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Abstract

We present a Surface Cauchy-Born approach to modeling non-centrosymmetric, semiconducting nanostructures such as silicon that
exist in a diamond cubic lattice structure. The model is based on an extension to the standard Cauchy-Born theory in which a surface
energy term that is obtained from the underlying crystal structure and governing interatomic potential is used to augment the bulk energy.
The incorporation of the surface energy leads naturally to the existence of surface stresses, which are key to capturing the size-dependent
mechanical behavior and properties of nanomaterials. We present the approach in detail, then demonstrate its capabilities by calculating
the minimum energy configurations of silicon nanowires due to surface stresses as compared to full scale atomistic calculations.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Nanowires have been studied intensely in recent years
due to their unique and often superior mechanical, electri-
cal and optical properties that arise because of their nano-
meter size scale [1–3]. Because of these unique properties,
nanowires will be utilized as structural materials, bio-sen-
sors, force and mass detectors, as circuitry and intercon-
nects in future nanoscale devices, and as the basic
building blocks of nanoelectromechanical systems (NEMS)
[4–7]. The recent trend towards miniaturizing microelectro-
mechanical systems (MEMS) into NEMS stems from the
fact that NEMS are generally lighter and stiffer, which
leads to increased sensitivity to forces, masses and environ-
mental variations while concurrently operating at higher
vibrational frequencies.

Silicon has, for various reasons, emerged as the material
of choice for future NEMS. The major reason is that sili-
con is already the fundamental material used in the micro-
electronics industry [8]; with the scaling down in size of
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microelectronics components to the nanoscale, existing sil-
icon fabrication technology will be used to build smaller
and smaller silicon-based devices. Furthermore, silicon is
also a key optoelectronic material [9], which further
enhances the utility of silicon-based NEMS. The overall
impact of silicon can be judged by noting that the majority
of currently devised NEMS utilize silicon or silicon-based
compounds as their basic building block [6,10,11].

NEMS are fundamentally different from MEMS
because nanoscale free surfaces play a dominant role in
determining the elastic properties of nanowires [1–3]. One
particularly important effect due to nanoscale free surfaces
is surface stresses [12–16]. Surface stresses on nanomateri-
als arise due to an imbalance in the forces acting on surface
atoms due to their lack of bonding neighbors. Because sur-
face atoms have a different bonding environment than
atoms that lie within the material bulk, the elastic proper-
ties of surfaces differ from those of the bulk material, and
the effects of the difference between surface and bulk elastic
properties on the effective elastic properties of the nanowire
become magnified with decreasing structural size/increas-
ing surface area to volume ratio. Such size-dependence of
mechanical properties has been observed in both semicon-
ducting [17–24] and metallic [25–33] nanowires.
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The importance of nanoscale surface effects on nanoma-
terials has led to three distinct approaches to modeling their
mechanical behavior and properties. The first has been
through classical molecular dynamics (MD) simulations.
Unfortunately, MD simulations are generally intractable
at the length scales (>50 nm) at which nanowire-based
NEMS are currently synthesized experimentally. For exam-
ple, a cube that is 100 nm on a side would contain nearly 60
million gold atoms, which would not only require prohibi-
tively expensive parallel MD calculations, but would also
generate enormous amounts of redundant and unnecessary
data. Therefore, while MD simulations have been beneficial
for elucidating size effects on the mechanical behavior and
properties of ultrasmall (<10 nm) nanowires [31,29,32,
23,33,34], scaling these results to larger nanowires while
accounting for variations in size, surface effects and geome-
try at time scales larger than nanoseconds [35] has not been
achieved due to computational expense.

Alternatively, a variety of enhanced continuum models
that strive to capture the non-bulk elastic behavior of
nanomaterials have been proposed [36,12,37–39,30,40–
49]. In general, due to assumptions utilized to make the
analyses tractable, the coupled effects of geometry, surface
area to volume ratio and system size on the mechanical
properties of nanowires have not been quantified, nor have
surface stress effects arising directly from atomistic princi-
ples been included in the models, which are generally in
two-dimensions. Furthermore, the complex nature of the
analytic models has in general precluded the possibility of
using them in finite element (FE) calculations to analyze
the size-dependent behavior of metal nanowires.

The final approach to modeling the mechanics of
nanomaterials has been the recent explosion in multiscale
computational methods, which attempt to combine the
insights into the detailed response of materials that are
available through atomistics with the reduced computa-
tional expense that continuum approaches offer [50–64].
However, these approaches generally neglect atomic-scale
surface stresses due to the fact that ghost, or pad atoms
are necessary at the atomistic/continuum boundary to
ensure energy and force continuity; this precludes the pos-
sibility of utilizing them to analyze and design nanowire-
based NEMS devices.

To model surface effects on nanomaterials, Park and co-
workers recently developed the Surface Cauchy-Born (SCB)
model to capture surface stress effects on FCC metal nano-
structures within a continuum mechanics framework [65–
67]. The SCB extends the traditional bulk Cauchy-Born
(BCB) theory [68–70,50] by augmenting the continuum bulk
energy density with a surface energy density that enables it
to capture nanoscale surface stress effects. The SCB model is
advantageous as it enables the solution of three-dimen-
sional nanomechanical boundary value problems including
surface stress effects using traditional nonlinear finite ele-
ment (FE) methods; this makes it computationally tracta-
ble, particularly for large systems, that direct atomistic
simulations cannot model. In addition, many of the well-
developed advantages of FE calculations, including auto-
mated meshing for arbitrary geometries, nonlinear solution
methodologies and ease and choice of boundary condition
imposition are directly applicable for the solution of nano-
mechanical boundary value problems using the SCB model.
The SCB model [65] has been used to analyze surface stress
effects on the minimum energy configurations [66] and the
resonant frequencies [67] of metal nanowires, as well as
nanoscale resonant mass sensing [71] and surface-stress-dri-
ven thermoelastic dissipation [72].

In the present work, we develop the SCB model for dia-
mond cubic (DC) lattice structures, which opens the door
to studying the size-dependent mechanical behavior of
semiconducting nanomaterials such as silicon. The theoret-
ical foundations for studying DC lattices including treat-
ment of internal degrees of freedom originated with
Stakgold [69] and Weiner [70], and was extended by Tad-
mor et al. [73] who developed a BCB model for the Stillin-
ger–Weber potential while a BCB model for DC lattice
structures interacting via the Tersoff potential [74,75] was
recently developed by Aluru and co-workers [76,77]. The
relative paucity of BCB research on DC lattices and thus
semiconducting materials is due to the fact that unlike
FCC crystals, the DC lattice is not centrosymmetric, which
leads to a unit cell that must include more than a single
atom.

