
J. Appl. Phys. 125, 095106 (2019); https://doi.org/10.1063/1.5066088 125, 095106

© 2019 Author(s).

Tunable topological bandgaps and
frequencies in a pre-stressed soft phononic
crystal
Cite as: J. Appl. Phys. 125, 095106 (2019); https://doi.org/10.1063/1.5066088
Submitted: 12 October 2018 . Accepted: 04 February 2019 . Published Online: 06 March 2019

B. H. Nguyen, X. Zhuang , H. S. Park, and T. Rabczuk 

ARTICLES YOU MAY BE INTERESTED IN

Strain tunable phononic topological bandgaps in two-dimensional hexagonal boron nitride
Journal of Applied Physics 125, 082511 (2019); https://doi.org/10.1063/1.5040009

Bandgap widening by disorder in rainbow metamaterials
Applied Physics Letters 114, 091903 (2019); https://doi.org/10.1063/1.5081916

Using reflection and transmission coefficients to retrieve surface parameters for an
anisotropic metascreen: With a discussion on conversion between TE and TM polarizations
Journal of Applied Physics 125, 095102 (2019); https://doi.org/10.1063/1.5050987

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/427399692/x01/AIP/HA_JAP_Open_PDFCover2019/HA_Open_JAP_PDF_2019.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.5066088
https://doi.org/10.1063/1.5066088
https://aip.scitation.org/author/Nguyen%2C+B+H
https://aip.scitation.org/author/Zhuang%2C+X
http://orcid.org/0000-0001-6562-2618
https://aip.scitation.org/author/Park%2C+H+S
https://aip.scitation.org/author/Rabczuk%2C+T
http://orcid.org/0000-0002-7150-296X
https://doi.org/10.1063/1.5066088
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5066088
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5066088&domain=aip.scitation.org&date_stamp=2019-03-06
https://aip.scitation.org/doi/10.1063/1.5040009
https://doi.org/10.1063/1.5040009
https://aip.scitation.org/doi/10.1063/1.5081916
https://doi.org/10.1063/1.5081916
https://aip.scitation.org/doi/10.1063/1.5050987
https://aip.scitation.org/doi/10.1063/1.5050987
https://doi.org/10.1063/1.5050987


Tunable topological bandgaps and frequencies in
a pre-stressed soft phononic crystal

Cite as: J. Appl. Phys. 125, 095106 (2019); doi: 10.1063/1.5066088

View Online Export Citation CrossMark
Submitted: 12 October 2018 · Accepted: 4 February 2019 ·
Published Online: 6 March 2019

B. H. Nguyen,1,2 X. Zhuang,1,3,a) H. S. Park,4 and T. Rabczuk5

AFFILIATIONS

1Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2Institute of Continuum Mechanics, Leibniz University Hanover, Hanover, Germany
3Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
5Institute of Structural Mechanics, Bauhaus-Universität Weimar, Weimar, Germany

a)Author to whom correspondence should be addressed: xiaoying.zhuang@tdtu.edu.vn

ABSTRACT

Topological insulators (TIs) have recently received significant attention due to the promise of lossless transport of various types of
energy. Despite this interest, one outstanding issue is that the topological bandgap and the frequencies that are topologically permit-
ted are typically fixed once the topological structure has been designed and fabricated. Therefore, an open and unresolved question
concerns the ability to actively tune both the bandgap magnitude, as well as the frequencies, for which the energy is topologically
protected. In this work, we report a mechanically tunable phononic TI using an acoustic analog of the quantum valley Hall effect. We
propose a phononic crystal comprised of a soft, hyperelastic material where the phononic band structure is modulated through
large deformation of the structure. In doing so, space-inversion symmetry can be broken, which leads to a phase transition between
two topologically-contrasted states and the emergence of topologically-protected interface modes according to bulk-edge corre-
spondence. We further demonstrate the robustness of this topological protection of the edge state along the interface, which dem-
onstrates that mechanical deformation can be used to effectively tailor and tune the topological properties of elastic structures.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5066088

I. INTRODUCTION

Topological insulators (TIs) have received significant
interest since their discovery more than a decade ago. A
primary reason for this interest is because of the potential
for lossless guiding and directing of waves of various types.1

