
Comput. Methods Appl. Mech. Engrg. 193 (2004) 1713–1732

www.elsevier.com/locate/cma
A temperature equation for coupled
atomistic/continuum simulations

Harold S. Park *, Eduard G. Karpov, Wing Kam Liu

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA

Received 2 June 2003; received in revised form 10 August 2003; accepted 2 December 2003
Abstract

We present a simple method for calculating a continuum temperature field directly from a molecular dynamics (MD)

simulation. Using the idea of a projection matrix previously developed for use in the bridging scale, we derive a

continuum temperature equation which only requires information that is readily available from MD simulations,

namely the MD velocity, atomic masses and Boltzmann constant. As a result, the equation is valid for usage in any

coupled finite element (FE)/MD simulation. In order to solve the temperature equation in the continuum where an MD

solution is generally unavailable, a method is utilized in which the MD velocities are found at arbitrary coarse scale

points by means of an evolution function. The evolution function is derived in closed form for a 1D lattice, and

effectively describes the temporal and spatial evolution of the atomic lattice dynamics. It provides an accurate atomistic

description of the kinetic energy dissipation in simulations, and its behavior depends solely on the atomic lattice

geometry and the form of the MD potential. After validating the accuracy of the evolution function to calculate the MD

variables in the coarse scale, two 1D examples are shown, and the temperature equation is shown to give good

agreement to MD simulations.
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1. Introduction

Multiple scale simulations methods are a new class of methods designed to concurrently link simulation

methods which operate at disparate length and time scales. The notion of concurrent linking implies that

the individual simulations dynamically transmit relevant information regarding deformation, heat or

temperature to the other simulations.
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Many multiple scale methods have been recently proposed. The universal link between them is that they
attempt to concurrently couple an atomistic simulation, typically molecular dynamics (MD), with a con-

tinuum simulation, typically finite elements (FE). Furthermore, it is generally assumed that the atomistic

region exists in only a small part of the problem domain, while the continuum region surrounds the

atomistic region. Because of this decomposition of atomistic and continuum regions, multiple scale

methods are most applicable to problems in which a local phenomena demands the atomic resolution

provided by MD, while the bulk behavior of the material can be well approximated using a homogeneous,

or continuum representation. Examples of such problems include fracture, surface friction and strain

localization. A review of existing methods and their applications can be found in [1,2].
One potential issue arising in multiple scale simulations is that in many problems of interest, a large

amount of fine scale (molecular level) energy is generated in the region to be simulated using MD. In order

for the MD simulation to proceed accurately, it is crucial that this fine scale energy be passed out of the fine

scale region directly to the surrounding coarse scale (continuum) region. If this transfer of energy between

coarse and fine scales does not occur, the fine scale internal energy will be reflected back to the fine scale

region, and the MD simulation will be artificially contaminated by spurious heat generation.

Using principles introduced in the bridging scale work by Wagner and Liu [3], we derive a continuum

temperature equation directly from the microscopic definition of temperature. We then demonstrate the
accuracy of the equation in calculating the continuum temperature for problems in which the continuum

and atomistic systems overlap each other entirely, and show that when the FE nodal spacing is the same as

the atomic spacing, the temperature equation yields the same temperature as is calculated directly from

MD. In order to make the temperature equation a global equation, i.e. valid in the surrounding continuum

where the atomic description is absent, we propose a method to derive an extended MD solution in the

continuum, or coarse scale. This method is based on the usage of the lattice evolution function to describe

the dissipation of kinetic energy in the system at the atomistic level. The extended MD solution is found

utilizing an evolution function, which is derived analytically for a 1D lattice. Using the coarse scale MD
solution, we solve the temperature equation globally via example problems, and evaluate the performance

of the combined approximation. Finally, we conclude with remarks on future research directions.
2. Overview of bridging scale

The bridging scale method was introduced by Wagner and Liu [3] to couple FE and MD for dynamic

simulations. The equations of interest that will be relevant here were derived in [3] as well as in a review
article [1], but the crucial equations will be re-derived here. The fundamental idea is to decompose the total

displacement field uðxÞ into coarse and fine scales
uðxÞ ¼ �uðxÞ þ u0ðxÞ: ð1Þ

The total solution u can be derived from any molecular level simulation which gives the displacement of
each atom. For our purposes, we shall assume that the molecular level simulation of choice will be

molecular dynamics (MD), for which the displacement is denoted q. The coarse scale is defined to be

�uðXaÞ ¼
X
I

N a
I dI ð2Þ

and is calculated via the finite element method. Here, N a
I ¼ NIðXaÞ is the shape function of node I evaluated

at atom a, and dI is the displacement associated with node I .
The fine scale will be defined to be the projection of the coarse scale subtracted from the total solution ua.

