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Multiscale computational understanding and growth of 2D
materials: a review
Kasra Momeni1,2,3✉, Yanzhou Ji4,5, Yuanxi Wang6,7, Shiddartha Paul 1, Sara Neshani8, Dundar E. Yilmaz9, Yun Kyung Shin9,
Difan Zhang5, Jin-Wu Jiang10, Harold S. Park11, Susan Sinnott 5, Adri van Duin9, Vincent Crespi 6,7 and Long-Qing Chen3,4,12,13

The successful discovery and isolation of graphene in 2004, and the subsequent synthesis of layered semiconductors and
heterostructures beyond graphene have led to the exploding field of two-dimensional (2D) materials that explore their growth, new
atomic-scale physics, and potential device applications. This review aims to provide an overview of theoretical, computational, and
machine learning methods and tools at multiple length and time scales, and discuss how they can be utilized to assist/guide the
design and synthesis of 2D materials beyond graphene. We focus on three methods at different length and time scales as follows:
(i) nanoscale atomistic simulations including density functional theory (DFT) calculations and molecular dynamics simulations
employing empirical and reactive interatomic potentials; (ii) mesoscale methods such as phase-field method; and (iii) macroscale
continuum approaches by coupling thermal and chemical transport equations. We discuss how machine learning can be combined
with computation and experiments to understand the correlations between structures and properties of 2D materials, and to guide
the discovery of new 2D materials. We will also provide an outlook for the applications of computational approaches to 2D
materials synthesis and growth in general.
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INTRODUCTION
The perfection and physical properties of atomically thin two-
dimensional (2D) materials are extremely sensitive to their
synthesis and growth process. Achieving desired characteristics
such as structural uniformity, high carrier mobility1, strong
light–matter interactions, tunable bandgap, and flexibility is the
main challenge for the synthesis and growth of next generation,
electronics-grade 2D materials. A reliable and optimized growth
and manufacturing process is essential for the synthesis of 2D
materials with uniform properties at the wafer scale, e.g., for
application in flexible and transparent optoelectronics.
Two main approaches have been employed for the synthesis of

2D materials, i.e., (i) top-down approaches such as mechanical2

and liquid-phase exfoliation that allows scalability3, and
(ii) bottom-up approaches such as chemical vapor deposition
(CVD) and atomic layer deposition techniques4. The former
approaches are suitable for mass production of 2D materials but
with typically lower quality, whereas the latter approaches can
produce high-quality 2D materials but in small amounts. For both
types of approaches, the morphology and characteristics of the
synthesized 2D materials are very sensitive to the thermodynamic
or kinetic conditions5 of the growth processes, e.g., heat transfer
and mass transfer of source chemical species, chemical reaction
kinetics, adsorption of reaction product species on a substrate
surface, and nucleation and growth of the resulting 2D materials.
The goal of this review is to provide an overview of the main
theoretical and computational methods for understanding the

thermodynamics and kinetics of mass transport, reaction, and
growth mechanisms during synthesis of 2D materials. We will
discuss the possibility of synthesis-by-design of new 2D materials
guided by computation to reduce the number of expensive and
time-consuming trial-and-error experimentations.
The critical challenge for developing theoretical and computa-

tional design tools for the synthesis of 2D materials is the broad
range of length and temporal scales involved in their growth
process. For example, it may require quantum mechanical and
atomistic reactive force-field calculations to determine the
activation energies for atomic migration on a surface6 and
understand the atomistic surface reaction mechanisms7, and then
a finite element method (FEM) to model the mesoscale mass
transport phenomena8. Other challenges include incorporating
the effects of substrates including the types of substrate defects9,
the possible wrinkling of 2D films10, the effect of van der Waals
(vdW) interactions at the mesoscale11, and the growth kinetics
unique to atomically thin materials12. Also reproducing quadratic
dispersion for the flexural acoustic modes of 2D materials using
classical or reactive potentials may not be straightforward, it has
been already formulated13. Furthermore, a practically useful
multiscale model should be computationally efficient, numerically
accurate, and, more importantly, able to capture the multi-physical
governing relationships among the growth conditions, growth
morphology, and materials properties. The eventual goal of
developing multiscale computational models is to guide the
design of new growth chambers to produce uniform large-area 2D
materials.

1Mechanical Engineering Department, Louisiana Tech University, Ruston, LA 71272, USA. 2Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA.
3Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA. 4Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
5Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA. 62-Dimensional Crystal Consortium, The Pennsylvania State
University, University Park, PA 16802, USA. 7Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA. 8Department of Electrical Engineering, Iowa
State University, Ames, IA 50010, USA. 9Mechanical Engineering Department, The Pennsylvania State University, University Park, PA 16802, USA. 10Shanghai Institute of Applied
Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China. 11Department of Mechanical
Engineering, Boston University, Boston, MA 02215, USA. 12Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
13Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA. ✉email: kmomeni@latech.edu

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-020-0280-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-020-0280-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-020-0280-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-020-0280-2&domain=pdf
http://orcid.org/0000-0003-4306-180X
http://orcid.org/0000-0003-4306-180X
http://orcid.org/0000-0003-4306-180X
http://orcid.org/0000-0003-4306-180X
http://orcid.org/0000-0003-4306-180X
http://orcid.org/0000-0002-3598-0403
http://orcid.org/0000-0002-3598-0403
http://orcid.org/0000-0002-3598-0403
http://orcid.org/0000-0002-3598-0403
http://orcid.org/0000-0002-3598-0403
http://orcid.org/0000-0003-3846-3193
http://orcid.org/0000-0003-3846-3193
http://orcid.org/0000-0003-3846-3193
http://orcid.org/0000-0003-3846-3193
http://orcid.org/0000-0003-3846-3193
https://doi.org/10.1038/s41524-020-0280-2
mailto:kmomeni@latech.edu
www.nature.com/npjcompumats