While originally discovered in quantum electronic systems,
acoustic analogs of the electronic system have recently been
devised to exploit this unique edge state property. Some early
attempts were based on the quantum Hall effect (QHE), in
which the time reversal symmetry (TRS) is broken to obtain
non-trivial Chern numbers by means of spinning rotors2,3 or
circulating fluids.4 Other versions of acoustic TIs have been
based on the quantum spin Hall effect (QSHE) where the TRS
remains intact and the helical topologically-protected edge
state is obtained by creating pseudo-spins.5–8

However, there are various challenges in realizing chiral
(i.e., QHE-based) and helical (i.e., QSHE-based) topologically-

protected edge states in acoustic systems. First, the breaking
of TRS and space-inversion symmetry (SIS) depends on fully
passive mechanisms9–13 or involves complex rotating parts.8,14

Furthermore, there are significant complications in designing
QSHE-based TIs because of the need to generate a fourfold
Dirac-like degeneracy in the band structure.5

Alternatively, there has been growing interest in quantum
valley Hall effect (QVHE)-based TIs, which are significantly
easier to design. In particular, many papers have reported vari-
ations in QVHE-based TIs in which SIS is broken in a hexagonal
lattice structure in order to achieve twofold degeneracy in the
band structure,8,9,11,12,14–18 including recent works demonstrating
such effects in two-dimensional nanostructures such as hex-
agonal boron nitride and silicon carbide.19

While the above details the various approaches to design
acoustic TIs, one outstanding issue is that the topological
bandgap and the frequencies that are topologically permitted
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are typically fixed once the topological structure has been
designed and fabricated. In contrast, there may be many
applications in which it is desirable to be able to dynamically
or adaptively tune the bandgap and the allowed frequencies
after the structure has been fabricated. There have been
several recent works addressing this issue. For example, Liu
and Semperlotti17,20 demonstrated the use of large displace-
ments in truss-like structures to design a tunable acoustic
valley-Hall edge state. Similarly, Susstrunk et al.21 utilized
local symmetry breaking potentials to design a switchable
topological phonon channel.

In this work, we propose a strain-driven mechanism that
utilizes the large, nonlinear deformation of a soft material to
break SIS of a hexagonal lattice and design a QVHE-based
phononic TI. We demonstrate that both the bandgap and the
frequency are highly tunable using reasonable amounts of
mechanical stress. The remainder of the paper is as follows: in
Sec. II, we summarize the deformation of the soft annulus.

The incremental equation of motion is derived with respect
to the deformed state, from which Bloch’s theorem and the
finite element method (FEM) are employed to obtain the pho-
nonic band structure. By analyzing the dispersion relation,
the topological invariant valley Chern number is calculated,
which indicates the number of interface modes between two
contrasting topological structures. In Sec. III, we verify the
existence of this interface mode in a finite super-cell.
Existence of this interface mode enables robust one-way
wave propagation in a phononic metamaterial as will be dem-
onstrated in Sec. IV. Conclusions are given in Sec. V.

II. TUNABLE TOPOLOGICAL BAND-STRUCTURE

A. Problem description

The geometry we consider in this work is an isotropic,
incompressible hyperelastic cylindrical annulus with inner
radius R0 and outer radius R1 of density ρ1, shear modulus μ1

FIG. 1. The inflation of a hyperelastic cylindrical annulus embedded in an elastic medium and subjected to internal pressure p0 and longitudinal stretch (adapted from
Ref. 22). The inflation could be realized in practice by increasing the pressure inside the annulus through internal fluid pressure or an inviscid gas.23,24 The initial inner and
outer radii of the cylindrical annulus are R0 and R1, whereas those of the deformed one are r0 and r1, such that r1 ¼ R1 by appropriate choice of stretch value ξ.
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embedded into a linear elastic host medium of density ρ0, and
shear modulus μ0 as depicted in Fig. 1. This geometry is moti-
vated by the recent work of Barnwell22 and Barnwell et al.23