In other words, the fine scale represents that part of the total solution that the coarse scale cannot represent.

We will select this projection operator to minimize the mass-weighted square of the fine scale, which can be

written as



H.S. Park et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1713–1732 1715
Error ¼
X

a

ma qa

 
�
X
I

N a
I wI

!2

; ð3Þ

where ma is the atomic mass of an atom a and wI are temporary coarse scale degrees of freedom. It should

be emphasized that (3) is only one of many possible ways to define an error metric. In order to solve for w,

the error is minimized yielding the following result:

w ¼M�1NTMAq; ð4Þ

where the coarse scale mass matrix M is defined as

M ¼ NTMAN ð5Þ
andMA is a diagonal matrix with the atomic masses on the diagonal. The fine scale u

0 can thus be written as

u0 ¼ q�Nw ð6Þ
or

u0 ¼ q� Pq; ð7Þ
where the projection matrix P is defined to be

P ¼ NM�1NTMA: ð8Þ
We note that P satisfies the definition of a projection matrix, i.e. PP ¼ P. In comparing (6) and (7), we see
that if q and u satisfy the same equation of motion, the coarse scale solution is simply the projection of the

MD solution

Nd ¼ Pq: ð9Þ
The total displacement u can finally be written as the sum of the coarse and fine scales as

u ¼ Ndþ q� Pq: ð10Þ
Using the total displacement u, the multi-scale Lagrangian can be written as the difference of the kinetic and

potential energies as

Lðu; _uÞ ¼ Kð _uÞ � V ðuÞ: ð11Þ
The coupled multi-scale equations of motion can be derived from the Lagrangian as

MA€q ¼ f ð12Þ
and

M€d ¼ NTf: ð13Þ
Eqs. (12) and (13) are simply the MD and finite element equations of motion, with the coupling of the two

equations occurring through the MD force f. Further details can be found in [1,3].

2.1. Properties of the projection matrix

In this section, we discuss the relevant properties of the bridging scale projection matrix P. As we will

show via example, the projection matrix when applied to any random data has the effect of giving a least

squares fit of the data, with the quality of the fit dictated by the polynomial order of the shape functions N.

For our first example, we consider a coupled 1D continuum/atomistic system in which one finite element

overlaps 21 regularly spaced atoms between x ¼ 0 and x ¼ 1. We prescribe a linear displacement field q on
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Fig. 1. Effect of multi-scale projection matrix P if MD displacement field is linear. Linear finite element basis used.
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the atomistic system, and apply the projection matrix P to q to obtain the coarse scale (continuum) dis-

placement field as dictated by (9). For the FE shape functions N, linear polynomials are used. According to

the statement made above, the coarse scale displacement field should exactly match the MD displacement

field because the FE shape functions are the same order as the MD displacement field. As shown in Fig. 1,

this is indeed the case, i.e. the FE shape function basis contains a linear description, so the projected

solution matches exactly.

However, if the FE basis does not contain the MD displacement field, then the projected FE solution will
not capture the entire MD solution. This is seen in our second example. In this case, the MD displacement

field q was defined to be quadratic, while the FE shape functions N which comprise P were kept as linear.

As shown in Fig. 2, the FE (coarse scale) solution does not match the MD quadratic displacement field for

this case. Instead, the projected FE displacement field minimizes the least squares error between the linear

FE and quadratic MD displacement fields.
3. Continuum temperature equation

In this section, we derive a continuum temperature equation directly from the microscopic definition of

temperature. The idea is motivated by work done by Wagner [4]. In order to do so, we first summarize the

MD notions of temperature. According to the equipartition formula [5], the MD system temperature T is

directly related to the MD system kinetic energy K by assuming that each degree of freedom has an average

kinetic energy of kBT=2, i.e.