ATOMISTIC COMPUTATIONAL METHODS
First-principles calculations
This section discusses the computational approaches based on the
density functional theory (DFT). The primary application of DFT in
modeling 2D materials is to determine the relative thermody-
namic stabilities of different crystal structures of a 2D material by
computing their chemical potentials or to identify kinetic path-
ways by analyzing the energetics of potential transient structures
from one stable equilibrium structure to another as thermo-
dynamic conditions change. Examples of applications of DFT to
understanding 2D materials and their growth, as well as the
corresponding DFT-based first-principles methodologies and the
corresponding experimental observables for validation are sum-
marized in Table 1.

Thermodynamic stability. The thermodynamic stability of a 2D
material requires its formation energy to be negative. The
formation energies of various 2D materials have been efficiently
calculated by DFT in combination with high-throughput screen-
ing platforms14. The success of DFT in predicting energies relies
on the accuracy of well-tempered approximate exchange-
correlation functionals. Standard functionals, e.g., the Perdew-
Burke-Ernzerhof parametrization of the generalized gradient
approximation exchange-correlation functional (GGA-PBE),
accompanied by appropriate corrections15, describe well the
formation and atomization energies. However, they are limited
by intrinsic delocalization errors when bonds are stretched,
resulting in underestimated reaction barriers16. A more realistic
criterion for a stable 2D material is a low “above-hull” energy17.
Exfoliation energies within 0.2 eV/atom are suggested as a
general rule of thumb for the stability in 2D form. A slightly
stricter criterion to have low surface energy (<20 meV/Å) is
suggested to rule out potential high-surface energy but multi-
atom-thick sheets.

Kinetically stabilized 2D Materials. As-grown products may be
metastable structures rather than ground-state polytypes18. The
well-known phase-stability competition between the 2H and 1T′
types in transition metal dichalcogenides (TMDs) has been studied
extensively using DFT. Several possible mechanisms for the 1T′-
phase stabilization in the disulfide, including growth-related
factors such as the presence of point defects and residual strain,
have been elucidated through DFT calculations19. Phase-stability
analysis for the entire group -IV metal dichalcogenide family20

revealed that the 1T′ phases are generally more stable for
ditellurides. In addition to pure compounds, mixing/segregation
behavior and order–disorder transitions in alloys have also been
discussed21. Within the W/Mo+ S/Se/Te combinations, mixing
either chalcogens or metals is thermodynamically favorable22,
which can be experimentally quantified using the Warren-Cowley
order parameters23. For TMDs, theory predicts that at finite
temperatures, the formation of random alloys is favorable.
However, kinetically stabilized atomically thin strips of alternating
W and Mo in a sulfide alloy have been reported24.

Interlayer/substrate interactions. Accurate description of vdW
interactions becomes critical when interlayer sheet–sheet or
sheet–substrate interactions are considered, e.g., for identifying
the growth orientation. As a non-local effect, vdW forces are not
correctly described by DFT with semi-local exchange-correlation
functionals and are often corrected by adding pairwise intera-
tomic terms from empirical fittings25, based on charge densities26,
or by introducing non-local exchange-correlation functionals, i.e.,
van der Waals Density Functional27. Thorough testing of these
methods has been examined in ref. 28. One common technical
problem in this computational approach is that substrates are
modeled in a slab geometry where the one surface not in contact
with the 2D sheet may host surface states, unless it is passivated.
To suppress artificial charge transfer that these may induce,
capping using pseudohydrogen29 with fractional charge is often
performed. With the advent of new software platforms automat-
ing the generation of solid surfaces in combination with stacked
2D sheets and adsorption geometries (e.g., MPInterfaces30), high-
throughput screening of possible substrates may lead to a
systematic approach to substrate engineering.

Precursor chemistry and kinetics. Transient intermediate states are
commonly calculated using transition state theory and the
nudged elastic band (NEB) method31 by calculating bond
dissociation energies or corresponding activation barriers32. One
recently attempted approach to capture precursor reaction
kinetics is constrained molecular dynamics (MD)33, where slowly
varying coordination constraints are enforced on reacting species
to map out free energy barriers, as implemented in VASP34. It is
different from NEB calculations in that (1) it calculates free
energies at finite temperatures; (2) the final state of the reaction
need not to be known; and (3) it has a better numerical stability35.
Constrained MD was used to study a sulfur precursor, S2, reacting
with a MoO3 surface36, concluding that MoO3 surface vacancies
favor the sulfurization process both kinetically and thermodyna-
mically. The downside of constrained MD is that a reaction
coordinate is chosen a priori, which may bias the system towards
unnatural products with incorrect reaction mechanisms33 and
higher reaction barriers34.
Other methods for sampling of rare events such as nucleation of

a new structure include umbrella sampling, transition interface
sampling, and metadynamics. The umbrella sampling technique
was introduced by Torrie and Valleau37, to improve the sampling
of systems with energy landscapes containing high energy
barriers. The weighted histogram analysis method38 can be used
to analyze a series of umbrella sampling methods. In the transition
interface sampling39, the transition region is divided into
subregions of intermediate states. The rate constant of a reaction
in this method is the multiplication of transition probabilities
between different intermediate states. The metadynamics techni-
que was introduced in 2002 and is usually used within an
atomistic modeling framework40. Selected collective variables of
the system not only evolve with time but also periodically leave
behind positive Gaussian potentials that are added to the original

Table 1. Examples of applications of DFT to 2D materials, the DFT-based first-principles methodology, and corresponding experimental observables.