Specifically, the cylindrical annulus is inflated by applying an
internal pressure on the inner surface and axial stretch ξ in
such a manner that the outer radius R1 is remained
unchanged as schematically shown in Fig. 1. The inflation
could be realized in practice by increasing the pressure inside
the annulus through internal fluid pressure or an inviscid
gas.23,24 As also noted in Ref. 24, the magnitude of the internal
pressure p0 that is needed in order to expand the ring 20
times than its original size can be estimated as p0=μ � 3:5,
where the shear modulus μ for rubber for a Neo-Hookean
material is O(105)Pa. In the cylindrical coordinate system,
where the origin is the center of the annulus, the inflation of
the cylindrical annulus is described by expressing the coordi-
nates in the reference configuration in terms of those in the
current configuration such as

R ¼ R(r), Θ ¼ θ, Z ¼ z
ξ
, (1)

where the upper case and lower case convention is used to
denote the reference and current configuration, respectively.
Consequently, by forming the deformation gradient and uti-
lizing the spectral decomposition, the principal stretches can

be obtained as

λr ¼ 1
R0(r)

, λθ ¼ r
R(r)

, λz ¼ ξ: (2)

Because we focus on using soft, hyperelastic materials for the
annulus, the radial displacement function R(r) is now deter-
mined by using the incompressibility condition, i.e., λrλθλz ¼ 1
and the boundary condition such that

R0 ¼ R(r0), R1 ¼ R(r1) ¼ r1, (3)

which then results in

R(r) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ r2 þ 1

ξ
� 1

� �
R2
1

� �s
: (4)

Furthermore, the radial Cauchy stress σrr due to the inflation
of the annulus is given as23

σrr(r) ¼ �p0 þ
ðr1
r0

1
s

λθ(s)
@W
@λθ

� λr(s)
@W
@λr

� �
ds, (5)

where W is the energy density function of the annulus, such
that σrr(r0) ¼ �p0 and σrr(r1) ¼ 0.

FIG. 2. Schematic of the PC and unit cells. (a) The PC consists of a hexagonal lattice where the soft annulus is embedded in an elastic medium. The initial radii are
chosen as R0 ¼ 0:05a and R1 ¼ 0:2a. (b) Unit cell of the unstrained annulus. (c) A-type unit cell when the lower annulus is inflated. (d) B-type unit cell when the upper
annulus is inflated.
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The above equations describe the static large deforma-
tion (or inflation) of the cylindrical annulus. On this deformed
state, small-amplitude time-harmonic motions of the form
exp (� iωt) with ω the angular frequency are prescribed. In
order to describe the small-amplitude motion of a pre-
stressed medium, the small-on-large theory is employed.
Details of this theory can be found in Refs. 25 and 26 for
general wave motion in solids. Nevertheless, in the context of
this current work, we focus on antiplane waves polarized in

the z-direction, of which the governing incremental equation
is given as23

1
r
@

@r
rμr(r)

@w
@r

� �
þ 1
r2

@

@θ
rμθ(r)

@w
@θ

� �
þ ρω2w ¼ 0: (6)

In the above equation, μr(r) and μθ(r) are the
incremental shear moduli, which are dependent on the

FIG. 4. Stretch-based tunability demonstrates topological phase transition. (a) Variation of the eigenfrequency of the first two modes at K point. The insets show the corre-
sponding eigenmodes of the A-type and B-type unit cell being stretched with ξ ¼ 1:5 from the Neo-Hookean material. The eigenmodes are flipped across Δr ¼ 0 (i.e.,
ξ ¼ 0), indicating the occurrence of topological phase transition. (b) Variation of the bandgap width with respect to stretches.

FIG. 3. Phononic band diagram of (a) stress-free and (b) pre-stressed unit cells. Doubly degeneracy Dirac cone is observed at K and K 0 points when SIS is intact. The
bandgap is opened when SIS is broken.
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choice of the energy density function W(λr, λθ , λz) such
that

μr(r) ¼
λr @W

@λr
� λz @W

@λz

λ2r � λ2z

 !
λ2r , (7a)

μθ(r) ¼
λθ @W

@λθ
� λz @W

@λz

λ2θ � λ2z

 !
λ2θ: (7b)

In this current work, following the choice of the energy
density function in Ref. 23, we also investigate three dif-
ferent material models, namely, the Neo-Hookean, the
Mooney-Rivlin, and the Fung models, from which the
incremental shear moduli can be determined analytically
and are given in the Appendix.