K ¼ Nsd
2

NkBT ; ð14Þ
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Fig. 2. Effect of multi-scale projection matrix P if MD displacement field is quadratic. Linear finite element basis used.
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where Nsd is the number of spatial dimensions in the problem, N is the number of atoms in the system, and

kB is the Boltzmann constant. Therefore, the temperature associated with an atom a undergoing 1D motion

is given by

Ta ¼
ma

kB
_q2a; ð15Þ

where ma is the mass of atom a and _qa is the velocity of atom a. In order to derive the coarse scale tem-
perature equation, we will use the bridging scale projection matrix P to project the temperature of each

atom. Applying P to the right-hand side of (15) and denoting T to be a vector of the individual atomic

temperatures, we obtain

T ¼ P 1

kB
MAg

� �
; ð16Þ

whereMA is a diagonal matrix of the atomic masses and the components of g and _q are related by _q2i ¼ gi.
We next approximate the atomistic temperature using FE shape functions as T ¼ Nh, where h are the nodal

temperatures. Expanding the projection operator according to (8) and pre-multiplying both sides by NTMA

gives

NTMANh ¼ 1

kB
NTMANM

�1NTMAðMAgÞ: ð17Þ

Using (5), the final form of the temperature equation can be written as

MIJhJ ¼
1

kB

X
a

NIðXaÞm2
a _q

2
a; ð18Þ
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where the summation is performed for all atoms a, and the subscripts I and J indicate FE nodal values. Eq.
(18) is the major result of this section, and states that a continuum temperature field can be directly ac-

quired from an underlying MD simulation, with the only MD values needed being the atomic masses,

atomic velocities and Boltzmann constant. The only necessary continuum variables are the FE shape

functions. The key point was to apply the bridging scale projection matrix P to the atomic temperature

field. The resulting continuum temperature is a least squares fit of the underlying atomistic temperature

field.

3.1. Numerical validation of temperature equation

In this section, we examine the performance of (18) on two simple 1D problems. These examples, and all

future examples in this work are based upon two 1D examples. The first example is taken from the paper by

Wagner and Liu [3]. In this problem, atoms cover the x-axis between x ¼ �1:5 and x ¼ 1:5. A Gaussian-

type wave is prescribed as the initial displacement, and is centered around x ¼ 0. We shall refer to this

problem as the ‘‘Gaussian wave’’ problem. The initial MD configuration for this problem is shown in Fig.

4.
The second benchmark we will use consists of a chain of atoms between x ¼ 0 and x ¼ 1. In this

benchmark, only the left most atom at x ¼ 0 is given an initial displacement. The displacement then

propagates into the chain of atoms. We shall refer to this problem as the ‘‘unit pulse’’ problem. The initial

MD configuration of this problem is depicted in Fig. 3. In these problems, the domain is covered with both

atoms and finite elements, i.e. the finite element representation exists everywhere the MD representation

exists.

For the MD simulations, a quadratic potential energy function / which is a function of the relative

displacements Dx between atoms is used
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Fig. 3. Initial MD configuration for unit pulse problem.
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Fig. 4. Initial MD configuration for Gaussian wave problem.
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/ ¼ 1
2
kDx2; ð19Þ

where k is the spring constant. Minimizing this potential leads to a linear spring force relation between the
atoms

f ¼ �kDx: ð20Þ
The MD equations of motion are integrated forward in time using a velocity verlet algorithm. Details on

this algorithm can be found in [5]. In the following examples, the atomic masses and the spring constant are

both assumed to be unity.
For the first verification example, we show two cases in which the number of FE nodes equals the

number of atoms in the system. The goal is to show that when the FE mesh is refined down to the atomic

spacing, the temperature as would be calculated for each individual atom is the same as that calculated

using the temperature equation (18). The Gaussian wave problem was run using 301 atoms and 301 FE

nodes, while the unit pulse problem was run with 101 atoms and 101 FE nodes. The results of both

problems are shown in Figs. 5 and 6

Telem ¼
Xnatom
a¼1

mav2a
NkB

: ð21Þ

The temperature of the FE nodes is within machine precision to that calculated for each atom using (21),

proving that the temperature equation (18) yields a convergent solution when the FE nodal spacing equals

the atomic spacing. For this example and all future examples, the MD temperature is assumed to be a

constant within each finite element, and is computed by averaging over all the atoms within the element

according to (21). The FE temperature is also calculated as a constant within each element by averaging the

nodal values obtained from (18). A better way to compare the continuum and atomistic temperature fields
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Fig. 5. Temperature comparison between finite element nodes and individual atoms for unit pulse problem with same number of nodes

as atoms.
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would be to calculate a continuous continuum temperature field using meshfree shape functions such as the

Reproducing Kernel Particle Method (RKPM) [6], but this approach demands a separate inquiry. For

future examples, because the usage of such a refined FE mesh is generally impractical, we continue our

numerical studies using coarser meshes.

