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In a previous publication �P. A. T. Olsson, J. Appl. Phys. 108, 034318 �2010��, molecular dynamics
�MD� simulations have been performed to study the resonant properties of gold nanowires. It has
been documented in the aforementioned publication that the eigenfrequencies of the fundamental
mode follows the continuum mechanically predicted behavior when Bernoulli–Euler beam theory is
used, whereas the higher order modes tend to be low in comparison to Bernoulli–Euler beam theory
predictions. In this work, we have studied the resonant properties of unstressed and prestressed
nanowires to explain why the eigenfrequencies of the fundamental mode follows the behavior
predicted by Bernoulli–Euler beam theory while those of higher order modes are low in comparison.
This is done by employing Timoshenko beam theory and studying the nanowire deformations for
different modes. We find good agreement between the MD results and Timoshenko predictions due
to the increasing importance of shearing and rotary inertia for higher order resonant modes.
Furthermore, we argue that this type of behavior is merely a geometric effect stemming from low
aspect ratio for the considered structures as a converging type of behavior is found when the aspect
ratios fall between 15 and 20. Finally, we have found that classical Timoshenko beam theory that
neglects nanoscale surface effects is able to, simply through utilization of the size dependent
Young’s modulus, capture the dynamic properties of the gold nanowires as calculated through MD.
© 2010 American Institute of Physics. �doi:10.1063/1.3510584�

I. INTRODUCTION

Over the past decade, extensive research efforts have
been invested in trying to understand the mechanical proper-
ties of nanowires. One of the major reasons behind this im-
mense interest is the fact that the nanowire constitutes one of
the potential structural elements in nanoelectromechanical
systems �NEMS�. Due to their small dimensions, spanning
from hundreds down to only a few nanometers, nanowires
tend to exhibit many remarkable physical properties such as
high force sensitivity, low mass, and a high eigenfrequency
spectra which allows nanowires to naturally operate in the
megahertz and gigahertz regimes. Consequently, this makes
nanowires ideal candidates to be employed in various sens-
ing applications such as measurements of molecular interac-
tions and mass detection where the sensing is performed by
monitoring shifts in the natural frequency spectrum.1–4

To predict the correct frequency shifts it is essential that
the continuum mechanical models accurately describe the
elastic properties of the structure. However, nanosized struc-
tures are known to have physical properties which are quite
different from that of macroscopic bodies, which comes from
the fact that the fraction of surface atoms is negligible for
macroscopic structures, whereas for nanosized structures it is
very large. Since surface atoms have lower coordination �i.e.,
fewer bonding neighbors� than bulk atoms, they tend to dis-
play quite different mechanical properties from their bulk
counterparts. Consequently, the surface properties become
increasingly important at the nanoscale, and dictate the over-

all mechanical behavior of nanostructures.5,6 This becomes
particularly important when nanowires are subjected to trans-
verse loading because the top and bottom surfaces are sub-
ject to the greatest amounts of tensile or compressive stress
as the nanowires are deformed. Hence, given the different
physical properties of surfaces one might expect an enhanced
surface influence, and, therefore, also differences in the
Young’s moduli of nanowires that are obtained from bending
or transverse vibrational spectra as compared to those ob-
tained from tensile experiments or simulations.7–9

Experimentally, elastic properties of nanowires are nor-
mally determined either through dynamic resonance
experiments1–4,10–19 or through bending experiments20–26

where the elastic properties are determined from continuum
mechanical relations connecting the deflection or resonance
properties with the Young’s modulus. However, there are is-
sues which complicate the investigation severely that are
typically not taken into account. One such issue is whether or
not there are any axial stresses present.16 This is a quite
critical problem as axial stresses will influence the eigenfre-
quency spectrum as well as the static deflection and may lead
to erroneous results when obtaining the size dependent
Young’s modulus. Axial stresses can also be quite useful as it
opens up the possibility to manufacture resonators with vari-
able eigenfrequency spectra, where the natural frequencies
are controlled by varying the applied axial strain. This has
become particularly relevant for NEMS-based sensing appli-
cations where high quality factors of the nanoresonators is
essential for enhanced sensing capabilities.17–19

