the surface dipoles and thus the electro-
static stress, where the size of the tensor is related to the number of
surface atoms (nsurf) that are considered. We will show in the
numerical examples that in 1D, a value of nsurf = 10 or 15 gives re-
sults with accuracy that is comparable to the fully atomistic calcu-
lations. However, in 3D, limiting the value of nsurf will clearly be
critical in keeping the computational expense to be minimal; we
plan to investigate techniques pioneered in truncating Ewald sums
to finite distances [87,88] for this purpose in future research.

7. 1D Numerical examples

7.1. Verification of bulk electrostatic stress

We first validate the bulk electrostatic stress. To do so, we com-
pare results obtained from applying an external electric field rang-
ing between 0.025 and 0.5 V/Å to an infinite 1D chain of atoms,
where the physical parameters for the GDM were taken to mimic
the values for carbon nanotubes [45,39], i.e. the equilibrium lattice
spacing r0 = 3 Å, and the isotropic polarizability a = 5.5086 Å3,
while the width of the distribution R can be found from Eq. (5) of
Mayer [45] to be 1.13576 Å.
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Fig. 1. Example of mechanical, electrostatic and total potential energy for an
infinite 1D chain of atoms subject to an externally applied electric field of
E = 0.25 V/Å.
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For the mechanical response, we utilized a standard Lennard–
Jones 6–12 potential, which takes the form:

ULJðrijÞ ¼ 4�
r
rij

� �12

� r
rij

� �6
 !

; ð37Þ

where the parameters for the LJ potential were r = 2.6727 Å, and
� = 0.4096 eV; the choice of r ensured that the equilibrium lattice
spacing for the mechanical LJ potential was also 3 Å. Finally, in
the mechanical problem, each atom was assumed to interact only
with its nearest neighbors.

The minimum energy configuration of the fully atomistic sys-
tem was systematically obtained by varying the deformation gradi-
ent F between 0.96 and 1.04 while evaluating both the electrostatic
potential energy in (8) and the mechanical potential energy in (37)
for a single, representative bulk atom. The varying deformation
gradient is used to deform the surrounding bulk atoms as to eval-
uate changes in both the electrostatic and mechanical potential
energies. The electrostatic potential energy was calculated for a
single bulk atom that was surrounded by 100 nearest neighbors
on each side to represent a bulk, infinite crystal.

Similarly, the minimum energy configuration of the bulk Cau-
chy–Born (BCB)-based FEM model was obtained by evaluating
the weak form in (15), while neglecting both the surface electro-
static and mechanical stresses for an arbitrary domain size with
a single linear finite element. Note that because all representative
bulk atoms are identical, a single element is sufficient to capture
the deformation due to the externally applied electric field.

The results are summarized in Table 1, while the mechanical,
electrostatic and total potential energies are shown for the
E0 = 0.25 V/Å fully atomistic case in Fig. 1. As can be seen in Table 1,
the amount of strain that is incurred by subjecting an infinite, bulk
1D chain of atoms increases with an increase in the electric field
intensity. Furthermore, the BCB results compare extremely well
to the benchmark MD simulations for the wide range of applied
electric field values that we have considered that result in both
very small (E0 = 0.025 V/Å), and finite (E0 = 0.5 V/Å) strains. It is
also interesting to point out that while the error remains essen-
tially constant with an increase in electric field strength, Table 1
shows that the strain is proportional to E2

0, which is called the elec-
trostriction effect. This is expected because the bulk first Piola–Kir-
chhoff stress is also proportional to E2

0, as shown in Eq. (25).
The good agreement between MD and BCB simulations enables

us to move forward with confidence to including surface effects
through the surface electrostatic stress, which we discuss in the
next section.

7.2. Verification of surface electrostatic stress

We now discuss numerical validation of the proposed coupled
electromechanical SCB model as compared to benchmark fully
atomistic calculations. To do so, we considered 1D atomic chains
of various length with fixed/free boundary conditions, as illus-
trated in Fig. 2. The externally applied electric field E0 was applied
in the positive x-direction parallel to the chain of atoms. We took
two values of the external electric field, E0 = 0.1 V/Å, and to test
Table 1
Comparison of strain (in percent) for bulk, infinite 1D chain of atoms due to externally
applied electric field E0.

E0 (V/Å) MD strain (%) BCB strain (%) Error in strain (%)

0.025 �0.00659 �0.00656 0.54
0.05 �0.0265 �0.02624 0.96
0.1 �0.1056 �0.1048 0.79
0.25 �0.6495 �0.6463 0.48
0.5 �2.4617 �2.4738 0.49

0

the nonlinear, finite deformation response, E0 = 0.5 V/Å. A sum-
mary of all simulations and comparisons to fully atomistic calcula-
tions is shown in Table 2.

We first considered a 1D chain of 51 atoms subject to an applied
electric field of 0.1 V/Å, which was equivalently modeled using the
SCB approach using 3 linear finite elements. While the bulk and
surface electrostatic stresses were calculated using the formulation
presented in this manuscript, the bulk and surface mechanical



2454 H.S. Park et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2447–2457
stresses were calculated using the previously developed SCB mod-
el; details on the SCB implementation for a LJ potential in 1D was
presented by Park et al. [46].