We develop the SCB model for silicon assuming a
h100i axial orientation with {100} transverse surfaces.
While silicon {100} surfaces are well-known to exhibit
various types of dimerizations and reconstructions
[78,79], we will consider only the ideal {100} surfaces
in this work, while leaving the reconstructed surfaces
for future research. Numerical simulations on silicon
nanowires demonstrate the applicability of the approach
for modeling silicon nanostructures through comparison
with fully atomistic calculations for silicon using the
Tersoff potential [75].

2. Diamond cubic lattices

2.1. Atomistic description

Silicon is well-known to occur naturally in the DC lat-
tice structure, which is formed through two interpenetrat-
ing FCC lattices, where the two FCC lattices are offset
by a factor of (a0/4,a0/4,a0/4), with a0 being the lattice
parameter. The DC lattice is illustrated in Fig. 1, which
illustrates the interpenetrating FCC lattices.

In the present work, we utilize the T3 form of the Tersoff
potential [75] and the resulting parameters, which are sum-
marized in Table 1. The T3 is named as such due to the fact
that two earlier versions of the Tersoff potential suffered
from various shortcomings, including not predicting dia-
mond as the ground state of silicon, inaccuracies in the
bulk elastic constants [74], and inaccurate modeling of
the {100} surfaces of silicon [78]. The T3 form of the Ters-
off potential can be written as
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Fig. 1. Illustration of the diamond cubic lattice structure of silicon. Black
atoms represent standard FCC unit cell atoms, while green atoms
represent the interpenetrating FCC lattice. The drawn bonds connect
atoms in FCC lattice B to atoms in FCC lattice A.

Table 1
Tersoff T3 potential parameters [75]

Parameter Value

A 1830.8 eV
B 471.18 eV
k 2.4799 Å�1

l 1.7322 Å�1

b 1.1 �10�6

c 100390
d 16.217
h �0.59825
n 0.78734
RC 2.70 Å
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U ¼ 1

2

X
i6¼j

V ij; V ij ¼ fCðrijÞðfRðrijÞ þ bijfAðrijÞÞ; ð1Þ

where rij is the distance between atoms i and j, fC is a cut-off
function, which is used to ensure that the Tersoff potential
is effectively a nearest neighbor potential, fR is a repulsive
function, fA is an attractive function, and bij is the bond or-
der function, which is used to modify the bond strength
depending on the surrounding environment. The various
functions all have analytic forms, which are given as

fRðrijÞ ¼ Ae�krij ; ð2Þ
fAðrijÞ ¼ �Be�lrij ; ð3Þ

bij ¼ 1þ bnfn
ij

� ��1=2n
; ð4Þ

where

fij ¼
X
k 6¼i;j

fCðrikÞgðhijkÞ ð5Þ

and

gðhijkÞ ¼ 1þ c2

d2
� c2

d2 þ ðh� cos hijkÞ2
: ð6Þ

The bond order function (4) is the part of the potential
that incorporates many-body effects through the hijk term
in Eqs. (5) and (6). Thus, for each bond i � j, the bond
order term bij depends on the number of neighboring atoms
j � k that fall within a certain cutoff radius RC from atom i

(see Table 1).
Because the Tersoff potential and the DC lattice will fig-

ure prominently into the resulting BCB and SCB formula-
tions, we discuss additional relevant points at this juncture.
The Tersoff potential was designed as a nearest neighbor
potential, due to the computational expense involved in
evaluating the bond order function bij for many atomic
pairs. For a bulk atom, this implies that it will have exactly
four nearest neighbors in the undeformed or initial config-
uration, with the undeformed nearest neighbor bond dis-
tances being equal to

ffiffiffi
3
p

a0=4 as mentioned above. Thus,
the energetics of a representative bulk atom can be repro-
duced using a five-atom unit cell, following that as intro-
duced by Tang et al. [76], where the center atom A in
Fig. 1B represents the first FCC bravais lattice, and the sur-
rounding four atoms B represent the atoms on the second
FCC bravais lattice.

The fact that the DC lattice is comprised of two inter-
penetrating FCC lattices has important implications for
formulating a BCB model. The first is that the DC lattice
structure is not centrosymmetric, which means that the unit
cell must contain more than a single atom, and leads to
additional computational expense in modeling the larger
unit cell. The second important fact is that the two inter-
penetrating FCC lattices must be able to translate rigidly
with respect to each other, necessitating the introduction
of an internal degree of freedom N for each unit cell. The
internal degree of freedom N is associated with atom A in
Fig. 1B, indicating that it can translate rigidly with respect
to the B atoms in the second bravais lattice. This internal
degree of freedom N serves an identical purpose as the shift
vector that has been introduced in the CB modeling of car-
bon nanotubes [80,81].
2.2. Bulk Cauchy-Born overview

The BCB model is based on Green elastic theory, in
which continuum stress and modulus are derived assuming
the existence of a strain energy density function U. In order
to satisfy material frame indifference, the strain energy den-
sity U must be expressed as a function of the right stretch
tensor C, i.e. U(C), where C = FTF and F is the continuum
deformation gradient.

The BCB and SCB models are finite deformation consti-
tutive models that explicitly represent the stretching and
rotation of bonds undergoing large deformation through
continuum mechanics-based kinematic quantities such as
the deformation gradient F, or the stretch tensor C = FTF

[82]. Under deformations which can be represented as
homogeneous over the unit cell scale, the approximation
exactly reproduces the response of the corresponding, fully
atomistic response representation of the crystal.

To create a link between atomistics and continua, the
strain energy density can be constructed for crystalline



3252 H.S. Park, P.A. Klein / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3249–3260
materials by considering the bonds in a representative vol-
ume of the crystal [50,83]. In general, the strain energy den-
sity for a centrosymmetric crystal interacting via pair
interactions is defined in terms of the interatomic potential
U as [83]

UðCÞ ¼ 1

X0

Xnb

i¼1

UðrðiÞðCÞÞ: ð7Þ

In (7), nb is the total number of bonds to a representative
bulk atom, Xa

0 is the representative atomic volume in the
undeformed configuration and r(i) is the deformed bond
length, which follows the relationship:

rðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
ðiÞ
0 � CR

ðiÞ
0

q
; ð8Þ

where R0 is the undeformed bond vector. From the strain
energy density given in (7), one can obtain standard contin-
uum stress measures such as the second Piola–Kirchoff
(PK2) stress (S) and the spatial tangent modulus ðCÞ as

SðCÞ ¼ 2
oUðCÞ

oC
¼ 1

Xa
0

Xnb

i¼1

U 0ðrðiÞÞ orðiÞ

oC

� �
; ð9Þ

C ¼ 2
oSðCÞ

oC
: ð10Þ

The strain energy density (7) is exact in describing the
change in energy per volume of a bulk atom in a corre-
sponding defect-free atomistic system subject to homoge-
neous deformation. Furthermore, the continuum stress
measure in (9) is derived using atomistic information; thus
the BCB hypothesis is said to be hierarchically multiscale in
nature. We note that the BCB model can also be utilized in
conjunction with various interatomic interactions such as
embedded atom (EAM) potentials [84,50,66] for FCC met-
als, Tersoff-type potentials for silicon [73,76], or Brenner-
type potentials for carbon nanotubes [81,80].