Aspect of growth First-principles framework Experimental observable and impact

Thermodynamic stability Thermochemistry, high-throughput screening Successful synthesis

Interlayer interaction Dispersion forces, commensurate supercell construction Orientation control

Precursor chemistry and kinetics Transition state theory/NEB, thermochemistry,
constrained molecular dynamics

Growth rate, residual gas analysis

Growth front advancement Kinetic Monte Carlo, edge energetics Morphology and growth rate, microscopy
image of edge structure

Defects Formation energies Defect population statistics
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potential energy of the system, which effectively push the system
out of a local minimum and into a neighboring energy well.
Informally, metadynamics resembles “filling the free energy wells
with computational sand.”41

Growth front advancement. Early studies focused on calculating
the surplus energies of edges in the high-symmetry directions and
then applying the thermodynamic Wulff construction42. One
difficulty in calculating the edge energies is the polar and non-
centrosymmetric nature of materials, where the usual ribbon
calculation geometry makes the energies of dislike edges insepar-
able. The usual workaround is by constructing triangular flakes
exposing a single type of edge43. Another “energy density method”
was introduced in ref. 44 and a recently proposed method42 aimed
at finding a general method suitable for high-throughput calcula-
tions introduces capping groups to passivate a surface.
One major criticism of further employing thermodynamic Wulff

constructions is that growth is by definition out of equilibrium.
Therefore, edges that dominate over others should not be the
energetically favorable ones, but the slowest growing ones. The
step-flow approach was formulated in ref. 45 for graphene growth
and was further developed in ref. 46 for polar materials, establishing
the use of kinetic Wulff construction. A similar approach involves
DFT calculations and fitting to experimental grain morphologies, to
construct a kinetic Monte Carlo (KMC) model47.

Defects. The formation of defects may occur within thermo-
dynamic equilibrium such as thermally generated point defects or
follow from growth imperfections such as dislocations and grain
boundaries (GBs), or reflect the finite size of crystals such as edges
and surfaces. Defects can also be deliberately introduced using
methods such as electron or ion irradiation and chemical
treatment40. The calculation of defect formation energies follows
a well-established procedure detailed in ref. 48. 2D materials also
host lattice-specific defect types, such as the Stone-Wales defect
in graphene49. Single-atom vacancies are another type of defects
in 2D materials. A general strategy to ensure correct convergence
behavior for charged defects in 2D systems is presented in ref. 50.
Defect formation energies in MoS2 have been comprehensively
studied in ref. 51; possible strategies of introducing extrinsic
dopants have been examined in ref. 52. Defect complexes are also
frequently studied to identify likely combinations between simple
intrinsic defects and external contamination53, devise possible
defect-pairing strategies to neutralize harmful defects54, and
investigate their influence on the growth behavior of 2D materials
on a different 2D sheet9,55. Multiple vacancies may exist in 2D
materials such as double vacancies in graphene, resulting in (i)
two pentagons and one octagon—V2 (5-8-5) defect; or (ii) three
pentagons and three heptagons—V2(555-777) defect; or (iii) four
pentagons, a hexagon, and four heptagons—V2(5555-6-7777)
defect56. The formation of defects with an even number of
vacancies in graphene is energetically favorable due to the lack of

any dangling bonds57, whereas a large number of vacancies may
bend and wrap the 2D material58. Table 2 lists the typical values of
formation and migration energies of these point defects from
atomistic calculations.
Dislocations are line defects in 2D materials that can be of in-

plane edge or out-of-plane screw type. The former consists of
pentagon–heptagon (5–7) pairs59,60 and the latter makes the
structure to become 3D61. In general, dislocations in 2D materials
have high gliding energy barriers and are immobile at room
temperature. They hinder the plastic deformation of 2D materi-
als62. The in-plane edge dislocations with the smallest Burgers
vector, b= (1,0), is typically the energetically most favorable
dislocation configuration. The trilayer bi-atomic MoS2 has a
complex dislocation structure with two types, i.e., Mo-rich that
resembles (5–7) and S-rich that resembles (7–5) pairs. The complex
nature of dislocations in MoS2 is a source of its rich chemistry. For
example, at specific chemical potentials of S, the (5–7) dislocation
reacts with 2S vacancies to form a (4–6) defect.
GBs in 2D materials can be considered as an array of

dislocations, which can be divided into low-angle and high-
angle GBs depending on the dislocation core density. Atomistic
simulations revealed that the mechanical properties of 2D
materials, similar to the one-dimensional nanostructures, will be
affected by both the density and arrangement of the defects63.
Notably, graphene sheets with high-angle tilt GBs can be as strong
as the pristine material and much stronger than those with low-
angle GBs64. First‐principles calculations also revealed that sinuous
GB structures are energetically favorable when the straight GB line
cannot bisect the tilt angle65. GB energies of different 2D materials
are also reported based on atomistic calculations. For MoS2, the
energy of GB with a 20.6° misorientation angle is 0.05 eV/Å62. The
GB energy for phosphorene varies between 0.05 and 1.5 eV/Å,
depending on its tilt angle66.

Molecular dynamics
The MD approach is one of the main tools that have been used to
study the growth of 2D materials at the atomistic scale. The quality
of potential function governing the atomic interactions is the key
for the accuracy of this technique in predicting the structures and
properties of 2D materials. In general, two classes of interatomic
potentials are used in MD simulations to study the growth of 2D
materials, i.e., empirical and reactive potentials, which we
elaborate on here.