Since the unit cell and the phononic structure (PC)
are defined in the Cartesian coordinate system, the

incremental wave equation (6) is now transformed back
to the Cartesian coordinate system in terms of stresses
such as

r� σzxex þ σzyey
� �þ ρω2w ¼ 0, (8)

where the shear stresses are given as

σzx ¼ Czxzx
@w
@x

þ Czxzy
@w
@y

, (9a)

σzy ¼ Czyzx
@w
@x

þ Czyzy
@w
@y

, (9b)

with
Czxzx ¼ 1

x2 þ y2
x2μr þ y2μθ
� �

, (10a)

FIG. 5. Berry curvature of the first two eigenmodes of two types of unit cells. The Berry curvature is localized at K and K 0 , having the same magnitude but different signs.
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Czxzy ¼ Czyzx ¼ xy
x2 þ y2

μr � μθð Þ, (10b)

Czyzy ¼ 1
x2 þ y2

y2μr þ x2μθ
� �

: (10c)

For numerical analysis, the material parameters are
chosen as ρ0 ¼ 1, μ0 ¼ 1 for the host medium, whereas
those of the annulus are ρ1 ¼ 2, μ1 ¼ 50.

B. Phononic band structure

The energy band structure of the phononic structure can
be determined through a numerical solution of Eq. (8) by uti-
lizing Bloch’s theorem and the FEM to obtain the eigenvalue
problem

[K(k)� ω2M]w ¼ 0, (11)

where K(k) and M are the stiffness and mass matrix that take
into account the Bloch’s theorem, k is the wavevector in the
reciprocal space, and ω and w are, respectively, the eigenval-
ues and eigenmodes. The unit cell is discretized by 4-node
bilinear quadrilateral finite elements as shown in the insets of
Fig. 3, in order to obtain the stiffness and mass matrices that
are given in the Appendix. The resulting phononic crystal is a
hexagonal lattice with lattice constant a ¼ 1 that consists of a

hyperelastic annulus embedded in a linear elastic medium (as
described in Sec. II A) and is schematically depicted in
Fig. 2(a). The unit cell is chosen as in Fig. 2(b) and is com-
prised of two annuli. In the initial (undeformed) configuration,
the unit cell supports C3v symmetry such that the Dirac point
between the first two eigenmodes can be obtained at the K
and K

0
points in the reciprocal space as shown in Fig. 3(a).

Subsequently, we employ inflation for one of the annuli so
that the inversion symmetry is broken, while C3 symmetry is
preserved. Inflating the lower annulus leads to A-type unit
cells, as shown in Fig. 2(c), while inflating the upper annulus
leads to B-type unit cells as shown in Fig. 2(d). The inflation
results in the gap opening as illustrated in Fig. 3(b).

The benefit of using large deformations to tune the
bandgap at the K point via different stretch values ξ for
different material models is shown in Fig. 4(b). We denote
Δr ¼ rlower

0 � rupper0 as the difference in the inner radius
between the lower and upper annulus, rlower

0 and rupper0 , respec-
tively. The radii are dependent on the stretch ξ and are com-
puted as in Eq. (4). Figure 4(b) shows the eigenfrequencies and
the band gap width of the first two eigenmodes using the three
different hyperelastic models as well as a linear elastic material
model. Figure 4(b) shows that the larger stretch induces stron-
ger SIS breaking, hence a larger bandgap width. Furthermore,
for both hyperelastic and linear elastic material models, the
bandgap width increases nonlinearly with increasing Δr, with
little difference observed between the three hyperelastic