There are two major assumptions underlying the BCB
hypothesis. The first is that, as mentioned above, the
underlying atomistic system is constrained to deform
homogeneously according to the stretch tensor C. This
restriction can be relaxed, for example through develop-
ment of the non-local CB model [50], if the consideration
of lattice defects is important. The second major assump-
tion is that all points at which the BCB hypothesis is
applied are assumed to lie in the bulk because U(C) does
not account for surface effects. Therefore, in order to cap-
ture nanoscale free surface effects such as surface stresses,
we will augment the bulk energy density in (7) with a sur-
face energy density which accounts for the non-bulk poten-
tial energy that atoms lying along the surfaces of a body
exhibit.
2.3. Bulk unit cell

Upon having introduced the Tersoff potential and BCB
preliminaries, we are now in a position to define the bulk
and surface unit cells and the resulting stress and modulus
measures that will be required for the finite element solu-
tion of the governing equilibrium equations. The current
formulation is similar to that given in Tang et al. [76], with
modifications to correctly introduce the internal degree of
freedom in a manner that ensures frame indifference.

Converting the Tersoff potential energy (1) into a strain
energy density U to account for a five atom unit cell, we
write, following Tang et al. [76]:

Uðr1jÞ ¼
1

2X0

X5

j¼2

V 1jðr1jÞ; ð11Þ

where i = 1 in (11) because atom i is considered the center
of the unit cell (see Fig. 1), and the summation goes over
the four nearest neighbor bonds j = 2,3,4,5. The full
expression for the strain energy density U(r1j) can be writ-
ten as

Uðr1jÞ¼
V 1j

2X0

¼Ae�kr1j �Be�lr1j 1þbn
X
k 6¼i;j

gðh1jkÞ
 !n !�1=2n

;

ð12Þ
where again the multibody effects of the bonding environ-
ment are captured through the g(h1jk) term. The strain en-
ergy density in (12) can be turned into an object that is
useful for BCB modeling by making the bond lengths r1j

functions of the continuum deformation quantities and
the internal degree of freedom as

r1j ¼ jr1jj ¼ jFðR1j þ NÞj; j ¼ 2; 3; 4; 5; ð13Þ
where r1j is the deformed bond vector and R1j is the unde-
formed bond vector between atoms 1 and j and N is the
shift introduced between the two interpenetrating FCC lat-
tices in the undeformed configuration. The incorporation
of the internal degrees of freedom and writing the bond
lengths in terms of F results in a modified strain energy
density function as

UðCÞ ¼ eUðC;NðCÞÞ: ð14Þ
Using (9), we can calculate the PK2 stress as

1

2
S ¼ oU

oC
¼ oeU

oC
þ oeU

oN
oN
oC

: ð15Þ

To keep the crystal at an energy minimum, the internal de-
grees of freedom are constrained to deform according to
N*, which leads to the following relationship:

oeU
oN�
¼ 0; ð16Þ

which reduces the expression for the second Piola–Kirchoff
stress in (15) to

S ¼ 2
oeU
oC

: ð17Þ

For a given state of deformation, the internal degrees of
freedom N can be determined using an iterative procedure

Nðiþ1Þ ¼ NðiÞ þ DNðiþ1Þ; ð18Þ
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where the initial guess for the degrees of freedom is
N(0) = 0, meaning that all atoms begin from the position
enforced by the homogeneous deformation of the CB rule;
the superscripts indicate iteration numbers. The update for
the internal degrees of freedom can then be written as,
using Newton’s method

DNðiþ1Þ ¼ � o
2 eUðiÞ

oNoN

 !�1
oeUðiÞ
oN

: ð19Þ

In order to calculate the modulus, we use (10) to write

1

4
CIJKL ¼

o2U
oCKLoCIJ

¼ o
2 eU

oCKLoCIJ

þ o
2 eU

oNqoCIJ

oNq

oCKL

þ oeU
oNp

o
2Np

oCKLoCIJ

þ o2 eU
oCKLoNp

þ o2 eU
oNqoNp

oNq

oCKL

 !
oNp

oCIJ

:: ð20Þ

Eq. (20) can be simplified by the knowledge that oN
oC

needs to
be evaluated for the equilibrium preserving motion N*,
which leads to the expression

o2 eU
oCKLoN�p

þ o2 eU
oN�qoN�p

oN�q
oCKL

¼ 0: ð21Þ

Solving (21) gives

oN�q
oCKL

¼ � o2 eU
oN�qoN�p

 !�1
o2 eU

oCKLoN�p
: ð22Þ

Using (22), the spatial tangent modulus can be expressed as

CIJKL ¼ M IJKL � AIJpAKLqðD�1Þpq; ð23Þ

where

M IJKL ¼ 4
o2 eU

oCIJoCKL

;

Dpq ¼
o

2 eU
oN�poN�q

;

AIJp ¼ 2
o2 eU

oCIJoN�p
:

ð24Þ

The elastic constants were calculated, and were found to
be, in Mbars

C11 ¼ 1:426;

C12 ¼ 0:754;

C0
44 ¼ 1:188;

C44 ¼ 0:690;

ð25Þ

where C0
44 is the value of C44 if internal relaxation due to N

is not allowed. We note that these values match those ob-
tained by Tersoff [85] in fitting the T3 parameters to exper-
iment, and also indicate that ignoring the internal degree of
freedom N leads to predictions of the shear elastic constant
C44 that are overly stiff, as would be expected for an over-
constrained system.
3. Surface Cauchy-Born model for silicon

The theoretical basis for the SCB model was developed
in earlier works [65–67] for FCC crystals; in this work, we
extend the idea to account for surface stresses in DC crys-
tals. The theoretical difficulty that is overcome in this work
is that the DC lattice is not centrosymmetric as FCC lat-
tices are. Therefore, unlike previous work using the SCB
model for FCC metals, a single atom unit cell for the sur-
face atoms cannot be utilized, and instead a larger surface
unit cell was developed in this work for DC crystals.