The initial pulse problem was simulated using 30 finite elements and 301 atoms, which gives 11 atoms per

element. The comparison for the continuum temperature and MD temperature is shown in Fig. 7. Here, it is

shown that the measured continuum temperature is very close to the average MD temperature for each

finite element. One may notice the very small temperature (order 10�12) calculated for this example. The
reason for this is that the frequency x is unity for this example, as the mass and spring constants are both

unity as well. Furthermore, the MD velocities are quite small as well (order 10�5). Using different constants

and a more realistic problem will give a larger measured temperature.

One possible issue with the temperature equation is that the results are better if the MD velocity field is

somewhat regular, or smooth. This manifests itself in Fig. 8 at the tip of the propagating wave. The velocity

field behind the front has a regular, decreasing pattern. Furthermore, the MD velocities in this region all

have a similar absolute value. At the front, however, the velocity field changes from being somewhat small

in magnitude to being fairly large in magnitude rather abruptly. The inability to capture this gradient in
velocity is shown by the inaccuracies in temperature near the wave front.

The Gaussian wave benchmark was also run in order to explore the performance of the temperature

equation. The results can be seen in Figs. 9 and 10. For this case, 301 atoms and 30 finite elements were

used, giving 11 atoms in each finite element. This figure again shows the phenomena described above. In the

region from x ¼ 0 to x ¼ 0:5, the MD velocity is clustered, but the absolute values of the velocities are

similar. Therefore, the calculated coarse scale temperature using (18) yields fairly good results in this

section. However, in the spatial region from x ¼ 0:8 to x ¼ 1:3, a velocity gradient appears, as the profile
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Fig. 7. MD velocity profile and calculated nodal temperature for unit pulse problem.
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Fig. 8. Temperature calculated using (18) for the coarse scale as compared to the calculated MD temperature from (21) for unit pulse

problem.
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Fig. 9. MD velocity profile and calculated nodal temperature for Gaussian wave problem.
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assumes first a negative pulse form and then a positive pulse form. Because this velocity gradient covers

multiple elements, it introduces a slight amount of error. More accurate results are obtained if the gradient
is confined to one element only.

3.2. Need for coarse scale MD

The numerical examples of the previous section were all performed with the continuum completely

overlapping the MD region. However, in most realistic multiple-scale problems, the MD region will only

constitute a small portion of the problem domain, while the continuum will cover the bulk of the domain.

Therefore, in order to solve (18) in the continuum region, it is necessary to extend the MD solution into the
coarse scale region. We shall accomplish this by a method in which the MD solution in the coarse scale can

be found as a generalized function of the boundary atom displacements.
4. Coarse scale MD representation

In this section, the methodology for extending the MD solution into the coarse scale so that the tem-

perature equation (18) can be solved globally is derived. The general approach to solving this problem was
addressed in [7,8]. The goal of the approach is to replace the actual MD solution in a certain part of the

lattice with a boundary condition on one or more parts of the lattice that properly accounts for the effects of

the removed lattice. Pictorially, as seen in Fig. 11, the removed part of the lattice would be all atoms

numbered n > 0. The boundary condition accounting for the motion of the removed atoms would be

applied as a force on atom 0 by means of a time history kernel. The difference between the evolution