FIG. 6. Variation of the numerical valley Chern number Cv at the K-point of the first eigenmode of unit cell A, as a function of stretch ξ. The insets show the FEM mesh
and Berry curvature at different ξ. The smaller the stretch ξ, i.e., the weaker the intensity of SIS breaking, the more localized the Berry curvature is at the Dirac points.
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FIG. 7. Domain wall edge state. (a) Schematic view of a finite cell consists of two interfaces, S- and L-interface. (b)–(d) Phononic band structure of a finite strip with
ξ ¼ 1:1, 1:5, and 2:0, respectively. S- and L-interface modes appear in the bandgap. (e) Anti-symmetric eigenmode of the S-interface (left) and the symmetric eigenmode
of the L-interface (right).
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FIG. 8. Edge-mode propagation in the L-interface in two cases, ξ ¼ 1:5 (left column) and ξ ¼ 2:0 (right column). (a) The phononic crystal is excited harmonically at the
center (red star). Two reference points are at point A and B (upper and lower blue stars, respectively).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 125, 095106 (2019); doi: 10.1063/1.5066088 125, 095106-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


models and the linear elastic model. Because of this, the
Neo-Hookean model will be chosen for the rest of the paper.

It is also interesting that the linear and nonlinear
material models lead to effectively the same bandgap
widths with increasing Δr, which suggests that large geo-
metric changes, rather than material nonlinearity, are key
to shifting the bandgap. This is expected from the current
mechanism, since the pre-stress only induces anisotropic
behavior inside the annulus with the tangent elastic moduli
given by Eq. (10).24 The components of the tangent elastic
moduli are dependent on the incremental shear moduli
given in Eq. (7), whose variations in the radial direction can
be found in the Appendix. Specifically, for the case when
ξ ¼ 1:5, as shown in Fig. 11, there are spatial variations in
the incremental shear moduli as compared to the initial
shear modulus of the annulus μ1. Consequently, the varia-
tion of the tangent elastic moduli inside the annulus is
demonstrated in Fig. 12 showing the anisotropic behavior
of the pre-stressed annular. Note that there are both
increases and decreases in the elastic moduli, which result
in minor changes to the bandstructure, illustrating the
weak effect of material nonlinearity for this particular sit-
uation. Because we employ small amplitude excitations, i.e.,
a linear wave with small amplitude rather than large ampli-
tude, which could induce a nonlinear wave due to geomet-
ric nonlinearities, on the current configuration, we do not
account for geometric nonlinearities, which may also
impact the bandstructure. More importantly, although the
eigenfrequencies are the same for both lattices with
respect to the same stretch, their eigenmodes are flipped
as shown in the insets of Fig. 4(a). The inversion of the
eigenmodes indicates that the phase transition has taken
place at the undeformed unit cell, i.e., Δr ¼ 0.

We further investigate the topological phase transition
by computing the Berry curvature of the first two eigenmodes
of both unit cells A and B. The Berry curvature for the

eigenmode nth at the wave vectork is given as

Bn(k) ¼ �2Im
X
n=m

hΦm j @K
@kx

j ΦnihΦn j @K
@ky

j Φmi
ω2
m � ω2

n

� �2 , (12)

where Φm and Φn are the mth and nth eigenvectors, respec-
tively. The Berry curvature of the first two eigenmodes of
both unit cells subjected to stretch ξ ¼ 1:5 is presented in
Fig. 5. The Berry curvature is localized at the K and K0 points
and carries different signs at these points. Consequently, the
integral over the first Brillouin zone of the Berry curvature,
which defines the topological invariant known as the
Chern number Cn ¼ 1

2π

Ð
BZ B

n(k)d2k, is null. This is expected in
a system where the time reversal symmetry is intact.
Nevertheless, since the Berry curvature is sharply centered
around the Dirac points, the integration over a small region
bounded around the valley characterizes the topological
charge, also known as the valley Chern number

Cn
v ¼ 1

2π

ð
v
Bn(k)d2k: (13)

By using the k�p theory, the valley Chern number can be ana-
lytically computed. For lattice A, the lower (upper) mode
carries C1

v ¼ �1=2(1=2) and C1
v ¼ 1=2(�1=2) at K and K0 valleys,

respectively, whereas for lattice B, these topological invari-
ants are inverted. As a result, when an interface is formed
between these two lattices, the difference in the contrasted
valley Chern number, e.g., C1,A

v,K � C1,B
v,K

			 			 ¼ 1 indicates the
number of edge or interface mode in such structures accord-
ing to the bulk-edge correspondence.27