We consider in this work the unreconstructed, or ideal
{100} surfaces of silicon. While it is known that the
{100} surfaces of silicon undergo various reconstructions
[78,79], we consider the ideal {100} surface as a bench-
mark to investigate the ability of the SCB model to capture
surface effects on diamond cubic lattice structures.

To develop an SCB model for silicon, there are two
major differences from the BCB model described earlier
in this work [50,76], and in earlier research which devel-
oped the SCB model for FCC lattices [65,66]. First, the
strain energy is normalized by a measure of area C0 instead
of volume X0, leading to a surface energy density c(C). This
is done because the total energy of a nanostructure can be
written asXnatoms

a¼1

U aðrÞ �
Z

Xbulk
0

UðCÞdXþ
Z

C0

cðCÞdC; ð26Þ

where Ua(r) represents the potential energy for each atom
a. As discussed earlier, because surface atoms have a differ-
ent bonding environment than atoms that lie within the
material bulk, the elastic properties of surfaces differ from
those of the bulk material, and the effects of the difference
between surface and bulk elastic properties on the effective
elastic properties of the nanostructure become magnified
with decreasing structural size/increasing surface area to
volume ratio.

It should be noted that in the absence of deformation,
the bulk energy density U(C) in (26) equals the cohesive
energy of silicon (4.63 eV) divided by the representative
volume X0 of a bulk atom. The surface energy density
c(C) in (26) has a similar meaning; it is simply the energy
of the surface atom (or surface unit cell, in the case of
the present work) divided by the representative area C0 of
a surface atom. Besides the volume or area normalizing
factor, the surface energy density c(C) differs from the bulk
energy density U(C) only due to the fewer number of bonds
that surface atoms have as compared to bulk atoms.

The relative importance of surface area to volume ratio
can be quantified by calculating the ratio for various length
scales. For a cube with volume 1 m3, the surface area to
volume ratio is 6 � 10�10 Å�1. For a cube with a volume
of 1 lm3, the surface area to volume ratio increases to



3254 H.S. Park, P.A. Klein / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3249–3260
6 � 10�4 Å�1. However, for a cube with a volume of 1 nm3,
the surface area to volume ratio is 0.6 Å�1. Thus, it is
apparent that the different elastic properties of surfaces will
make an increasingly important contribution to the effec-
tive elastic properties of materials with characteristic
lengths in the nanometer regime.

Second, the unit cell for the surfaces is different from
that of the bulk due to the lack of bonding neighbors for
atoms lying at or near a surface. For FCC crystals previ-
ously investigated using the SCB model [65–67], the surface
unit cell was comprised of multiple single atom unit cells,
with a different unit cell single atom unit cell for each layer
of undercoordinated atoms away from the surface. How-
ever, because the diamond cubic lattice is not centrosym-
metric, using multiple single atom unit cells for each
different undercoordinated layer of surface and near sur-
face atoms is not possible. Furthermore, the surface unit
cell has additional complications due to the incorporation
of the internal degrees of freedom Ns, which must also be
accounted for.

Fig. 2 shows the nine atom surface unit cell that we uti-
lize to develop the modified SCB model for unrecon-
structed {100} silicon surfaces. The rationale for the nine
atom unit cell is as follows. Atom 1 has bonds to just
two atoms, instead of four, because it lies on a surface;
these bonds are to atoms 2 and 6, which lie one layer into
the bulk. Note that atoms 2 and 6 both effectively behave
as bulk atoms, as they have a full complement of four near-
est neighbors. In analyzing Fig. 2, it seems apparent that
the black atoms (atoms 1,5 and 7 on the surface, and atoms
3,4,8,9 two layers into the bulk) represent a distinct FCC
lattice A that should be able to translate with respect to
atoms 2 and 6, which are part of the interpenetrating
FCC lattice B. Therefore, we assign an internal degree of
freedom Ns, where the superscript s designates an internal
surface degree of freedom, to all the black atoms
(1,3,4,7,8,9) of FCC lattice A in Fig. 2. We note that
because the approach requires the crystal surface geometry,
Fig. 2. Illustration of the nine atom surface unit cell for the surface with a
[010] normal of a diamond cubic crystal. Black atoms represent FCC
lattice A, while green atoms represent the interpenetrating FCC lattice B.
The drawn bonds connect atoms in FCC lattice B to atoms in FCC lattice
A.
the formulation changes if the surface geometry is altered,
for example if the {100} surface dimerizes in the 2 � 1
reconstruction.

The resulting strain energy density c for the surface unit
cell seen in Fig. 2 can thus be written as

c ¼ 1

C0

X
j¼2;6

V 1jðr1jÞ þ
X

k¼1;7;8;9

V 6kðr6kÞ þ
X

m¼1;3;4;5

V 2mðr2mÞ
 !

;

ð27Þ

where C0 is the area per atom on the surface. Following
(13), we express the bond lengths for the surface unit cell
as:

r1j ¼ jr1jj ¼ jFðR1j þ NsÞj; j ¼ 2; 6;

r6k ¼ jr6kj ¼ jFðR6k þ NsÞj; k ¼ 1; 7; 8; 9;

r2m ¼ jr2mj ¼ jFðR2m þ NsÞj; m ¼ 1; 3; 4; 5:

ð28Þ

Incorporating the bond lengths that have been modified by
the deformation gradient F and the internal degrees of free-
dom Ns in (28) creates a modified surface energy density
~cðCÞ from (27), where the surface energy density has been
modified analogously to the procedure outlined previously
for the bulk energy density in (15) and (16) to enforce the
energy minimizing condition

o~c

oeNs
¼ 0; ð29Þ

where eNs, similar to the meaning in the bulk case in (16),
represents the deformation of the surface internal degrees
of freedom necessary to minimize the surface energy. Using
the modified surface energy density ~cðCÞ, we arrive at the
expression for the surface PK2 stress Ss(C), where the
superscript s here and below indicates surface values

SsðCÞ ¼ 2
o~cðCÞ
oC

: ð30Þ

We call the stress in (30) a surface stress because it is not a
stress in the traditional sense, i.e. the normalization factor
is an area, instead of a volume. Therefore, the units of the
surface stress are force/length, as opposed to the force/area
units typically found for bulk stresses. In addition, the sur-
face stresses Ss(C) are 3 � 3 tensors with normal components
which allow surface relaxation due to undercoordinated
atoms lying at material surfaces [65,66].