Fig. 11. Pictorial depiction of linearized MD solution, which allows the solution of atoms n > 0 based on the displacement of atom 0.
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function in this work and the time history kernel derived in [3,7,8] is that in this work, the motion of any

atom n > 0 is found as a function of the motion of atom 0, whereas in the previous works, only the motion

of atom 1 in terms of atom 0 was considered.
We now derive the extended MD solution in the coarse scale by first writing the linear equation of

motion for an arbitrary atom n

€un � x2ðun�1ðtÞ � 2unðtÞ þ unþ1ðtÞÞ ¼ m�1fnðtÞ; ð22Þ
where x ¼

ffiffiffi
k
m

q
, k is an elastic spring constant, m is the mass of each atom and fn is an external force applied

to atom n. Writing the equation of motion in this manner implies that the atoms are interacting via the
quadratic (harmonic) potential described previously in (19). Applying both a Laplace transform and a

discrete Fourier transform to (22) while assuming that the initial velocity and displacements are zero gives

s2 bU ðp; sÞ � x2ðe�ip bU ðp; sÞ � 2 bU ðp; sÞ þ eip bU ðp; sÞÞ ¼ m�1bF ðp; sÞ; ð23Þ
where p indicates dependence on Fourier transformed space and s indicates dependence on Laplace

transformed space. In deriving (23), we have utilized a property of Fourier transforms called the shifting

theorem, which states that

Ffxnþag ¼ eiapx̂ðpÞ; ð24Þ
where a is an integer. Using (24), we definebGðp; sÞ ¼ ðs2 � x2ðe�ip � 2þ eipÞÞ�1: ð25Þ
We shall assume that the coarse scale motion (atoms n > 0) is caused by a virtual external load on atom

n ¼ 0, which implies that bF ðp; sÞ ¼ bF ðsÞ. The elimination of the dependence of bF on p arises due to the fact
that we are considering a 1D example. Using this assumption along with (25) gives the transform solution

of (23)bU ðp; sÞ ¼ bGðp; sÞF ðsÞ: ð26Þ
Taking the inverse Fourier transform of (26) gives

UnðsÞ ¼ GnðsÞF ðsÞ: ð27Þ
In order to obtain the displacement for an arbitrary atom n > 0, we solve (27) for F ðsÞ setting n ¼ 0 giving

F ðsÞ ¼ G�1
0 ðsÞU0ðsÞ: ð28Þ

Substituting (28) into (27) gives the general expression for the displacement of an arbitrary atom n > 0 in

terms of the displacement of boundary atom 0 to be

UnðsÞ ¼ GnðsÞG�1
0 ðsÞU0ðsÞ; ð29Þ

where we define the Laplace transform of the evolution function wnðtÞ to be

WnðsÞ ¼ GnðsÞG0ðsÞ�1: ð30Þ
Applying an inverse Laplace transform on (29), we obtain
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unðtÞ ¼
Z t

0

wnðt � sÞu0ðsÞds; ð31Þ

which holds for all n > 0. Therefore, the important task is to evaluate WnðsÞ in (30). In order to do so, we
take the inverse Fourier transform of (25) to obtain

GnðsÞ ¼
1

2p

Z p

�p

eipn

s2 � x2ðeip � 2þ e�ipÞ dp: ð32Þ

Evaluating the integral for GnðsÞ in (32) gives

GnðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4x2

p
� s


 �2n
ð2xÞ2ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4x2

p : ð33Þ

Thus, the desired result for WnðsÞ reads

WnðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4x2

p
� s


 �2n
ð2xÞ2n

: ð34Þ

The inverse Laplace transform of (34) can be evaluated from a standard table of Laplace transforms, and

gives the evolution function wnðtÞ to be

wnðtÞ ¼ 2n
J2nð2xtÞ

t
; ð35Þ

where J2n is a Bessel function of order 2n. Since we are more concerned about finding the time derivatives of
the MD displacement such that the temperature equation may be evaluated in the coarse scale, we dif-

ferentiate (31) in time to give

_unðtÞ ¼ wnð0Þu0ðtÞ þ
Z t

0

_wnðt � sÞu0ðsÞds ¼
Z t

0

_wnðt � sÞu0ðsÞds ð36Þ

so that the atomic velocities at any arbitrary coarse scale point outside the MD region can be calculated. A

closed form expression for _wnðtÞ is available by direct differentiation of (35), which gives

_wnðtÞ ¼ � 2n
t2

J2nð2xtÞ þ 2nx
t

J2n�1ð2xtÞð � J2nþ1ð2xtÞÞ: ð37Þ

Eqs. (37) and (35) are the major results of this section. They state that the MD displacements, velocities and

accelerations (which can be calculated by differentiating (37) with respect to time) can be found at any point

outside the MD domain. Furthermore, the only required values are a time history of the boundary atom
displacement and the value of the velocity or displacement evolution function, which have both been de-

rived in closed form. The final important implication is that because the MD velocities can now be cal-

culated in the coarse scale, the continuum temperature equation (18) can be solved globally, in both the

MD and coarse scale regions. The method for doing so will be described in a later section.