Numerically, Park performed finite element simulationsa�Electronic mail: par.olsson@mek.lth.se.
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with the surface Cauchy–Born27,28 �SCB� and bulk Cauchy–
Born models to study how axial strains resulting from sur-
face stresses influence the fundamental eigenfrequency. It
was found, in agreement with analytical models,29,30 that the
introduction of surface stresses lead to a higher or lower
fundamental eigenfrequency if the nanowires are prevented
to relax axially. This is due to the character of the surface
stress, which can be either compressive �for silicon� or ten-
sile �for fcc metals�.31–33 In addition to finite element calcu-
lations, molecular dynamics �MD� simulations have been
performed to study bending properties and eigenfrequency
spectra of nanowires.9,34–37 Broughton et al.34 performed MD
simulations to study how well the eigenfrequency spectrum
of quartz oscillators corresponds to that of Bernoulli–Euler
continuum beam theory. Interestingly, they found that due to
nanoscale surface effects, the eigenfrequencies from the MD
simulations to be consistently low in comparison to
Bernoulli–Euler continuum beam theory. Cao et al. studied
how the fundamental eigenfrequency of carbon nanotubes
behaves under different amounts of tensile and compressive
strains, and found good agreement between Bernoulli–Euler
continuum beam theory and the MD results.35 Olsson studied
how well the three lowest eigenfrequencies of strained gold
nanowires agreed with what was predicted from Bernoulli–
Euler continuum beam theory and found a remarkably good
agreement between MD results and the continuum predic-
tions for the fundamental mode when the size dependent
Young’s moduli were used. The higher order modes, how-
ever, were found to be consistently lower than the predic-
tions from continuum beam theory.36

The objective of this paper is therefore to explain why
the eigenfrequencies of excited modes obtained in previous
works34,36 are low in comparison Bernoulli–Euler beam
theory. This is done by employing a higher order beam
theory and by studying the details of nanowire deformation
through MD simulations.

II. CONTINUUM BEAM THEORY

A. Bernoulli–Euler

The differential equation governing free plane transverse
vibrations of an axially homogeneous prestressed Bernoulli–
Euler beam can be written as

EI
d4w

dx4 − �A
d2w

dx2 − �2�Aw = 0, �1�

where �, E, I, �, w, �, and A denote the applied axial stress,
Young’s modulus, moment of inertia, angular frequency, de-
flection of the center line, volume specific mass density, and
the cross sectional area, respectively. The frequency is re-
lated to the angular frequency through f =� /2�.38 The secu-
lar equation from which the eigenfrequencies of a biclamped
beam can be calculated has been derived in Ref. 39.

B. Timoshenko

In the basic kinematic assumptions for Bernoulli–Euler
beam theory it is assumed that shearing and rotary inertia can
be neglected. To account for these quantities we resort to

Timoshenko beam theory which takes both into account.
This means that the cross sections are not assumed to be
orthogonal to the center line of the beam and that the effec-
tive mass of the system increases. Hence, to go from Ti-
moshenko beam theory to Bernoulli–Euler beam theory, one
needs to impose a scleronomic constraint and reduce the ef-
fective mass, which means that Bernoulli–Euler beam theory
has lower effective mass and is stiffer than that of Timosh-
enko. Thus, the eigenfrequencies of Timoshenko beam
theory, in general, are lower than those of Bernoulli–Euler
beam theory.38,40

The differential equations governing free transverse vi-
brations of a prestressed Timoshenko beam can be written
as41

��A + ksGA�
d2w

dx2 − ksGA
d�

dx
+ �2�Aw = 0, �2�

I�� + E�
d2�

dx2 + ksGA�dw

dx
− �� + �2�Ar2� = 0, �3�

where � is the rotation of the cross section and ks and G
denote the cross sectional reduction factor and the shear
modulus, respectively. The quantity r=��I /A� is the radius
of gyration and is related to the rotary inertia and the factor
ks is approximately 5/6 for rectangular and square cross sec-
tions. If it is assumed that the rotary inertia is small and the
stress is small compared to Young’s modulus, i.e., r→0 and
�+E	E, then in the limit of G→� the shearing becomes
negligible which ensures that Eqs. �2� and �3� simplify to Eq.
�1�. With the boundary conditions for a biclamped Timosh-
enko beam, given by �=w=0 at the end points, it is possible
to derive the secular equation from which the eigenfrequen-
cies can be calculated.