Empirical potentials. Empirical potentials are faster and more
computationally efficient, but less accurate than reactive poten-
tials. Common empirical potentials for modeling 2D materials are
reviewed below.
Lennard-Jones potential: In 1924, Lennard-Jones (LJ) published

the 12–6 pairwise potential to describe the vdW interaction
between two neutral particles (i.e., rare gases)67,

VLJ ¼ 4ϵ σ=rð Þ12� σ=rð Þ6
h i

(1)

where r is the distance between two interacting atoms, ϵ is the
potential well depth and σ is the distance at which the potential is
zero. The r−12 term captures the strong repulsion occurring when
two atoms get closer. The repulsive effect originates from the Pauli
exclusion principle, which penalizes the overlap of electron
orbitals. The r−6 term describes the vdW interaction, which is
due to the coupling between the instantaneous polar charges
induced in two neutral molecules and is significantly weaker than
the electron overlap effects.
The popularity of the LJ potential is due to its simplicity and it

has been widely applied to simulate the interlayer interactions in
atomically layered materials. While being used to capture vdW
interactions, a limitation of the pairwise interaction is the inability
to capture frictional processes, such as the sliding of atomic layers.

Table 2. Typical values of formation energies and migration energy
barriers of point defects in 2D materials from atomistic calculations.

Type of 2D
materials

Type of point
defects

Formation
energies

Migration
energy barriers

Graphene Stone-Wales60 ~5 eV

SV61 ~7.5 eV ~1.5 eV

V2 (5-8-5)56 ~8 eV ~7 eV

V2 (555-777)56 ~7 eV ~7 eV

V2 (5555-6-7777)56 7 ~ 8 eV ~7 eV

Phosphorene SV195 ~1.65 eV ~0.4 eV

MoS2 VS
59,60 1.22 ~ 2.25 eV ~2.27 eV
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Different corrections have been proposed to overcome this
shortcoming68–70. The two potential parameters ϵ and σ can be
determined by using one energy quantity like the binding energy
and a structural quantity like the density. The LJ parameters for
most elements can be determined systematically, as demon-
strated by Rappe et al.71. The LJ parameters for typical 2D
materials and substrates in Table 3 are listed in in Table 4 (for σ)
and Table 5 (for ϵ), respectively.
Stillinger-Weber potential: Stillinger and Weber (SW) proposed

this potential in 1985, to model bulk silicon72. The SW potential
includes both pair (two-body) and three-body interactions,

V2 ¼ Ae ρ= r�rmaxð Þ½ � B=r4 � 1
� �

; V3 ¼ Ke ρ1= r12�rmax 12ð Þþρ2= r13�rmax13ð Þ½ � cosθ� cosθ0ð Þ2;
(2)

where V2 describes the pairwise bond-stretching energy and V3
captures the bending energy associated with an angle with initial
value θ0.
The cut-offs rmax, rmax12, and rmax13 can be determined by fitting

to the average of the first- and second-neighboring bond lengths.
The seven unknown potential parameters, including five unknown
geometrical parameters, i.e., ρ and B in V2 and ρ1, ρ2, and θ0 in V3,
and two energy parameters A and K, can be determined either by
a least-squares fit to targeted quantities such as the elastic
constants, Poisson’s ratio, and the phonon spectrum, or by
analytical derivations from the linear valence force-field potential.
It is noteworthy that the nonlinear parameter B could not be
determined by the latter approach, which should be determined
by nonlinear quantities such as the third-order elastic constants73.
The SW potential can describe nonlinear processes including

large deformations, as higher-order terms for the variation of
bond length and angle are included in its formulation. Although
the SW potential is efficient and suitable for simulating thermal
transport and other nonlinear phenomena74, it is not able to
describe chemical bond formation or breaking. It should also be
noted that the SW potential cannot provide bending energy for
atomically layered materials without out-of-plane bonds such as

graphene75. Due to its efficiency, the SW potential has been used
in the simulation of many atomically layered materials such as 2D
nanostructures of Si and their thermal properties76, MoS2

73,74,76,
MoSe2

76, WS2
77, and black phosphorus73,78,79. The SW potential

has been parametrized for 156 emerging atomic layered materials,
along with other available empirical potentials for these atomically
layered materials80.
Force-field potential: The force-field (FF) potential describes the

variation in the potential energy of a deformed structure with
respect to its equilibrium configuration. It is essentially a Taylor
expansion of the total energy in terms of the variation in the bond
length and angle,

V ¼ Vb þ Vθ þ Vϕ þ Vγ þ Vc þ Vlj þ Vel; (3)

Vb ¼
X
i

kbðΔbiÞ2 þ
X
i

kð3Þb ðΔbiÞ3 þ
X
i

kð4Þb ðΔbiÞ4; (4)

Vθ ¼
X
i

kθðΔθiÞ2 þ
X
i

kð3Þθ ðΔθiÞ3 þ
X
i

kð4Þθ ðΔθiÞ4; (5)

Vϕ ¼
X
i

kϕðΔϕiÞ2; (6)

Vγ ¼
X
i

kγðΔγiÞ2; (7)

Vc ¼
X
ij

kbb0 ðΔbiÞðΔb0jÞ þ
X
ij

kθθ0 ðΔθiÞðΔθ0jÞ þ
X
ij

kbθðΔbiÞðΔθjÞ;