Similarly, the surface tangent modulus can be written as

Cs
IJKL ¼ Ms

IJKL � As
IJpAs

KLqðD�1Þspq; ð31Þ

where

Ms
IJKL ¼ 4

o2~c
oCs

IJoC
s
KL

;

Ds
pq ¼

o2~c

oeNs
po
eNs

q

;

As
IJp ¼ 2

o2~c

oCs
IJo
eNs

p

:

ð32Þ



Fig. 3. Problem schematic for fixed/free h100i silicon nanowire with
{100} transverse surfaces.
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4. Finite element formulation

Having defined the surface energy densities ~cðCÞ for the
surface unit cell, we can immediately write the total poten-
tial energy P of the system including external loads T as

PðuÞ ¼
Z

Xbulk
0

eUðCÞdXþ
Z

C0

~cC0
ðCÞdC�

Z
C0

ðT � uÞdC:

ð33Þ

In order to obtain a form suitable for FE calculations, we
introduce the standard discretization of the displacement
field u(X) using FE shape functions as

uðXÞ ¼
Xnn

I¼1

N IðXÞuI ; ð34Þ

where NI are the shape or interpolation functions, nn are
the total number of nodes in the discretized continuum,
and uI are the displacements of node I [82,86]. Substituting
(27), (11) and (34) into (33) and differentiating gives the
minimizer of the potential energy and also the FE nodal
force balance [82]
Fig. 4. Comparison between the calculated x-displacements using a (top) MS
oP
ouI
¼
Z

Xbulk
0

BTSFTdXþ
Z

C0

BTSsFTdC�
Z

C0

NITdC; ð35Þ
where S is the PK2 stress due to the bulk strain energy, Ss is
the surface PK2 stress defined in (30) and BT represents the
derivative of the strain with respect to uI.

What has been accomplished in (35) is a systematic man-
ner of obtaining continuum stress measures by calculating
the system potential energy as a function of bulk and sur-
face components. By correctly calculating the system
energy, standard continuum mechanics relationships can
simulation and (bottom) SCB simulation of a fixed/free silicon nanowire.
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be utilized to derive stress measures for usage in FE com-
putations. The salient feature of Eq. (35) is that as the sur-
face area to volume ratio becomes larger, the surface area
terms will dominate the energetic expression. Because the
stresses required for the FE internal forces are calculated
by differentiating the strain energy density, correctly
accounting for the surface energy will naturally lead to
the correct forces on surface nodes. In contrast, if the vol-
ume of the bulk material is significantly larger than the sur-
face area, then the potential energy from the surface terms
will be insignificant compared to the volumetric potential
energy, and the material will feel no effect from the surface
stresses. Thus, this model degenerates to a BCB model as
the length scale of the material increases.

5. 3D Numerical example: fixed/free silicon nanowire

We perform a 3D numerical example to test the perfor-
mance of the SCB model for Tersoff-based silicon, using
the T3 parameters given earlier in this work. The numerical
example consists of a fixed/free silicon nanowire axially ori-
ented in the h100i direction with unreconstructed {100}
transverse surfaces that had initial dimensions of h =
95.6 nm, while the cross sectional length a = 11.9 nm. As
Fig. 5. Comparison between the calculated y-displacements using a (top) MS
seen in the problem schematic in Fig. 3, the nanowire
was fixed at the �x edge, while the +x edge was free. No
external forces were applied to the nanowire, such that
all observed deformation occurs purely because of surface
stresses, and no periodic boundary conditions were applied
on any of the free surfaces.

A fully atomistic, molecular statics (MS) calculation was
performed using the Sandia-developed simulation code
LAMMPS [87] using the Tersoff potential and the Tersoff
T3 parameters for comparison, while the SCB calculations
were performed using the Sandia-developed simulation
code Tahoe [88]. The MS calculation consisted of 698149
atoms, or nearly 2.1 million degrees of freedom. In com-
parison, the SCB model consisted of 8000 regularly spaced
8-node hexahedral elements, resulting in 9800 nodes and
about 29,000 degrees of freedom. Both the MS and SCB
calculations were performed quasistatically, with the goal
being to compare the equilibrated minimum energy config-
urations due to the surface stresses.

A snapshot of the resulting minimum energy configura-
tions for the MS and SCB calculations is shown in Fig. 4,
which shows the axial (x)-displacements. In comparing the
SCB and MS results, the SCB results capture most major
features of the displacement field seen in the MS calcula-
simulation and (bottom) SCB simulation of a fixed/free silicon nanowire.
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tion. First of all, unlike the behavior observed in FCC met-
als [14–16], the silicon nanowires are predicted to expand
rather than contract due to the surface stresses; the expan-
sion is faithfully captured by the SCB calculation, and
agree qualitatively with recent first-principles calculations
for ultrasmall (<2 nm diameter) {100} silicon nanowires
[24]. The expansion indicates that the surface stresses act-
ing on the {100} surfaces as predicted by the T3 Tersoff
potential are compressive, indicating that the surface is
required to expand in order to reach a minimum energy
configuration. Note that if the T2 parameters for the Ters-
off potential are used, then essentially no surface relaxation
due to surface stresses is predicted, in agreement with the
predictions by Balamane et al. [78].

Interestingly, the MS results in Fig. 4 indicate that the
expansion along the nanowire length due to the surface
stresses is not homogeneous; this is likely due to asymmetry
of the Tersoff potential at free surfaces in conjunction with
the non-centrosymmetric DC lattice. Importantly, the SCB
model captures these effects as observed in Fig. 4, indicat-
ing the ability to capture these critical surface-stress-driven
effects.
Fig. 6. Comparison between the calculated z-displacements using a (top) MS
We also compare the displacements at the center of the
+x face (+x, 0,0) for both the MS and SCB calculations.
The MS displacement predicted an expansion of 1.43 Å,
while the FEM nodal displacement using the SCB model
predicted an expansion of 1.41 Å, indicating excellent
agreement between the SCB model and the benchmark
MS calculations.

It is important to mention here that the displacement of
the surface FE nodes can be viewed as a combination of the
FEM nodal displacement and the additional displacement
due to the surface internal degrees of freedom Ns given in
Eq. (28), as the surface atoms in the surface unit cell
depicted in Fig. 2 have a contribution to their total dis-
placement due to Ns. The surface internal degrees of free-
dom Ns offer a correction of �0.0416 Å in this case,
leading to a ‘‘total” displacement at (+x, 0,0) of 1.37 Å.
This correction is insignificant relative to the overall length
of the nanowire, but is important when compared to the
unit cell dimensions, where the correction is nearly 1% of
the silicon lattice parameter a0 = 5.432 Å, and is about
1.5% of the interlayer spacing at the surface. We note that
the surface expansion corresponds to a global tensile strain
simulation and (bottom) SCB simulation of a fixed/free silicon nanowire.
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of about 0.15%, which is smaller than that predicted in
FCC metal nanowires [66].