The numerical results are shown in Fig. 3, where the MD results,
the SCB results for various values of nsurf, and BCB results are
shown. First, we notice that the displacement field of the 1D chain
is negative, or compressive, though the electric field is applied in
the positive x-direction. Physically, this occurs because neighbor-
ing dipoles attract each other when they are aligned in the direc-
tion of the applied electric field.

There are other interesting effects that can be observed in
comparing the finite chain (MD) and infinite chain (BCB) results.
Specifically, it can be seen that the slope of the compressive
displacement field becomes smaller near the free surfaces, and
thus the deformation of the finite chain is smaller than the infinite
chain by more than 9%, which demonstrates the importance of
accounting for the electromechanical surface effects. This occurs
due to the reduced polarization that occurs at the free surfaces.

It is also worth emphasizing here that for this, and all compar-
isons between the MD, BCB and SCB results, the key value that
must be validated is that the SCB and MD results agree well, which
is indeed demonstrated in Fig. 3. Because the problem is 1D, and
because the mechanical potential energy is modeled using the LJ
potential, which does not represent the behavior of any real mate-
rial, the actual value of the surface effect is irrelevant; instead, the
important point is that the MD and SCB results agree well, since
they are both based upon the same mechanical and electrostatic
potential energies.

For the SCB/MD comparison, we took the number of elements to
be fixed at 3, and instead varied between 5 and 15 the number of
surface atoms (nsurf in (26), (28)–(36)) for which we computed di-
poles. The results demonstrate convergence of the SCB solution to
the full MD solution as the number of surface atoms nsurf is in-
creased, in accordance with expectation. Overall, while the SCB
solution captures the surface effects, it is clear in Fig. 3 that the
accuracy of the solution, particularly near the free end of the chain,
increases with increasing nsurf. The error in the free end displace-
ment decreases from 3.9% when nsurf = 5 to 1.3% when nsurf = 10
to 0.5% when nsurf = 15. We also note that quantifying the error
introduced in truncating the surface dipoles is critical because
the inverse of an nsurf � nsurf matrix is required at the surface to ob-
tain the surface stress; thus it is important to have a small number
of atoms nsurf to keep computational efficiency as compared to the
benchmark MD solution, particularly as future extensions to 3D are
made.

We also tested the accuracy of the SCB model for a larger sys-
tem, that of a 101 atom 1D chain with the same fixed/free bound-
Fig. 2. Schematic of 1D chain of atoms subject to externally applied electric field E0.
Top figure indicates discrete, atomistic model while bottom figure indicates the
equivalent continuum model.
ary conditions, where the results for the BCB, MD and SCB
simulations are given in Fig. 4. There are noticeable differences be-
tween the MD, BCB and SCB results as compared to the 51 atom
case in Fig. 3. Most notably, the error between the BCB and MD
solutions is only about 4.4% for the free end displacement, which
is about half that of the 51 atom case. This is anticipated because
the surface effects become less significant for the 101 atom chain.

The error introduced using the SCB model for the 101 atom case
was also significantly smaller than for the 51 atom case. Specifi-
cally, the error in the end atom displacement was 1.86% when
nsurf = 5, 0.6% when nsurf = 10, and 0.23% when nsurf = 15. The error
is smaller as compared to the 51 atom case because the surface
electrostatic effects are minimized due to the fact that more atoms
are contained within the bulk of the material as compared to the
51 atom case. We also quantified the surface effect by calculating
the dipole moments using fully atomistic simulations on a very
long 1D chain. We found that the values for the dipole moment
did not approach 99% of the bulk dipole moment until about 14
atoms into the bulk from the free surface. Thus, for the 51 atom
chain, more than half of the atoms can be considered to have a
non-bulk dipole moment, thus leading to the much stronger sur-
face effects and difference as compared to the BCB value than
was found for the 101 atom chain.

To further investigate both the larger surface effects and the fi-
nite deformation induced by the electric field, we re-considered
the 51-atom case with a larger externally applied electric field of
E0 = 0.5 V/Å, with the results shown in Fig. 5. We see that the com-
pressive displacement is significantly larger with the enhanced
electric field, i.e. the compressive displacement of the free end of
the 1D chain is nearly 4 Å, for a strain of nearly 2.5%. Despite this,
the SCB results show similar trends as for the previous 51 atom
case subject to smaller electric field in that with an increase in nsurf,
the SCB solution converges to the fully atomistic result despite the
highly nonlinear deformation. Specifically, the error between the
SCB and MD solutions is about 4.5% when nsurf = 5, but decreases
to 0.6% when nsurf = 15. Furthermore, the effect of elastic nonlinear-
ity can be observed by comparing the free end displacement for the
51 atom chain subject to the fields of 0.5 and 0.1 V/Å as seen in Ta-
ble 2. Specifically, the free end displacement for the 0.5 V/Å case is
only 23.5 times the 0.1 V/Å case, which suggests as expected that
the ideal linear electrostriction relationship, which is proportional
to E2