(8)

where Δb, Δθ, Δϕ, and Δγ are variations of the bond length, bond

angle, twisting angle, and inversion angle, respectively; kb, k
ð3Þ
b ,

kð4Þb , kθ, k
ð3Þ
θ , kð4Þθ , kϕ, kγ, kbb′, kθθ′, and kbθ are force constants. Vb is

the bond-stretching energy, Vθ is the bond angle-bending energy,
Vϕ is the torsional energy for a bond, Vγ is the inversion energy
among four atoms, and Vc is the off-diagonal coupling interaction.
It is noteworthy that the cubic and quartic anharmonic terms in
the bond-stretching and angle-bending interactions enable the FF
model to capture nonlinear phenomena such as thermal
expansion and thermal transport.
The FF potential has two significant features: (i) the number of

interaction terms and (ii) the force-constant parameters and the
equilibrium structural parameters (bond lengths and angles).
MM381 and COMPASS82 use all of the interaction terms and can
simulate large deformations and nonlinear phenomena. In
contrast, the Keating model83 is the simplest model including
only the harmonic terms. Parameters of the potential are usually
fitted to available data and, thus, the volume and accuracy of the
fitted data set determine the accuracy of the FF model. Several
generations of FF models have been developed as more data
become available, including four versions of the molecular
mechanics FF: MM184, MM285, MM381, and MM486. The UFF71

provides the FF parameters for all the elements in the
periodic table.
As the energies in the FF model are additive, this potential has

been widely used to calculate physical or mechanical properties
for various materials via analytic expressions, including many 2D
materials. For example, an FF model, with bond stretching and
angle-bending terms, has been used to derive the phonon
dispersion of graphene layers86. The bond-stretching and angle-
bending terms were utilized to extract the bending properties of
graphene87. A mapping between the FF model and the elastic
beam model has been developed, which is used to derive analytic
expressions for Young’s modulus and Poisson’s ratio of graphene
and carbon nanotubes88.

Table 3. List of common substrates that have been used to grow 2D
materials.

TMDs Substrate

MoS2 Sapphire (Al2O3)
76, SiO2

76, Graphene77, SiC78, hBN79

MoSe2 Sapphire (Al2O3)
80, SiO2

81, Graphene77

WS2 SiO2
81, Sapphire (Al2O3)

81, hBN196, Graphene197

WSe2 SiO2
198, Sapphire (Al2O3)

199, hBN200

NbS2 SiO2/Si
201, Sapphire (Al2O3)

202

NbSe2 h-BN203, Graphene204

MoTe2 SiO2
205

h-BN hexagonal boron nitride.

Table 4. List of σ (Å) values of the LJ interactions for different
substrates.

Si O C Al B N

Mo 3.27206 2.93206 3.054207 2.570208 3.827209 3.725209

W 0.094210 1.75211 3.9209 2.865209 3.927209 3.825209

S 3.71206 3.37206 4.00212 2.23209 3.292209 3.75212

Se 2.03213 3.37209 3.585207 2.555209 3.617209 3.515209

Te 2.60213 3.772209 3.847209 2.812209 3.874209 3.772209

Nb 3.5855209 3.1525209 3.9209 2.3375209 3.399209 3.2975209
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Reactive interatomic potentials. The reactive-potential approach
has been widely used to explore the synthesis and properties
of different materials. The reactive potentials can capture the
bond breaking and formation during the classical simulations
of 2D materials. They are also computationally less expensive
than first-principles methods such as DFT calculations and ab-
initio MD. Typical reactive potentials that have been frequently
considered are Tersoff Bond Order (Tersoff)89, Reactive
Empirical Bond Order (REBO)90, Adaptive Intermolecular
Reactive Empirical Bond Order (AIREBO)91, Charge Optimized
Many-Body (COMB)92, and Reactive Force Field (ReaxFF)93.
These different reactive potentials are reviewed in detail in
ref. 94. Performances of several reactive and non-reactive
potentials in graphene-based materials are compared in ref. 95.
These potentials allow the realization of the thermodynamic
stability of graphene-based materials under different condi-
tions, environmental chemistry, substrate, interlayer interac-
tions, and structural defects. However, only a few of them have
been employed in the study of computational synthesis of
other 2D materials to reveal thermodynamic stability, simulate
the process of the growth of layers, model the top-down
synthesis of 2D materials such as exfoliation techniques38, and
evaluate the properties of 2D nanostructures. This is due to
several challenges including the following: (1) the long time
required to develop a reactive potential, (2) the non-
transferability of potential parameters from one material to
another, and (3) the lack of universal functional forms for the
reactive potentials.
The Tersoff potentials are mainly used to explore various

structures and properties of 2D hexagonal boron nitride (h-BN)
materials96. The REBO and AIREBO potentials are used to
simulate the CVD process and growth of 2D amorphous carbon
on substrates, mechanical properties of MoS2, and even study
the thermal stability of C60 2D nanostructures97. The COMB3
potentials have been used to simulate the experimental CVD
deposition and growth of graphene and metal on substrates98.
The ReaxFF potentials have been used to explore the structures
of several 2D materials under intercalation, study the defects
and groups on the surfaces of MXene materials, simulate CVD
growth of MoS2 layers, and explore the synthesis of 2D
polymeric materials in experiments7,99. In general, COMB3 and
ReaxFF can further explore 2D materials, as their functional
forms can describe heterogeneous systems. It remains crucial to
find accelerated methods to develop reactive potentials with
high accuracy and transferability for 2D materials.
Tersoff potential: The Tersoff potential was first published in

1986100 and further developed in 1988101. The second version of
the Tersoff potential has the following form,