The y and z displacements of the nanowire are shown in
Figs. 5 and 6. The overall trends are captured accurately by
the SCB model, including the correct positive and negative
displacements of edges and corners. The accuracy of the
SCB model deteriorates slightly at the edges and corners;
this is likely because edge and corner atoms are not
included in the surface unit cell, and thus the nodal defor-
mation that is observed in these images is due to an average
deformation of the elements connected to the edge or cor-
ner. However, note that the SCB model does correctly cap-
ture the contraction observed in both the +/� y and z

faces; this represents the capturing of the Poisson effect
due to the overall expansion of the nanowire in the axial
direction.

Regarding the contraction of the +/� y and z faces due
to the axial expansion, we compare the y displacements at
the center of the +y face (+x/2,y/2,0) between the MS and
SCB calculations. The MS simulation predicted a contrac-
tion of about �0.133Å. The FEM nodal displacement was
�0.091 Å. However, the surface internal degree of freedom
at that point Ns = �0.044 Å, leading to a ‘‘total” displace-
ment of �0.135 Å, which is in very close agreement with
the MS solution. Again, the correction of the internal
degree of freedom is nearly 1% of the silicon lattice param-
eter a0, and more than 1.5% of the interlayer spacing at the
surface. An identical ‘‘total” solution is obtained on the +z

face (+x/2,0, + z/2), with identical accuracy to the full MS
result.

Finally, we note that if a traditional BCB model is used
that does not account for free surface effects, then zero
relaxation would be observed.

6. Conclusions

In conclusion, we have formulated an extension to pre-
viously developed bulk Cauchy-Born models for diamond
cubic lattice structures to capture surface stress effects due
to the ideal, unreconstructed {100} surfaces of diamond
cubic lattice structures. The diamond cubic lattice struc-
ture is an important one, as many semiconductors of
interest such as silicon, germanium and their alloys form
in this lattice structure. The major theoretical develop-
ment as compared to previously developed bulk Cau-
chy-Born models for silicon is an enlarged surface unit
cell that captures: (1) The effects of undercoordinated sur-
face atoms and surface bonding, which lead naturally to
the existence of surface stresses, (2) The noncentrosym-
metric nature of the diamond cubic lattice, and (3) The
relaxation of interpenetrating FCC lattices at free surfaces
through the addition of appropriate internal surface
degrees of freedom.

The Surface Cauchy-Born model for diamond cubic lat-
tices was tested through comparison with fully atomistic
calculations of the minimum energy configurations of
fixed/free silicon nanowires modeled using the Tersoff
potential. The Surface Cauchy-Born model was shown to
capture the major features of the deformation induced by
surface stresses at a significantly reduced computational
cost, particularly in the expansion of the free end of the
nanowire due to the compressive surface stresses, and the
inhomogeneity of the tensile deformation resulting from
the surface stresses.

Future work will focus on developing SCB representa-
tions for both dimerized 2 � 1 {100} surfaces, as well as
passivated {100} surfaces.
Acknowledgement

HSP gratefully acknowledges NSF grant number
CMMI-0750395 in support of this research.
References

[1] C.M. Lieber, Nanoscale science and technology: building a big future
from small things, MRS Bull. 28 (7) (2003) 486–491.

[2] P. Yang, The chemistry and physics of semiconductor nanowires,
MRS Bull. 30 (2) (2005) 85–91.

[3] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F.
Kim, H. Yan, One-dimensional nanostructures: synthesis, character-
ization, and applications, Adv. Mater. 15 (5) (2003) 353–389.

[4] H.G. Craighead, Nanoelectromechanical systems, Science 290 (2000)
1532–1535.

[5] N.V. Lavrik, M.J. Sepaniak, P.G. Datskos, Cantilever transducers as
a platform for chemical and biological sensors, Rev. Sci. Instrum. 75
(7) (2004) 2229–2253.

[6] K.L. Ekinci, Electromechanical transducers at the nanoscale: actua-
tion and sensing of motion in nanoelectromechanical systems
(NEMS), Small 1 (8–9) (2005) 786–797.

[7] Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for
highly sensitive and selective detection of biological and chemical
species, Science 293 (2001) 1289–1292.

[8] G.T. Reed, Device physics – the optical age of silicon, Nature 427
(2004) 595–596.

[9] L.T. Canham, Silicon quantum wire array fabricated by electrochem-
ical and chemical dissolution of wafers, Appl. Phys. Lett. 57 (10)
(1990) 1046–1048.

[10] S.S. Verbridge, D.F. Shapiro, H.G. Craighead, J.M. Parpia, Macro-
scopic tuning of nanomechanics: substrate bending for reversible
control of frequency and quality factor of nanostring resonators,
Nano Letters 7 (6) (2007) 1728–1735.

[11] A.N. Cleland, M.L. Roukes, Fabrication of high frequency nanome-
ter scale mechanical resonators from bulk Si crystals, Appl. Phys.
Lett. 69 (18) (1996) 2653–2655.

[12] R.C. Cammarata, Surface and interface stress effects in thin films,
Prog. Surf. Sci. 46 (1) (1994) 1–38.

[13] W. Haiss, Surface stress of clean and adsorbate-covered solids, Rep.
Progr. Phys. 64 (2001) 591–648.

[14] J. Diao, K. Gall, M.L. Dunn, Surface-stress-induced phase transfor-
mation in metal nanowires, Nature Mater. 2 (10) (2003) 656–660.

[15] H.S. Park, K. Gall, J.A. Zimmerman, Shape memory and pseudo-
elasticity in metal nanowires, Phys. Rev. Lett. 95 (2005) 255504.

[16] W. Liang, M. Zhou, F. Ke, Shape memory effect in Cu nanowires,
Nano Letters 5 (10) (2005) 2039–2043.

[17] D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia,
Measurement of mechanical resonance and losses in nanometer scale
silicon wires, Appl. Phys. Lett. 75 (7) (1999) 920–922.

[18] T.D. Stowe, K. Yasumura, T.W. Kenny, D. Botkin, K. Wago, D.
Rugar, Attonewton force detection using ultrathin silicon cantilevers,
Appl. Phys. Lett. 71 (2) (1997) 288–290.