0, breaks down at larger strains.
8. Conclusions and future research

We have presented in 1D a novel multiscale, finite deformation
finite element approach to solving coupled electromechanical
boundary value problems in which surface-dominated nanostruc-
tures are subject to externally applied electric fields. The key step
was to create a multiscale total electromechanical potential
energy based upon previous, purely atomistic electromechanical
total energies [39,40]. In doing so, and in utilizing standard
Cauchy–Born kinematics, we were able to derive a new coupled
electromechanical variational form that has significant advantages
as compared to previous electromechanical coupling approaches.
Specifically, the coupled electromechanical response is obtained
solving only one governing equation using the finite element
method, which was made possible through derivation of new ana-
lytic formulas for the electrostatic forces, as well as both the bulk
and surface electrostatic Piola–Kirchhoff stresses. In doing so, pre-
vious issues including the solution of the equations of both the
mechanical and electrostatic domains are avoided, as are issues
with deriving the coupling matrix between mechanical and elec-
trostatic domains, while issues related to remeshing either the
electrostatic and mechanical domains are also eliminated. The



Table 2
Comparison of percent error in free end displacement for 51 and 101 atom 1D chains for various applied electric fields between SCB for various values of nsurf and fully atomistic
calculations. All displacements are in Å, values in parenthesis are the percent error as compared to the benchmark MD solution.

Atoms E0 (V/Å) MD SCB nsurf = 5 SCB nsurf = 10 SCB nsurf = 15

51 0.1 �0.1439 �0.1496 (3.9%) �0.1458 (1.3%) �0.1447 (0.5%)
51 0.5 �3.376 �3.528 (4.5%) �3.4281 (1.54%) �3.397 (0.6%)
101 0.1 �0.303 �0.308 (1.86%) �0.3044 (0.6%) �0.303 (0.23%)

−60 −40 −20 0 20 40 60−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

D
is

pl
ac

em
en

t (
An

gs
tro

m
s)

Position Along 1D Chain (Angstroms)

E−Field Induced Deformation of 51 Atom 1D Fixed/Free Chain

MD:  E0 = 1 V/nm
SCB:  nsurf = 5
SCB:  nsurf = 10
SCB:  nsurf = 15
BCB

Fig. 3. Comparison between full MD and SCB results for a 51 atom 1D chain subject
to externally applied electric field of E0 = 0.1 V/Å. BCB result also shown to indicate
how surface effect impact the deformation of 1D chain to an electric field.

−150 −100 −50 0 50 100 150
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

D
is

pl
ac

em
en

t (
An

gs
tro

m
s)

Position Along 1D Chain (Angstroms)

E−Field Induced Deformation of 101 Atom 1D Fixed/Free Chain

MD:  E0 = 1 V/nm
SCB:  nsurf = 5
SCB:  nsurf = 10
SCB:  nsurf = 15
BCB

Fig. 4. Comparison between full MD and SCB results for a 101 atom 1D chain
subject to externally applied electric field of E0 = 0.1 V/Å. BCB result also shown to
indicate how surface effect impact the deformation of 1D chain to an electric field.

−60 −40 −20 0 20 40 60−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

D
is

pl
ac

em
en

t (
An

gs
tro

m
s)

Position Along 1D Chain (Angstroms)

E−Field Induced Deformation of 51 Atom 1D Fixed/Free Chain

MD:  E0 = 5 V/nm
SCB:  nsurf = 5
SCB:  nsurf = 10
SCB:  nsurf = 15
BCB

Fig. 5. Comparison between full MD and SCB results for a 51 atom 1D chain subject
to externally applied electric field of E0 = 0.5 V/Å. BCB result also shown to indicate
how surface effect impact the deformation of 1D chain to an electric field.

H.S. Park et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2447–2457 2455
method was validated and shown to be accurate in comparison
with fully atomistic electromechanical calculations in one
dimension.

While the approach was based upon finite deformation Cauchy–
Born kinematics, the utilization of the Cauchy–Born hypothesis
indicates that defect nucleation cannot be captured without mod-
ifications to the method. Indeed, defect nucleation can be captured
by adopting the quasicontinuum technique [82], whereby the fi-
nite element mesh is meshed down to the atomic scale at or near
regions where defect nucleation may occur. However, the Cauchy–
Born kinematics are valid for large, nonlinear elastic deformations,
which are known not only to occur in nanowires [32], but to have a
significant effect on their mechanical behavior and properties [34].

The key challenge in extending this approach to three-dimen-
sions lies solely with the electrostatic domain, as surface Cau-
chy–Born models for the mechanical domain have already been
developed for both FCC metals [47], and semiconductors such as
silicon [48]. Specifically, the challenge is first to generalize the ana-
lytic formulas for the electrostatic forces and Piola–Kirchhoff stres-
ses to the 3D case, then to keep to a minimal size the number of
surface atoms nsurf that are needed to calculate surface dipoles
and thus the surface electrostatic stress because the size of the ma-
trix that is needed to be inverted to obtain the surface electrostatic
stress is directly proportional to nsurf. Techniques for accomplishing
this are currently under evaluation.
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