E ¼
X
i

Ei ¼ 1
2

X
i;j≠i

Vij; (9)

Vij ¼ fcðrijÞ½aij fRðrijÞ þ bij fAðrijÞ�; fRðrÞ ¼ Ae�λ1r ; fAðrÞ ¼ �Be�λ2r;

(10i-iii)

where fRðrijÞ and fAðrijÞ are the repulsive and attractive compo-
nents, respectively. The cutoff function is:

fc rð Þ ¼
1 r < R� D
1
2 � 1

2 sin
1
2 π r � Rð Þ=D� �

R� D< r < Rþ D

0 r > Rþ D

:

8><
>: (11)

A distinct feature of the Tersoff potential is the absence of an
explicit three-body interaction term. Instead, the concept of bond
order is introduced, in which the strength of a given bond
depends strongly on its local environment. Bond order is
accounted for via the function bij, which has the following form

bij ¼ ð1þ βnζnij Þ�1=2n; ζ ij ¼
X
k≠i;j

fCðrikÞgðθijkÞeλ
3
3ðrij�rikÞ3 ;

gðθÞ ¼ 1þ c2

d2
� c2

d2 þ ðh� cos θÞ2 :
(12)

aij is an alternative parameter to improve the accuracy of the
potential, with a similar form

aij ¼ ð1þ αnηnij Þ�1=2n;

ηij ¼
X
k≠i;j

fCðrikÞeλ
3
3ðrij�rikÞ3 (13)

The 13 unknown parameters are typically determined by fitting
to data from first-principles calculations or experiments.
The Tersoff potential was used for modeling of graphene, which

gives a better description of the phonon spectrum102. It was also
used to model germanene103 and silicene103. By introducing one
scaling parameter for the quantity bij with atoms i and j of
different elements104, the Tersoff potential was generalized to
describe the interaction for multicomponent systems including
C-Si and Si-Ge104, and boron nitride105. Using the Tersoff potential,
the thermal conductivity of silicene was calculated to be 61.7 and
68.5 WmK−1 for the armchair and zigzag configurations, which is
reduced when it is doped with heavier silicon isotopes106. This
potential has also been used for modeling the misfit dislocations
in 2D materials, where a critical thickness was found for the
formation of an interface misfit dislocation107.
ReaxFF potential: The ReaxFF93 is a bond-order-based force

field, which allows formation and breaking of bonds. It has a
general form of

Esystem ¼ Ebond þ Eover þ Eunder þ Elp þ Eval þ Etor þ EvdW þ ECoulomb;

(14)

where the energy terms on the right-hand side in the order of
appearance are bond, over-coordination penalty, under-
coordination stability, lone pair, valence, torsion, non-bonded
vdW interactions, and Coulomb energies, respectively. The bond-
order parameter determines the bonded interactions between the

Table 5. List of ɛ (eV) values of the LJ interactions for different substrates.

Si O C Al B N

Mo 0.00562206 0.004206 0.003325207 0.00585208 0.00155209 0.00208209

W 0.00835209 0.006035209 0.003862209 0.00478209 0.00406209 0.00543209

S 0.00562206 0.00884206 0.00750212 0.00889209 0.00755209 0.007762212

Se 0.86213 0.0114209,214,215 0.00758207 0.00905209,214,216 0.00767209 0.01033209

Te 1.01213 0.0114209,215,217 0.03104209 0.0327209 0.00766209 0.0334209

Nb 0.05115209 0.037209 0.023651209 0.0293209 0.0248209 0.03325209
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atoms in the system,

BO0
ij ¼ BOσ

ij þ BOπ
ij þ BOππ

ij

¼ exp pbo1
rij
rσo

� �pbo2h i
þ exp pbo3

rij
rπo

� �pbo4h i
þ exp pbo5

rij
rππo

� �pbo6h i
;

(15)

where BOσ
ij ; BO

π
ij ; and BOππ

ij are the partial contributions of
associated σ, π, and ππ bonds between the i and j atoms; rij is
the distance between the i and j atoms; rσo , r

π
o , and rππo are the

associated bond radii; and pbo are empirical constants that will be
determined from ab-initio simulations or experiments. The energy
terms in Eq. (14) are then formulated as a function of the bond-
order parameter (see ref. 93 for details).
ReaxFF studies on 2D materials were initiated from studies of

various aspects of graphene108 and inspired investigations for a
number of other 2D materials, which are elaborated below.
Graphene—Effect of the environment’s chemistry on properties

and responses of graphene has been investigated using ReaxFF.
For example, effect of oxygen on the mechanical response of
graphene109, effect of the addition of fluorine and hydrogen110 on
the structural quality of graphene, as well as the Ni-catalyzed
growth process of single-layer graphene111, are investigated. The
growth mechanism involves atomic deposition and segregation of

C atoms on the Ni substrate, forming dome-like carbon nanotube
cap and polygonal ring patterns via atoms→chains→graphene-
like layer formation (Fig. 1a). The ReaxFF has also been applied to
study reactive events at the graphene–water interface (Fig. 1b)112

and selective desalination via the bare and hydrogenated
graphene nanopore113.
Silicene and phosphorene—Silicene and black phosphorene