Within the MD time loop, the only operation needed to calculate the coarse scale MD velocity _unðtÞ is a
simple matrix-vector multiplication. The size of the matrix _wnðtÞ depends upon the number of coarse scale
points the MD solution is desired at along with the number of time history points that are stored. For-

tunately, _wnðtÞ can be evaluated before the MD time loop begins, because it is known in advance how many
MD timesteps will be used for the simulation. This is advantageous because the expensive computations

occur only once; the stored values are then used throughout the MD time loop. Furthermore, if the dis-

placements/velocities are only required at integration points in the coarse scale, then the size of the matrix
_wnðtÞ will be decreased dramatically. This point motivates the work done in the next section.
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4.1. Validation of extended MD solution

In order to validate the coarse scale MD solution derived in the previous section, we again use our two

model problems, the ‘‘Gaussian wave’’ and ‘‘unit pulse’’ problems. For both problems, we calculate the

entire MD solution. We then calculate the extended MD solution according to (35) and compare it to the

full MD solution of the system.

The results from the Gaussian wave problem and the unit pulse problem are shown in Figs. 12 and 13,

respectively. The Gaussian wave was run with 301 atoms, while the unit pulse was run with 101 atoms. For
the Gaussian wave problem, the velocities for the atoms between x ¼ 0:31 and x ¼ 1:5 were found as a
function of the displacement of the atom at x ¼ 0:3. For the initial pulse problem, the velocities of all atoms
between x ¼ 0:21 and x ¼ 1 were found as a function of the displacement of the atom at x ¼ 0:2. As can be
seen, the agreement between the direct MD solution and the extended MD solution is excellent. We

emphasize the accuracy of the extended MD solution in calculating the velocities because that is the

quantity of interest in evaluating the coarse scale temperature equation. The extended MD solution can

also be shown to be similarly accurate for displacements and accelerations.

4.2. Coarse scale temperature equation using extended MD solution

As was discussed above, our motivation to obtain an MD solution in the coarse scale was such that the

continuum temperature equation (18) could be solved globally. With an accurate MD solution now

available at arbitrary points in the coarse scale via the methodology discussed in the previous section, we

can approximate the temperature equation correspondingly.

To solve the temperature equation in the coarse scale, we can replace the summation in (18) by an

integration in the coarse scale only as
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Fig. 12. Direct MD/extended MD velocity comparison for unit pulse problem.
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Fig. 13. Direct MD/extended MD velocity comparison for Gaussian wave problem.
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MIJhJ ¼
1

kB

Z
V
NIðXÞmðXÞ2 _qðXÞ _qðXÞdX : ð38Þ

In practice, this would be accomplished numerically by summing over a discrete set of quadrature points at

locations Xn

MIJhJ ¼
1

kB

X
n

NIðXnÞmðXnÞ2 _qðXnÞ2bn; ð39Þ

where bn is the quadrature weight associated with point Xn. The extended MD solution is used to generate

the MD velocities _qðXnÞ at the coarse scale quadrature points. We intentionally use the notation n with
reference to the point Xn to emphasize the fact that these points correspond to the arbitrary coarse scale

points n described in (36). In deriving (39), we have implicitly assumed that all the atoms in the system have

the same mass; this assumption can easily be fixed to represent atoms of different masses.
5. Numerical examples using extended MD solution and coarse scale temperature equation

To verify (39), we again solve the Gaussian wave problem. For the domain between x ¼ �1:5 and
x ¼ 0:5, full atomistic resolution was used, and Eq. (18) was solved. In the region from x ¼ 0:5 to x ¼ 1:5,
the coarse scale approximation (39) was solved using the extended MD solution at the coarse scale

quadrature points according to (37). 15 finite elements were used with 301 atoms, giving 21 atoms per finite

element. For the coarse scale approximation using (39), two quadrature points per element were used.