III. MD SIMULATIONS

We considered defect-free single crystal gold nanowires
with square cross sections and with a 
100� crystallographic
orientation with �100 transverse side surfaces. Three differ-
ent nanowire sizes have been simulated; 4.08�4.08 nm2,
5.71�5.71 nm2, and 7.34�7.34 nm2 cross sectional sizes,
with the respective unrelaxed lengths 49.0 nm, 68.5 nm, and
88.1 nm. These samples have aspect ratios which are roughly
12. In addition, for the 4.08�4.08 nm2 nanowires we have
also varied the length to study how the eigenfrequency spec-
trum was influenced by the aspect ratio, where the studied
aspect ratios ranged from about 8 to 17.

The simulations were performed at two different tem-
peratures; liquid helium and room temperature, i.e., 4.2 K
and 300 K, respectively. Results from two types of MD
simulations have been studied; mixed mode and pure mode
simulations. Mixed mode simulations were performed to ob-
tain the three lowest eigenfrequencies, while the pure mode
simulations were performed so that the deformations of the
pure modes can be obtained which will enable us to delineate
the magnitudes of the shearing for the different modes. The
interatomic interactions were modeled through an embedded
atom method �EAM� potential for gold given in Ref. 39. This
potential describes the elastic properties very well which is
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of great importance for this application as we are interested
in describing the mechanical properties accurately.

The atoms were initially placed according to a perfect
fcc lattice and then homogeneously strained in the direction
of the wire axis so that the interplanar distance corresponds
to that of the desired strain state. The reference configuration
was chosen to be the state where the resulting axial stress is
zero for the appropriate size and temperature. This means
that the ideal interplanar distance along the wire axis does
not correspond to the zero strain state. To mimic biclamped
conditions we let the atoms of the three outermost fcc cells
closest to the ends be fixed throughout the simulation. To
study the dynamic response, we follow the numerical strat-
egy from Ref. 36, where the nanowires are first subjected to
an external load, Q, in one of the lateral directions. Then the
static state of equilibrium is found using an energy minimi-
zation algorithm, whereafter the nanowire is equilibrated to
the target temperature using a thermostat with the load still
acting on the nanowire. Once the nanowire is equilibrated
the load is released and the free atoms are set to follow the
microcanonical equations of motion. To obtain the dynamic
response we divided the nanowire into discrete masses which
were obtained by dividing the wire into equally sized seg-
ments along the wire axis. The centers of gravity for these
discrete masses were then monitored throughout the simula-
tion. To extract the eigenfrequencies of the system, the dy-
namic history of the masses were then Fourier transformed.
For the mixed mode simulations the external load, Q, was
distributed over half the wire length. The only difference
when studying pure modes was that different load distribu-
tions, Q, were used to excite as pure modes as possible. The
process for obtaining these load distributions was a trial and
error procedure and the load distributions that we finally
ended up using for the pure mode simulations were the fol-
lowing:

Q1 = q 0 	 x 
 L , �4�

Q2 = � q 0 	 x 
 L/2
− q L/2 	 x 
 L

� , �5�

Q3 = � q 0 	 x 
 3L/8
− q 3L/8 	 x 
 5L/8
q 5L/8 	 x 
 L

� , �6�

for the three lowest modes, respectively, where q denotes the
magnitude of the load and x is the coordinate along the wire
axis. Some of the MD results used here for comparison for
the mixed mode strategy have already been published
previously.36

IV. RESULTS AND DISCUSSION

When comparing the MD results with the Timoshenko
and Bernoulli–Euler continuum models it is assumed that the
stress follows a cubic polynomial of the strain, thus we as-
sume the stress can be written as