(BP) are the silicon and phosphorus analogs of graphene,
respectively. A favorable route for silicene formation has been
proposed by employing the graphene bilayer as a template (Fig.
1c)114. It was found that vacancy defects reduce the thermal
stability of silicene, where the critical temperature reduces by
more than 30%115. A P/H parameter set has been developed for
monolayer BP114 to examine the mechanical, thermal, and
chemical stability of both pristine and defective BP.
Molybdenum disulfide—The ReaxFF potential for 2D MoS2

systems was introduced in ref. 6. This potential could precisely
calculate the formation energy of ripplocations in MoS2 (Fig.
1d)116, which result from the slippage of the upper layer against
the lower layer to relax the strain without breaking covalent
bonds. This potential was also trained over the vacancy formation
energies, diffusion barriers, bending rigidity, and kinetics. It has

Fig. 1 Application of the ReaxFF method to various 2D materials. a Ni-catalyzed growth of single-layer graphene on a Ni(100) surface using
MD/UFMC simulations. [Adapted from ref. 111 with permission from The Royal Society of Chemistry]. b Water-mediated proton transfer
through O/OH-terminated vacancy defects on a graphene layer. [Adapted from ref. 112 under Creative Commons Attribution 4.0 International
License]. c Formation of silicene between graphene bilayers. [Reprinted figure with permission from ref. 114. Copyright (2019) American
Chemical Society]. d Atomic structures of ripplocations with different numbers of extra units added on top MoS2 layer. [Adapted with
permission from ref. 116. Copyright (2019) American Chemical Society]. e Histograms corresponding to averaged interlayer distance without
and with K+ ions [Reprinted from ref. 121. Copyright (2019), with permission from Elsevier].
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also been applied to design S vacancy defects on MoS2 surface
117.

Reactive MD simulations have also been used to model the
synthesis of MoS2 layers via sulfidation of MoO3 surfaces7. These
simulations identified a three-step reaction pathway as follows: (i)
evolution of O2 and reduction of MoO3 surface; (ii) S2-assisted
reduction and formation of SO/SO2; and (iii) sulfidation of the
surface via Mo-S bond formation. The ReaxFF MD simulations have
also been employed within a multiscale framework to capture
thermal properties of MoS2

118. The predicted thermal conductivity
of MoS2 structures with infinite length (37 ± 3W/mK) falls within
the range of experimental results (34.5–110W/mK)119.
MXenes—MD simulations with ReaxFF of MXenes revealed that

intercalating with potassium cations drastically improves water
stability and homogeneity of MXenes, and reduce the self-
diffusion coefficient of water by two orders of magnitude120.
The dynamical response of MXenes with different surface
terminations to intercalating ions was studied with DFT calcula-
tions and ReaxFF MD simulations121. Figure 1e compares the
interlayer distance of Ti3C2(OH)2 MXene bilayer with and without
K+ ions. Influence of metal ions intercalation on vibrational
properties of water molecules trapped between MXene layers was
studied using ReaxFF MD simulations122. Widening of the
interlayer gap may enable the penetration of molecular reactants
such as urea, which decomposes readily and leads to the
intercalation of ammonium cations123. ReaxFF simulations were
performed for defect formation and homoepitaxial growth of TiC
layer on Ti3C2 MXene structures124.
REBO/AIREBO potentials: The REBO potential ðEREBOij Þ is a

combination of attractive ðVA
ij Þ and repulsive ðVR

ij Þ interactions
with certain ratio (bij), EREBOij ¼ VR

ij þ bijVA
ij . The bond-order interac-

tion ratio, bij, is dependent on the local coordination in the atomic
environment. The REBO potential can define the conjugation of
bonds using bij, and therefore the potential has been widely used
for modeling hydrocarbon systems125. The repulsive term is
expressed by the Brenner equation90,

VR
ij ¼ wij rij

� �
1þ Qij

rij

� 	
Aije

�αij rij : (16)

Here, the Qij, rij, and αij parameters depend on i and j. The bond
weighting parameter wij(rij) depends on switching function S(t) as

wij rij
� � ¼ S tc rij

� �� �
; (17)

S tð Þ ¼ Θ �tð Þ þ Θ tð ÞΘ 1� tð Þ0:5 1þ cos πtð Þ½ �; (18)

tc rij
� � ¼ rij � rmin

ij

rmax
ij � rmin

ij

: (19)

The attractive interaction is expressed as

VA
ij ¼ �wij rij

� �X3
n¼1

BðnÞij eB
ðnÞ
ij rij ; (20)

the bond-order interaction ratio bij is

bij ¼ 1
2

pσπij þ pσπji
h i

þ πrcij þ πdhij : (21)

Here, pσπij and pσπji are not necessarily equal as they depend on
the penalty function (gi) of bond angle θjik between the vector rij,
and vector rki, i.e.,

pσπij ¼ 1þ
X
k≠i;j

wikðrikÞgiðcosθjikÞeλjik þ Pij

" #�1=2

: (22)

The AIREBO potential is the modification over the REBO
potential, which also considers the torsional ðETORSIONkijl Þ and LJ

ðEljij Þ interactions. The integration of pairwise interactions in
AIREBO potential can be represented by the following equation

E ¼ 1
2

X
i

X
j≠i

EREBOij þ Eljij þ
X
k≠i;j

X
l≠i;j;k

ETORSIONkijl

" #
: (23)

The REBO potential can describe the breaking, formation, and
hybridization of covalent bonds. The REBO and AIREBO potentials
have been used to study the growth of 2D amorphous carbon,
mechanical properties of MoS2, and even thermal stabilities of C60
2D nanostructures using atomic coordination, internal stress, and
mass density analysis126. The subplantation phenomenon during
CVD, i.e., penetration of the substrate bulk carbon by carbon
atoms, can be explained by this REBO potential. REBO potential is
also suitable for modeling and analysis of TMD materials such as
MoS2. The potential results in stabilized structure and good
agreement of the structural and mechanical properties97,127,128. It
was also used for modeling the synthesis of diamane from
graphene and its stability under different conditions129.
COMB3 potential: The general formation of the COMB3

potential can be expressed as92

Utot qf g; rf g½ � ¼ Ues qf g; rf g½ � þ Ushort qf g; rf g½ � þ UvdW qf g; rf g½ � þ Ucorr qf g; frg½ �
(24)