However, our numerical integration of Eq. (13) over a
small square region around the Dirac points gives the value
+0:3. This deviation as compared to the analytical result may

FIG. 9. Time history of displacement at points of interest along the topologically non-trivial interface with different stretch values.
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FIG. 10. Edge-mode propagation along the L-interface with the defect (left column), along the S-interface (right column).
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be caused by the strong SIS breaking.10 In fact, the smaller
the stretch ξ, i.e., the weaker the SIS breaking, the Berry cur-
vature is more localized at K and K0 points, and the valley
Chern number approaches +0:5 as shown in Fig. 6.

III. VALLEY HALL EDGE STATE

The existence of the interface mode is revealed by study-
ing the dispersion of a finite super cell, which has an interface
between A and B lattices. The super cell consists of 10 B-type
unit cells placed in between 20 A-type unit cells, which then
forms two types of interfaces, namely, “small” (S) and “large”
(L) denoting when the A-type unit cell is on top of the B-type
unit cell and vice versa, respectively, as shown in Fig. 7(a). The
periodic boundary condition is applied on the left and right
edges of the super cell. Subsequently, the dispersion relation
can be obtained by solving the eigenvalue problem. As
expected from the bulk-edge correspondence, a pair of inter-
face modes emerges within the bandgap, corresponding to
the S- and L-interface as shown in Figs. 7(b)–7(d), which show
the energy band diagram along kx with stretch ξ ¼ 1:1, 1:5,
and 2:0, respectively. Here, we remark that, for a small stretch
value, e.g., ξ ¼ 1:1, although the SIS is broken and a bandgap is
opened, the interface mode cannot be detached from the
bulk mode [see Fig. 7(b)]. On the other hand, the interface
mode can be seen distinctly from the bulk with a large stretch
value as in Fig. 7(d).

In those figures, the two vertical dashed lines mark
the projection of two valley points K and K0 on the inter-
face, such that at the K0 point, the S-interface and
L-interface support forward and backward propagating
waves, respectively, whereas the opposite observation can
be deduced for the K point due to the TRS. As a result, the
difference in the momentum space between the forward
and backward propagating waves ensures these edge states
are essentially immune to backscattering.10 Furthermore,

we show the eigenmodes of the S- and L-interface calcu-
lated at kx ¼ π=a with ξ ¼ 1:5 in Fig. 7(e). The displacement
amplitude is localized at the interface. More noticeably, the
eigenmodes of the S- and L-interface are antisymmetric
and symmetric, respectively, with respect to the interface.
Although both types of interface have equivalent topologi-
cal order Cv ¼ +1, the symmetric eigenstate is coupled
well with the incident wave, whereas the anti-symmetric
eigenstate suppresses it.10,15 This phenomenon will be
observed in Sec. IV.

IV. EDGE STATE WAVE PROPAGATION

In this section, we will verify the one-way wave propaga-
tion in an interface formed by A-type and B-type unit cells
through direct numerical simulation. A structure of 30� 30
unit cells, which can have either S- or L-interface zig-zag paths
[see Figs. 8(a) and 10(b)], is harmonically excited at the center
[the red star in Fig. 8(a)] with angular frequency ω ¼ 2:6 (which
lies within the topologically-protected bandgap frequency) as
schematically shown in Fig. 8(a). During the transient FEM sim-
ulation, an absorbing boundary condition is applied to the four
outer edges to mimic an infinite structure and to prevent the
wave reflection from the boundaries. Specifically, we investi-
gate the performance of the edge-mode propagation for differ-
ent stretch values ξ, for both L and S interfaces, and also with
the existence of defects along the interface.