� = E� +
1

2
C2�2 +

1

6
C3�3, �7�

where E denotes Young’s modulus and the constants C2 and
C3 are nonlinear contributions. We do emphasize that this
relation is used only to approximate the axial stress in Eqs.
�1�–�3� for a given size and strain. The choice of a cubic
polynomial was made out of convenience as it described the
stress versus strain curves very accurately. To obtain values
which capture the size and strain dependencies, we fitted the
polynomials to previously published size dependent stress
vs. strain curves for the used EAM potential.36 The resulting
quantities can be seen in Table I, from which it can be ob-
served that the stiffness �E� decreases with decreasing size
for the current crystallographic orientation. The correspond-
ing bulk values of Young’s moduli were found to be 46.1
GPa and 42.4 GPa at 4.2 K and 300 K, respectively. When
approximating the shear modulus used for the Timoshenko
calculations it is assumed that the shear modulus corresponds
to the value of C44=45.4 GPa which the potential was fitted
to. This is of course an approximation as, in analogy to the
stiffness, we might expect that there is a variation due to size
dependence, temperature and strain due to surface-stress-
induced lattice contractions.

A. Mixed modes

In Table II, we have collected the resulting eigenfrequen-
cies of unstressed nanowires along with results from analyti-
cal continuum mechanical calculations, where the Young’s
modulus that is necessary for the analytical calculations were
obtained from the MD simulations in Table I. For some of
the entries there is a range of values; the reason for this is
that many simulations were performed with different load
magnitudes and thus there are small nonlinear contributions
influencing the eigenfrequencies. However, the variations are
only of the order of a few percent. Comparing the eigenfre-
quencies of the fundamental mode with the results from the
MD simulations it can be seen that the overall agreements
are good. For the low temperature simulations it is found that
the fundamental eigenfrequency calculated using Timosh-
enko beam theory is almost in perfect agreement with the
MD results. This is also the case for the 4.08�4.08 nm2

nanowire at 300 K, but not for the 5.71�5.71 nm2 and
7.34�7.34 nm2 nanowires at room temperature. For the
fundamental mode, the deviations between Timoshenko and
Bernoulli–Euler beam theory results and those of MD are

TABLE I. Quantities of the polynomial in Eq. �7� that describe the nonlinear
size dependent elastic properties of the considered nanowires.

T
�K�

E
�GPa�

C2

�GPa�
C3

�GPa�

4.08�4.08 nm2 4.2 39.0 379 �2440
300 33.8 391 �5280

5.71�5.71 nm2 4.2 41.6 361 �2380
300 39.1 342 �4260

7.34�7.34 nm2 4.2 42.9 360 �2490
300 41.8 351 �6150
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less than 5% so both Bernoulli–Euler and Timoshenko beam
theories can be considered to reproduce the MD results quite
accurately. For the first and second excited modes it is found
that the results from Timoshenko beam theory are in better
agreement with the MD results, whereas Bernoulli–Euler
beam theory displays consistently higher eigenfrequencies
than what was obtained from MD simulations.

Bernoulli–Euler beam theory predicts certain ratios be-
tween the three lowest unstressed eigenfrequencies R31

= f3 / f1=5.40, R32= f3 / f2=1.96, and R21= f2 / f1=2.76. These
ratios are independent of the stiffness and geometry when
Bernoulli–Euler beam theory is used. The same ratios ob-
tained from MD simulations fall in the following intervals;
4.83	R31	5.14, 1.79	R32	1.91, and 2.61	R21	2.70.
When comparing these ratios it is clear that the ratios pre-
dicted from Bernoulli–Euler beam theory act as upper
bounds for the MD results. For the considered samples we
find that the same ratios predicted from Timoshenko theory
are slightly lower than those from Bernoulli–Euler beam
theory, 5.04	R31	5.10, 1.89	R32	1.90, and 2.62	R21

	2.69. These intervals fall within the bounds that were ob-
tained from MD simulations, and the agreement does, there-
fore, appear to be improved by the utilization of Timoshenko
beam theory rather than Bernoulli–Euler theory.