H.S. Park, P.A. Klein / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3249–3260 3259
[19] J. Yang, T. Ono, M. Esashi, Surface effects and high quality factors in
ultrathin single-crystal silicon cantilevers, Appl. Phys. Lett. 77 (23)
(2000) 3860–3862.

[20] X. Li, T. Ono, Y. Wang, M. Esashi, Ultrathin single-crystalline-
silicon cantilever resonators: fabrication technology and significant
specimen size effect on Young’s modulus, Appl. Phys. Lett. 83 (15)
(2003) 3081–3083.

[21] J. Yang, T. Ono, M. Esashi, Investigating surface stress: surface loss
in ultrathin single-crystal silicon cantilevers, J. Vacuum Sci. Tech. B
19 (2) (2001) 551–556.

[22] J. Yang, T. Ono, M. Esashi, Mechanical behavior of ultrathin
microcantilevers, Sensor Actuator 82 (2000) 102–107.

[23] J.Q. Broughton, C.A. Meli, P. Vashishta, R.K. Kalia, Direct
atomistic simulation of quartz crystal oscillators: bulk properties
and nanoscale devices, Phys. Rev. B 56 (2) (1997) 611–618.

[24] B. Lee, R.E. Rudd, First-principles calculation of mechanical
properties of Si h100i nanowires and comparison to nanomechanical
theory, Phys. Rev. B 75 (2007) 195328.

[25] E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics:
elasticity, strength, and toughness of nanorods and nanotubes,
Science 277 (1997) 1971–1975.

[26] S. Cuenot, C. Frétigny, S. Demoustier-Champagne, B. Nysten,
Surface tension effect on the mechanical properties of nanomate-
rials measured by atomic force microscopy, Phys. Rev. B 69
(2004) 165410.

[27] B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of
ultrahigh-strength gold nanowires, Nature Mater. 4 (2005) 525–
529.

[28] G.Y. Jing, H.L. Duan, X.M. Sun, Z.S. Zhang, J. Xu, Y.D. Li, J.X.
Wang, D.P. Yu, Surface effects on elastic properties of silver
nanowires: contact atomic-force microscopy, Phys. Rev. B 73 (2006)
235409.

[29] L.G. Zhou, H. Huang, Are surfaces elastically softer or stiffer? Appl.
Phys. Lett. 84 (11) (2004) 1940–1942.

[30] V.B. Shenoy, Atomistic calculations of elastic properties of metallic
FCC crystal surfaces, Phys. Rev. B 71 (2005) 094104.

[31] H. Liang, M. Upmanyu, H. Huang, Size-dependent elasticity of
nanowires: nonlinear effects, Phys. Rev. B 71 (2005) 241403(R).

[32] C. Ji, H.S. Park, Characterizing the elasticity of hollow metal
nanowires, Nanotechnology 18 (2007) 115707.

[33] H.S. Park, J.A. Zimmerman, Modeling inelasticity and failure in gold
nanowires, Phys. Rev. B 72 (2005) 054106.

[34] H.S. Park, K. Gall, J.A. Zimmerman, Deformation of FCC nano-
wires by twinning and slip, J. Mech. Phys. Solids 54 (9) (2006) 1862–
1881.

[35] A.F. Voter, F. Montalenti, T.C. Germann, Extending the time scale
in atomistic simulation of materials, Annu. Rev. Mater. Res. 32
(2002) 321–346.

[36] M.E. Gurtin, A. Murdoch, A continuum theory of elastic material
surfaces, Arch. Ration. Mech. Anal. 57 (1975) 291–323.

[37] F.H. Streitz, R.C. Cammarata, K. Sieradzki, Surface-stress effects on
elastic properties I. Thin metal films, Phys. Rev. B 49 (15) (1994)
10699–10706.

[38] R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of
nanosized structural elements, Nanotechnology 11 (2000) 139–147.

[39] D.E. Segall, S. Ismail-Beigi, T.A. Arias, Elasticity of nanometer-sized
objects, Phys. Rev. B 65 (2002) 214109.

[40] L.H. He, C.W. Lim, B.S. Wu, A continuum model for size-dependent
deformation of elastic films of nano-scale thickness, Int. J. Solids
Struct. 41 (2004) 847–857.

[41] P. Sharma, S. Ganti, N. Bhate, Effect of surfaces on the size-
dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett. 82
(4) (2003) 535–537.

[42] C.T. Sun, H. Zhang, Size-dependent elastic moduli of platelike
nanomaterials, J. Appl. Phys. 92 (2) (2003) 1212–1218.

[43] R. Dingreville, J. Qu, M. Cherkaoui, Surface free energy and its effect
on the elastic behavior of nano-sized particles, wires and films, J.
Mech. Phys. Solids 53 (2005) 1827–1854.
[44] G. Wei, Y. Shouwen, H. Ganyun, Finite element characterization of
the size-dependent mechanical behaviour in nanosystems, Nanotech-
nology 17 (2006) 1118–1122.

[45] J. Wang, H.L. Duan, Z.P. Huang, B.L. Karihaloo, A scaling law for
properties of nano-structured materials, Proc. Royal Soc. A 462
(2006) 1355–1363.

[46] P. Lu, H.P. Lee, C. Lu, S.J. O’Shea, Surface stress effects on the
resonance properties of cantilever sensors, Phys. Rev. B 72 (2005)
085405.

[47] M.E. Gurtin, X. Markenscoff, R.N. Thurston, Effects of surface stress
on the natural frequency of thin crystals, Appl. Phys. Lett. 29 (9)
(1976) 529–530.

[48] J.E. Sader, Surface stress induced deflections of cantilever plates with
applications to the atomic force microscope: rectangular plates, J.
Appl. Phys. 89 (5) (2001) 2911–2921.

[49] A.W. McFarland, M.A. Poggi, M.J. Doyle, L.A. Bottomley, J.S.
Colton, Influence of surface stress on the resonance behavior of
microcantilevers, Appl. Phys. Lett. 87 (2005) 053505.

[50] E. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects
in solids, Philos. Magn. A 73 (1996) 1529–1563.

[51] L.E. Shilkrot, R.E. Miller, W.A. Curtin, Multiscale plasticity
modeling: coupled atomistics and discrete dislocation mechanics, J.
Mech. Phys. Solids 52 (2004) 755–787.

[52] J. Fish, W. Chen, Discrete-to-continuum bridging based on
multigrid principles, Comput. Meth. Appl. Mech. Engrg. 193
(2004) 1693–1711.