Figure 8 presents the wave propagation for the
L-interface with two different stretch values ξ ¼ 1:5 (left
column) and ξ ¼ 2:0 (right column). In both cases, the sym-
metric eigenstate is excited and the displacement is local-
ized and propagated along the L-interface. However, the
structure with ξ ¼ 2 can prevent waves from penetrating
into the bulk due to the bigger bandgap as compared to
that in the case ξ ¼ 1:5 [Figs. 7(c) and 7(d)]. For a closer
look, Fig. 9 shows the time history of displacements at two

FIG. 11. Variation of incremental shear moduli in the radial direction when ξ ¼ 1:5. The results are normalized with respect to the initial shear modulus of the annular μ1.
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reference points A and B along the interface [the upper
and lower blue stars, respectively, in Fig. 8(a)], calculated
from the same excitation source. The amplitude in the
case ξ ¼ 1:5 is smaller than when ξ ¼ 2:0, indicating that
more of the input energy is confined to the interface as
the stretch increases. We note that while the valley Chern
number Cv when ξ ¼ 1:5 is closer to the theoretical value
than when ξ ¼ 2:0, which seems to suggest that deviations
from the theoretical valley Chern number do not deleteri-
ously affect the performance of the topologically-protected
interface and may enable enhanced energy localization due
to the larger bandgap that can result.

In addition, we study the wave propagation along a topo-
logically non-trivial interface that contains a defect, which is
created by removing an annulus inside the red dashed circle
in Fig. 10(a). As expected from the robust backscattering
immunity of the interface mode, the displacement is again
localized and travels along the L-interface. On the other
hand, the edge state of the S-interface is suppressed by the
antisymmetric eigenstate such that the displacement is only
localized at the source as can be seen in Figs. 10(d), 10(f ),
10(h), and 10( j). We also remark that in terms of time history
displacement, at point A, the amplitude of the displacement is
not altered with and without the defect in the L-interface

FIG. 12. Variation of the elastic moduli. The results are normalized with respect to the initial shear modulus of the annulus μ1. (a) Variation of elastic moduli as y ¼ 0,
r0 , x , r1. Component czxzx decreases, but czyzy increases. The shear components are reduced. (b) Variation of elastic moduli as x ¼ 0, r0 , y , r1. Component
czyzy decreases but czxzx increases. The shear components are reduced. (c) Variation of elastic moduli as r0 , x ¼ y , r1.
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[Fig. 9(a)]. Meanwhile, the amplitude at point B is slightly
reduced as compared to the perfect one since the defect lies
on the wave propagation path [Fig. 9(a)].

V. CONCLUSIONS

We have proposed a tunable quantum valley Hall pho-
nonic topological insulator that is based on a strain-driven
mechanism, in which the occurrence of the topological phase
transition is induced by alternatively inflating a soft inclusion
embedded in an elastic host medium. While the utilization of
a soft material is beneficial in the ability to generate large
deformations for relatively low stresses, material nonlineari-
ties generated due to the large deformation do not appear to
significantly affect the resulting width or frequency of the
topological bandgap. Within our formulation, which considers
small perturbations about a largely deformed state, the effects
of geometric nonlinearity, which may also impact the bandgap,
are not considered, which will be a focus of future work. The
intensity of the SIS breaking can be mechanically modulated
by the internal pressure or axial stretch, which enables tunable
topological properties, in particular, control over the bandgap
width as well as the frequency at which the topologically pro-
tected phonons can propagate. Numerical simulations served
to demonstrate the robustness of the protected interface
phonons, where defects such as sharp bends and geometric
imperfections did not impact the propagation of the interface
phonons. While the specific geometry considered in this
work has not been studied experimentally with regard to
topologically-protected wave propagation, we note that recent
experimental studies have demonstrated the possibility of
achieving topologically-protected wave propagation using soft,
hyperelastic materials similar to the ones considered in the
present work. Thus, the current study can be a guide for
designing strain-tunable topological soft phononic crystals.
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APPENDIX A: MATERIAL MODEL

In this section, we summarize three incompressible
material models for the soft annulus. For the Mooney-Rivlin
material, the energy density function is given as23

W ¼ μ

2
s1 λ2r þ λ2θ þ λz
� �þ 1� s21

� �
λ2rλ

2
θ þ λ2rλ

2
z þ λ2θλ

2
z � 3

� �
 �
, (A1)

where s1 [ [0, 1] is a material constant. When s1 ¼ 1, the above
function corresponds to the energy density function of the
Neo-Hookean material. We note that in our numerical results,
the value s1 is chosen to be 0.5. Substituting Eq. (A1) into