In Table III, we have analytically studied what happens

if the rotary inertia is neglected �r→0�, if there is no shear-
ing �G→�� or both, and compared the findings with results
from MD and analytical Timoshenko calculations. The con-
sidered sample is an unstressed 4.08�4.08 nm2 nanowire at
300 K. Comparing with the results in Table II, it is seen that
if both the rotary inertia and the shearing are neglected, we
get the same results as if we solve the Bernoulli–Euler secu-
lar equation for an unstressed nanowire. It is also found that
neglecting shearing leads to higher eigenfrequencies than ne-
glect of rotary inertia does. This finding may not be a general
observation as it probably depends on material and crystal-
lographic orientation, but it applies for this particular case.
Furthermore, it implies that the neglect of shearing is more
important than the neglect of rotary inertia when explaining
the discrepancies between Bernoulli–Euler results and MD
results. Nevertheless, both quantities appear to be important
when it comes to predict the eigenfrequency spectrum accu-
rately.

In Fig. 1, we have compared the fundamental eigenfre-
quency from MD simulations with that calculated from the
secular equations of biclamped Bernoulli–Euler and Timosh-
enko beams. Equation �7� was used when calculating how
the stress varies with strain. The strain is measured from the
relaxed state so that the resulting axial force is zero when the

TABLE II. The three lowest eigenfrequencies f1, f2, and f3 for the unstressed nanowires. MD are results from
MD simulations, AB−E are results from Bernoulli–Euler continuum mechanical calculations and AT are results
from Timoshenko continuum mechanical calculations. The MD results are taken from Ref. 36.

T
�K�

f1

�GHz�
f2

�GHz�
f3

�GHz�

4.08�4.08 nm2 4.2 MD 2.71–2.78 7.28–7.33 13.8–13.9
AB−E 2.83 7.81 15.3
AT 2.78 7.43 14.0

300 MD 2.56–2.63 6.87–6.95 12.9–13.2
AB−E 2.64 7.27 14.3
AT 2.59 6.96 13.2

5.71�5.71 nm2 4.2 MD 1.95–1.97 5.24–5.25 9.92–9.94
AB−E 2.01 5.55 10.9
AT 1.97 5.28 9.97

300 MD 1.99 5.19–5.20 9.62–9.87
AB−E 1.94 5.35 10.5
AT 1.90 5.10 9.65

7.34�7.34 nm2 4.2 MD 1.53 4.09 7.74
AB−E 1.56 4.29 8.41
AT 1.52 4.08 7.71

300 MD 1.54–1.55 4.05–4.19 7.50
AB−E 1.53 4.22 8.27
AT 1.50 4.02 7.60

TABLE III. The three lowest frequencies for an unstressed 4.08�4.08 nm2 nanowire under the assumptions of
neglected rotary inertia �r→0� and/or shearing �G→��. MD are results from MD simulations and AT are
results from Timoshenko continuum mechanical calculations.

MD AT r→0 G→� r→0, G→�

f1 �GHz� 2.56–2.63 2.59 2.60 2.63 2.64
f2 �GHz� 6.87–6.95 6.96 7.05 7.16 7.27
f3 �GHz� 12.9–13.2 13.2 13.5 13.8 14.3
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strain is zero and the interplanar distance between the verti-
cal atomic planes does not correspond to that of an ideal
lattice. It can be seen that the overall agreement between
MD, Timoshenko, and Bernoulli–Euler beam theory is good,
particularly, when the magnitudes of the strain are small.
However, at larger strains, it is found that both the Bernoulli–
Euler and Timoshenko beam theories are somewhat stiff in
comparison with MD results. This is likely due to the fact
that the higher order contributions in terms of stresses have
been neglected in Eqs. �1�–�3�. Obviously these contributions
become increasingly important with increasing strain.