[53] P.A. Klein, J.A. Zimmerman, Coupled atomistic-continuum simula-
tion using arbitrary overlapping domains, J. Comput. Phys. 213
(2006) 86–116.

[54] F.F. Abraham, J. Broughton, N. Bernstein, E. Kaxiras, Spanning the
continuum to quantum length scales in a dynamic simulation of
brittle fracture, Europhys. Lett. 44 (1998) 783–787.

[55] R.E. Rudd, J.Q. Broughton, Coarse-grained molecular dynamics and
the atomic limit of finite elements, Phys. Rev. B 58 (1998) 5893–5896.

[56] W. E, Z.Y. Huang, A dynamic atomistic-continuum method for the
simulation of crystalline materials, J. Comput. Phys. 182 (2002) 234–
261.

[57] G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum
simulations using a bridging scale decomposition, J. Comput. Phys.
190 (2003) 249–274.

[58] H.S. Park, E.G. Karpov, W.K. Liu, P.A. Klein, The bridging scale for
two-dimensional atomistic/continuum coupling, Philos. Magn. 85 (1)
(2005) 79–113.

[59] H.S. Park, E.G. Karpov, W.K. Liu, A temperature equation for
coupled atomistic/continuum simulations, Comput. Meth. Appl.
Mech. Engrg. 193 (2004) 1713–1732.

[60] S.P. Xiao, T. Belytschko, A bridging domain method for coupling
continua with molecular dynamics, Comput. Meth. Appl. Mech.
Engrg. 193 (2004) 1645–1669.

[61] W.K. Liu, E.G. Karpov, H.S. Park, Nano Mechanics and Materials:
Theory, Multiscale Methods and Applications, John Wiley and Sons,
2006.

[62] X. Li, W. E, Multiscale modeling of the dynamics of solids at finite
temperature, J. Mech. Phys. Solids 53 (2005) 1650–1685.

[63] W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, An introduction to
computational nano mechanics and materials, Comput. Meth. Appl.
Mech. Engrg. 193 (2004) 1529–1578.

[64] W.A. Curtin, R.E. Miller, Atomistic/continuum coupling in compu-
tational materials science, Model. Simul. Mater. Sci. Engrg. 11 (2003)
R33–R68.

[65] H.S. Park, P.A. Klein, G.J. Wagner, A Surface Cauchy-Born model
for nanoscale materials, Int. J. Numer. Meth. Engrg. 68 (2006) 1072–
1095.

[66] H.S. Park, P.A. Klein, Surface cauchy-born analysis of surface stress
effects on metallic nanowires, Phys. Rev. B 75 (2007) 085408.

[67] H.S. Park, P.A. Klein, Boundary condition and surface stress effects
on the resonant properties of metal nanowires, J. Mech. Phys. Solids,
submitted for publication.



3260 H.S. Park, P.A. Klein / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3249–3260
[68] M. Born, On the stability of crystals, i, Proc. Cambridge Philos. Soc.
36 (1940) 160–172.

[69] I. Stakgold, The Cauchy relations in a molecular theory of elasticity,
Quart. Appl. Mech. 8 (1950) 169–186.

[70] J.H. Weiner, Hellman-Feynman theorem, elastic moduli, and the
Cauchy relation, Phys. Rev. B 24 (1981) 845–848.

[71] G. Yun, H.S. Park, Surface cauchy-born modeling of nanoscale
resonant mass sensing, Comput. Meth. Appl. Mech. Engrg., submit-
ted for publication.

[72] G. Yun, H.S. Park, A multiscale, finite deformation formulation for
surface stress effects on the coupled thermomechanical behavior of
nanomaterials, Comput. Meth. Appl. Mech. Engrg., submitted for
publication.

[73] E.B. Tadmor, G.S. Smith, N. Bernstein, E. Kaxiras, Mixed finite
element and atomistic formulation for complex crystals, Phys. Rev. B
59 (1) (1999) 235–245.

[74] J. Tersoff, New empirical approach for the structure and energy of
covalent systems, Phys. Rev. B 37 (12) (1988) 6991–7000.

[75] J. Tersoff, Modeling solid-state chemistry: interatomic potentials for
multicomponent systems, Phys. Rev. B 39 (8) (1989) 5566–5568.

[76] Z. Tang, H. Zhao, G. Li, N.R. Aluru, Finite-temperature quasicon-
tinuum method for multiscale analysis of silicon nanostructures,
Phys. Rev. B 74 (2006) 064110.

[77] H. Zhao, Z. Tang, G. Li, N.R. Aluru, Quasiharmonic models for the
calculation of thermodynamic properties of crystalline silicon under
strain, J. Appl. Phys. 99 (2006) 064314.
[78] H. Balamane, T. Halicioglu, W.A. Tiller, Comparative study of
silicon empirical interatomic potentials, Phys. Rev. B 46 (4) (1992)
2250–2279.

[79] A. Ramstad, G. Brocks, P.J. Kelly, Theoretical study of the Si (100)
surface reconstruction, Phys. Rev. B 51 (20) (1995) 14504–14523.

[80] M. Arroyo, T. Belytschko, An atomistic-based finite deformation
membrane for single layer crystalline films, J. Mech. Phys. Solids 50
(2002) 1941–1977.

[81] P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, The
elastic modulus of single-wall carbon nanotubes: a continuum
analysis incorporating interatomic potentials, Int. J. Solids Struct.
39 (2002) 3893–3906.

[82] T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for
Continua and Structures, John Wiley and Sons, 2002.

[83] P.A. Klein, A virtual internal bond approach to modeling crack
nucleation and growth, Ph.D. Thesis (1999) Stanford University.

[84] M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and
application to impurities, surfaces, and other defects in metals, Phys.
Rev. B 29 (12) (1984) 6443–6453.

[85] J. Tersoff, Empirical interatomic potential for silicon with improved
elastic properties, Phys. Rev. B 38 (14) (1988) 9902–9905.

[86] T.J.R. Hughes, The Finite Element Method: Linear Static and
Dynamic Finite Element Analysis, Prentice-Hall, 1987.

[87] Warp, http://www.cs.sandia.gov/~sjplimp/lammps.html.
[88] Tahoe, http://tahoe.ca.sandia.gov.

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://tahoe.ca.sandia.gov

	A Surface Cauchy-Born model for silicon nanostructures
	Introduction
	Diamond cubic lattices
	Atomistic description
	Bulk Cauchy-Born overview
	Bulk unit cell

	Surface Cauchy-Born model for silicon
	Finite element formulation
	3D Numerical example: fixed/free silicon nanowire
	Conclusions
	Acknowledgement
	References