A comparison between the direct MD/FE solution and the MD/extended MD/FE solution is given in
Figs. 14 and 15, and also Figs. 16 and 17. The results show that the combined MD/extended MD solution
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Fig. 14. Direct MD velocity profile along with calculated coarse scale temperature from solving (18) everywhere for Gaussian wave

problem.
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Fig. 15. MD+extended MD velocity profile along with coarse scale temperature comparison using combination of (18) and (39) for

Gaussian wave problem.
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Fig. 16. Temperature calculated comparing direct MD and solving (18) everywhere for Gaussian wave problem.
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Fig. 17. Temperature calculated using combination of (18) and (39) for Gaussian wave problem.
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Fig. 18. Extended MD velocity profile along with calculated coarse scale temperature for unit pulse problem.
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Fig. 19. MD and bridging scale temperature comparison using coarse scale temperature approximation (39) for unit pulse problem.
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does not differ greatly to the direct MD/FE solution, validating the coarse scale approximation (39) for
certain types of problems.

Caution should be used in applying the coarse scale temperature equation (39). If the MD velocity is

rough, and exhibits large spatial gradients, then (39) will not capture the gradients accurately because too

few sampling points are used. An analogy can be drawn to deficiencies in finite element analysis of strain

localization. Because the stress field changes rapidly across a shearband, finite elements cannot capture this

rapidly changing field unless many elements are used, or the elements are embedded with special fields to

capture the stress gradients. The errors that can be introduced by insufficient spatial resolution is shown via

the unit pulse problem in Figs. 18 and 19.
6. Conclusion

There have been two major thrusts in this work. The first was to derive a continuum temperature

equation for use in coupled continuum/atomistic simulations. The temperature equation is derived by using

the bridging scale projection operator to project the microscopic temperature field to the continuum. From

that point, only standard simulation variables such as the atomic masses, atomic velocities, Boltzmann
constant and finite element shape functions are necessary to solve the equation. The equation was shown to

give identical results to the actual MD temperature if the FE nodal spacing was the same as the atomic

spacing. In the remaining numerical examples, the equation was shown to give an accurate comparison to

the actual MD temperature when the elements were much larger than the atomic spacing in two 1D

example problems.

While the temperature equation gives an excellent comparison to MD if the atomistic/continuum regions

overlap each other completely, the necessity to solve the temperature equation globally motivated the

second major thrust of this work, the extended (coarse scale) MD solution described in Section 4. In this
approach, the MD variables of interest could be calculated in the coarse scale as a function of the MD

boundary atom displacement by means of an evolution function, which serves as an extended version of the

time history kernel defined in [3,7,8]. Furthermore, the evolution functions were determined analytically for

a 1D lattice, and fully describe the temporal and spatial evolution of the atomic lattice. It was shown in

example problems that the MD displacements calculated using this approach were nearly identical to those

calculated using a direct MD simulation. This approach can be extended to multiple dimensions, where the

evolution function can be found using numerical methods for Fourier and Laplace transform inversion, e.g.

[9].
The final numerical examples presented herein used the coarse scale MD velocities to solve the tem-

perature equation. These velocities were evaluated at coarse scale integration points, such that the number

of atoms sampled could be reduced from the full system size. It was demonstrated that when the velocity

field is sufficiently smooth, this approximation can be used to give accurate measurements for the tem-

perature field.

The future success of this approach will likely hinge on the ability to couple the temperature equation

derived herein with the standard continuum energy equation. As was shown, the temperature equation

offers a simple and accurate measurement of the underlying microscopic temperature. The continuum
energy equation could be solved in the coupled MD/FE region, but would require the determination of

additional material constants. Though one can obtain such constants directly from an MD simulation [10],

this would constitute a brute-force approach. Therefore, further research needs to be done such that the

temperature equation presented here is solved in the coupled MD/FE region, the continuum energy

equation is solved in the coarse scale, and the two equations are coupled in some manner. Currently, we

believe the most viable approach is to calculate a heat flux from the temperature equation to use as a

boundary condition for the continuum energy equation. If it is desired to solve the temperature equation
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(18) for the entire system, the temperature calculated in the coarse scale could be used as an input to coarse
scale constitutive relations, such that a thermomechanical coupling in the continuum is achieved.

We close by noting that while the MD example problems in this work were restricted to the use of a

linear spring force relation, the temperature equation retains its validity when nonharmonic potentials are

used to describe the interatomic forces.
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