In previous investigations, analytical calculations29,30

and SCB calculations31,32 have been used to study the influ-
ence of strain on the eigenfrequency spectrum and static de-
flection of nanowires subjected to tensile surface stresses. It
has been observed that the eigenfrequencies increase and the
static deflection decrease when surface stresses are present,
which implies an increased stiffness. But that depends on
how the strains are measured. In this work, the strains are
measured from the unstressed state, whereas in previous
works29–32 the strains are measured from the perfect lattice
constant. When the strains are measured from the perfect
lattice constant the resulting axial stress is not zero when
surfaces are introduced, and this contributes to a higher
eigenfrequency spectrum than what would be obtained if the
nanowires were stress-free. Hence, the results in this paper
reveal the same trends as the results of previous works.

The strain dependence on the eigenfrequencies of the
first excited mode has been studied in Fig. 2. What becomes

immediately clear by investigation is that there is an increas-
ing discrepancy between the Bernoulli–Euler and Timosh-
enko continuum predictions compared to the fundamental
mode as the eigenfrequencies from Timoshenko theory are
low in comparison with those from Bernoulli–Euler beam
theory. The eigenfrequency spectrum obtained from MD
simulations at low temperature appears to be in very good
agreement with the Timoshenko results. For the room tem-
perature simulations it is found that there is a good agree-
ment between MD and Timoshenko results when the strains
are small. At strains around 2% the MD results fall essen-
tially between the Timoshenko and Bernoulli–Euler predic-
tions. At even higher strains we find that both the continuum
models slightly overestimate the eigenfrequencies obtained
from MD, in the same manner as for the fundamental mode.
Again, this is likely due to the neglect of higher order con-
tributions in terms of stresses in Eqs. �1�–�3�.

In Fig. 3, we have studied the influence of strain on the
second excited mode. It can be observed that the relative
discrepancy between the Bernoulli–Euler and Timoshenko
solutions has increased in comparison to the fundamental
and first excited modes. Furthermore, it appears that the MD
results follow the Timoshenko solutions quite closely and
that the Bernoulli–Euler solutions are stiff in comparison.

Based on Figs. 1–3, it appears as if the Timoshenko pre-
dictions are in better agreement with the MD results when
higher modes are considered. This is an indication that the
higher modes are subjected greater amounts of shearing and
that the contribution of the rotary inertia to the kinetic energy

FIG. 1. Eigenfrequencies of the fundamental mode �f1� for different amounts of strain for 4.08�4.08 nm2 sized nanowires at �a� 4.2 K and �b� 300 K,
5.71�5.71 nm2 sized nanowires at �c� 4.2 K and �d� 300 K, and 7.34�7.34 nm2 sized nanowires at �e� 4.2 K and �f� 300 K. The MD results are taken from
Ref. 36.
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FIG. 2. Eigenfrequencies of the first excited mode �f2� for different amounts of strain for 4.08�4.08 nm2 sized nanowires at �a� 4.2 K and �b� 300 K,
5.71�5.71 nm2 sized nanowires at �c� 4.2 K and �d� 300 K, and 7.34�7.34 nm2 sized nanowires at �e� 4.2 K and �f� 300 K. The MD results are taken from
Ref. 36.

FIG. 3. Eigenfrequencies of the second excited mode �f3� for different amounts of strain for 4.08�4.08 nm2 sized nanowires at �a� 4.2 K and �b� 300 K,
5.71�5.71 nm2 sized nanowires at �c� 4.2 K and �d� 300 K, and 7.34�7.34 nm2 sized nanowires at �e� 4.2 K and �f� 300 K. The MD results are taken from
Ref. 36.

104312-6 Olsson, Park, and Lidström J. Appl. Phys. 108, 104312 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



becomes increasingly important, which makes sense as the
number of inflection points of the mode shape as well as the
eigenfrequency increase with higher modes.

However, what is more interesting is that, even for the
very small nanowires �	10 nm cross sections� that we have
studied, we are able to obtain an extremely good agreement
between the MD results and the theoretical Timoshenko
theory using only the appropriate size dependent Young’s
modulus. In fact, it is worth emphasizing that aside from the
size dependent Young’s modulus, we have not employed any
surface elastic-type continuum theories29,30 to compare the
MD results. Rather, all the nanowires �beams� have been
treated as homogeneous continua where the only size effect
comes from the size dependent Young’s modulus from
Table I.