Eq. (7), the incremental shear moduli can be obtained as23

μr(r) ¼
Tμ1
ξ2

1þm
r2

� 

, for r0 , r , r1, (A2a)

μθ(r) ¼
Tμ1
ξ2

1� m
r2 þM

� �
, for r0 , r , r1, (A2b)

with M ¼ 1=ξ� 1ð ÞR2
1 , T ¼ 1þ (ξ� 1)s1, m ¼ Mξs1

T . We also con-
sidered a simplified version of the Fung material, which has
the energy density function

W ¼ μ1
2

exp (Q)� 1½ �, (A3)

where Q ¼ 1
2 (λ

2
r þ λ2θ þ λ2z � 3). Similarly, the incremental shear

moduli can be derived from Eq. (7),

μr(r) ¼
μ1(r

2 þM)
2ξr2

r2 þM
ξr2

þ ξ� 1
� �

, (A4a)

μr(r) ¼
μ1ξ(r2 þM)

2r2
(r2 þM)ξ

r2
þ ξ� 1

� �
: (A4b)

The variation of the incremental shear moduli when ξ ¼ 1:5 is
demonstrated in Fig. 11. Consequently, the elastic moduli can
be computed from these incremental shear moduli from
Eq. (10). As a demonstrative example, let us consider an
annulus schematically depicted in Fig. 1 that takes the center
as the origin of the Cartesian coordinate system. The variation
of the elastic moduli in three cases is shown in Fig. 12.

APPENDIX B: DISCRETIZATION

In this section, we present the matrix form of the finite
element discretization. Using the bilinear 4-node quadrilat-
eral element, the out-of-plane displacement w is approxi-
mated from the nodal displacement ŵ ¼ [w1 w2 w3 w4]

T

and the basis functions N ¼ [N1 N2 N3 N4], such that
w ¼ Nŵ. Consequently, the displacement gradient rw can be
approximated by rw ¼ Bw, where the differential operator B
is given as

B ¼
@N1
@x

@N2
@x

@N3
@x

@N4
@x

@N1
@y

@N2
@y

@N3
@y

@N4
@y

" #
: (B1)

Bloch’s theorem is applied such that

w(x) ¼ ~w(x) exp (iωt� ik � x), (B2)

where ~w(x) is the periodic function with the same periodicity
with the crystal. The above relation can be expressed in terms
of nodal values as

ŵ ¼ exp (iωt)T~w, (B3)
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where ŵ ¼ [ŵ1 ŵ2 ŵ3 ŵ4]
T and

T ¼
exp (ik � x1) 0 0 0

0 exp (ik � x2) 0 0
0 0 exp (ik � x3) 0
0 0 0 exp (ik � x4)

2
664

3
775:
(B4)

Upon multiplying Eq. (8) with the test function δw and
employing integration by parts, the stiffness and mass matri-
ces can be obtained as

�K ¼
[nel
e¼1

�ke ¼
[nel
e¼1

ð
Ωe

BT CBdΩ; (B5a)

�M ¼
[nel
e¼1

�me ¼
[nel
e¼1

ð
Ωe

ρNT NdΩ; (B5b)

where C(x, y) ¼ Czxzx(x, y) Czxzy(x, y)
Czxzy(x, y) Czyzy(x, y)

� �
, whose components

are computed from Eq. (10). Thus, the eigenvalue problem can
be re-written as

[nel
e¼1

�keTŵ ¼
[nel
e¼1

ω2 �meTŵ: (B6)

By pre-multiplying the above equation with T*, the complex
conjugate of T, one can obtain the equivalent eigenvalue
problem with Hermitian positive definite matrices

Kŵ ¼ ω2Mŵ, (B7)

with

K ¼
[nel
e¼1

T*�keT, (B8a)

M ¼
[nel
e¼1

T* �meT: (B8b)

Further details about the numerical implementation can also
be found in Ref. 28.
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