Finally, we note that the increased importance of shear-
ing and rotary inertia has nothing to do with the fact that the
nanowires are subject to nanoscale surface effects such as
surface stresses as compared to macroscopic beams. Instead,
it is an effect that stems from the aspect ratio as it is well
known that the importance of these quantities decrease with
increasing slenderness, as we recall that the nanowires we
have considered so far have aspect ratios close to 12.

B. Pure modes

The mixed mode simulations have implied that the
amount of shearing increases for higher modes. To study this

closer we did study the dynamics of nanowires which are
initially loaded such that they are excited by almost pure
modes or with one dominating mode. During the simulations
we took snapshots to monitor the rotation ��� and deflective
�dw /dx� angles along the wire axis. The angle � is calculated
by making least-squares approximations of the rotation
angles of the individual vertical atomic planes. The angle,
dw /dx, is obtained by finding the centers of mass for each
vertical atomic plane and then calculating the angle using a
finite difference scheme, as in Ref. 37. This approach enables
us to study how the nanowires actually deform, to determine
the amount of shearing, and to finally analyze if the hypoth-
esis that the amount of shearing increases with higher modes
is true.

In Fig. 4�a�, we show the deflection of the center line of
a nanowire at the time of the snapshot. The nanowire was
excited so that it follows the mode shape of the fundamental
mode quite closely, which it shows a clear resemblance to. In
Fig. 4�b� a comparison between the deflective and rotation
angles is given along the wire axis and it can be seen that the
two curves follow each other very closely. The magnitudes
of the differences between the curves can be seen in Fig. 4�c�
where it appears that there is some kind of boundary effect at
the ends of the nanowires, where the amounts of shearing are
found to be the greatest. But comparing the magnitudes of
differences in Fig. 4�c� with the magnitudes of the angles in
Fig. 4�b� it is found that the relative amounts of shearing are
quite small in comparison.

FIG. 4. Snapshot of the nanowire when the fundamental mode is the domi-
nating exciting mode. �a� Deflective shape of the center line for the snap-
shot, �b� the deflective angle of the center line and the rotation angle of the
vertical atomic planes, and �c� the difference between the deflective angle
and the rotation angle.

FIG. 5. Snapshot of the nanowire when the first excited mode is the domi-
nating exciting mode. �a� Deflective shape of the center line for the snap-
shot, �b� the deflective angle of the center line and the rotation angle of the
vertical atomic planes, and �c� the difference between the deflective angle
and the rotation angle.
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In the same way, we have analyzed the pure mode be-
havior of the first and second excited modes, see Figs. 5 and
6, respectively. From Figs. 5�c� and 6�c� it is seen that the
same kind of boundary effects arise also for the higher
modes. Furthermore, it is observed that the magnitudes of
shearing are of the same order as in Fig. 4�c�, however, from
Figs. 5�b� and 6�b� it is noted that the magnitudes of the
angles decrease with increasing mode number. Moreover, it
can be observed that the maximum amounts of shearing oc-
curs at the inflection points. This implies that the relative
amounts of shearing increases when we consider higher
modes, as the number of inflection points increase with
higher modes. This is in agreement with the results from the
mixed mode simulations.

C. Aspect ratios

Finally, we have studied how the three lowest eigenfre-
quencies vary for unstressed nanowires of different aspect
ratios. From Fig. 7 it can be concluded that, just like for the
previously presented results, the MD results for the funda-
mental mode is in good agreement with both the Timoshenko
and Bernoulli–Euler beam theories for essentially all the
considered aspect ratios. Moreover, for the first and second
excited modes it is seen that the Timoshenko predictions are
in better agreement with the MD results than the Bernoulli–
Euler continuum model. However, for all the considered
modes one can clearly see that there is a converging trend,

and when the aspect ratio is around 15–20 the different con-
tinuum models predict essentially the same results. Hence, it
appears that the reason why the excited modes are not in that
good agreement with the Bernoulli-Euler beam theory is
merely lack of shearing and rotary inertia in the model,
which is rooted in the fact that an aspect ratio of 12 is not
sufficient in order for the shearing and rotary inertia to be
negligible for higher modes. Therefore, the reason for the
discrepancies is merely a geometric effect and has very little
to do with the fact that surfaces deform the most under trans-
verse loading or that it is a nanostructure. This means that,
we are able to describe the eigenfrequency spectrum of both
unstressed and prestressed nanowires very accurately using a
simple continuum model and a nonlinear elastic constitutive
relation which relates the stress to the strain.

Experimentally, the aspect ratios are often higher than
the 15–20,10,12,15–17,24 which we have considered here. This
means that, in many practical applications this problem will
not arise due to the geometry. However, for macroscopic
thin-walled structures it is well known that contributions of
rotary inertia and shearing becomes increasingly important.38

Thus, it is likely that these contributions must be taken into
account when nanotubes are considered. Furthermore, it is
certainly an issue in numerical simulations; this is because in
using MD, it is not feasible to perform simulations of nano-
wires that are much larger than has been considered here, for
two reasons. First, as larger nanowires and thus more atoms
are considered, the heavier the numerical effort becomes,
though this can be mitigated using parallel computing. Sec-

FIG. 6. Snapshot of the nanowire when the second excited mode is the
dominating exciting mode. �a� Deflective shape of the center line for the
snapshot, �b� the deflective angle of the center line and the rotation angle of
the vertical atomic planes, and �c� the difference between the deflective
angle and the rotation angle.

FIG. 7. Eigenfrequencies of �a� the fundamental, �b� first excited, and �c�
second excited modes of unstressed nanowires for various aspect ratios.
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ond, and more importantly, for the mechanical energy to be
preserved in a conservative system and to accurately resolve
the thermal vibrations, the timestep must be on the order of 1
fs in MD simulations. Thus, it requires on the order of 106

time increments to simulate 1 ns, which is problematic be-
cause it implies that the eigenfrequencies of the nanowires
must be of the order of gigahertz if it is going to be practical
to simulate them using MD. This puts geometric constraints
on the aspect ratio, as the stiffness decreases with increasing
aspect ratio.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the resonant properties of
unstressed and prestressed nanowires through MD simula-
tions. For comparison, two different continuum mechanical
beam models were used to describe the eigenfrequency spec-
trum; Bernoulli–Euler and Timoshenko beam theories. When
studying prestressed nanowires, a size dependent nonlinear
stress versus strain relation fitted to results from tensile simu-
lations was used to describe the axial stresses.

We have demonstrated the increasing discrepancy be-
tween Bernoulli–Euler beam theory and MD results for
higher modes and a consistent agreement between MD re-
sults and Timoshenko beam theory for all the considered
modes. The underlying reason for these discrepancies is
mainly geometric and it comes from the fact that the consid-
ered nanowires have a quite small aspect ratio. Even though
both the Bernoulli–Euler and Timoshenko models describe
the fundamental mode accurately, the relative amount of
shearing as well as the contribution to the kinetic energy of
the rotary inertia increases with increasing modes, as higher
order mode shapes have more inflection points than lower
order mode shapes and higher eigenfrequencies. This means
that shearing and rotary inertia become increasingly impor-
tant for higher modes and thus Bernoulli–Euler beam theory
fails to describe the eigenfrequencies of the higher modes.
Different aspect ratios were tested to see whether any con-
vergence between Bernoulli–Euler and Timoshenko beam
theories could be found, and this was found when the nano-
wire aspect ratios were roughly between 15–20.

Finally, we emphasize that apart from employing a non-
linear size dependent relation between the stress and the
strain, we did not make any other assumptions about any
surface or size effects. This means that we have treated the
nanowires as homogeneous beams and have therefore not
made any additional assumptions to account for the different
elastic properties of nanoscale surfaces. Despite this, we
have managed to get good agreement between MD results
and Timoshenko beam theory, even for higher order resonant
frequencies where surface effects are expected to have a
greater effect.
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