The total potential energy consists of electrostatic energy
Ues qf g; rf g½ �ð Þ, short-range interactions Ushort qf g; rf g½ �� �

, long-
range vdW interaction UvdW qf g; rf g½ �� �

, and the correction terms.
Here, q and r represent the charge and coordinate array of the
elements. The electrostatic energies Ues qf g; rf g½ �ð Þ can be
represented as

Ues qf g; rf g½ � ¼ Uself qf g; rf g½ � þ Uqq qf g; rf g½ � þ UqZ qf g; rf g½ � þ Upolar qf g; frg½ �
(25)

The self-interaction energy Uself qf g; rf g½ �� �
consists of field-

effect and ionization energy, or the affinity energy. Charge-to-
charge interaction Uqq q1sf g; rf g½ �ð Þ is associated with the charge
density distribution functions. Nuclear-charge interaction
UqZ qf g; rf g½ � depends on the coulombic interaction between
charge density distributions in the system. Polar interaction
energy Upolar qf g; frg½ � depends on the charge interactions and
dipole distributions in response to the external electric field.
The charge-dependent short-range interaction in Eq. (24) is

associated with bond distance functions of the atom and the
associated charge functions. This energy term can be expressed
by

Ushort½fqg; frg� ¼
X
i

X
j>i

Vbond
ij ¼

X
i

X
j>i

fFcðrijÞ½VRðrij; qi; qjÞ� � bijV
Aðrij; qi; qjÞg

(26)

Here, Vbond
ij is the bond energy that is associated with pairwise

attraction VAðrij; qi; qjÞ
� �

and pairwise repulsion energy
ðVRðrij; qi; qjÞÞ. They exponentially decrease with the interatomic
distance rij. Fc(rij) is the cutoff function.
The long-range interaction energy is defined by the vdW

interaction, which can be expressed by the LJ interaction
formula130

Us qf g; rf g½ � ¼
X
i

XNN
j>i

4εvdWij

σvdWij

rij

 !12

� σvdW
ij

rij

 !6" #
(27)

K. Momeni et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020)    22 



Here, σvdW
ij and εvdWij are the equilibrium distance and interaction

energy, respectively; rij is the cutoff radii where the interaction
assumes zero.
The correction factor in Eq. (24) adjusts the energy penalties

associated with specified angles. It can be calculated by a sixth-
order Legendre polynomial and bond bending term.

Us qf g; rf g½ � ¼
X
i

XN
j>i

XN
k≠i

X6
n¼1

KLPn
ijk cos θijk

� �� �þ KBB
ijk cos θijk

� �� cos Kθ
ijk

� �h i2( )

(28)

Here, Kθ
ijk indicates the specific bond angles and θijk is the

bond angle.
The COMB3 potential has been introduced to study the CVD

process for various 2D materials. The charge-optimized COMB3
potentials have been used to simulate the experimental CVD
deposition and growth of graphene on metal substrates.
Especially, the introduction of dihedral interaction terms in the
COMB3 potential can capture the delocalized bonding and bond
bending during the CVD process on a particular substrate. The
wrinkle formation due to the size mismatch of graphene and
Cu-substrate has been studied using COMB3 potential, which was
comparable to experimental results98. This potential was also used
to understand the role of growth parameters such as absorption
energy, migration barrier, and temperature in the Cu deposition
on ZnO substrate131. COMB3 potential has also been used to
investigate the effect of surface hydroxylation of amorphous SiO2

substrate on heat conduction of supported graphene132.

MESOSCALE SIMULATIONS
Phase-field model
At mesoscale, a simple and effective model for 2D materials
growth is the classical Burton-Cabrera-Frank (BCF) theory133,
where the island growth is realized by the deposition of adatoms
from the supersaturated gas atmosphere and the incorporation of
diffusing atoms at the step edge. The direct numerical imple-
mentation of the BCF model requires tracking the evolving step
edges and applying the boundary conditions due to the sharp-
interface nature of the model; in contrast, phase-field diffuse-
interface models134 avoid the explicit tracking of the interfaces.
The BCF-based phase-field models have been developed since

the 1990s for a series of problems related to crystal growth,
including collective step motions in a 1-D step train135, spiral
surface growth during thin-film epitaxy136, and step flow under
different kinetic regimes137. More recently, the combined effects
of edge diffusion, the Ehrlich-Schwoebel barrier, deposition, and
desorption for epitaxial growth have been investigated in 2-D138.
Based on these studies, Meca et al.139,140 applied the model to the
growth of 2D materials with anisotropic diffusion on substrates,
using the epitaxial graphene growth on copper foil during CVD as
an example, with experimental validations. The typical BCF-based
phase-field model for 2D materials growth uses a smoothly
varying order parameter ϕ to distinguish the phases, e.g., ϕ= 1 in
the 2D island, ϕ=−1 in the substrate, and −1 < ϕ < 1 at step
edges. The free energy functional F of the system has the general
form of:

F ¼
Z
V

ðf ðϕÞ � λ u gðϕÞ þ 1
2
WðθÞ2j∇ϕj2ÞdV (29)

where the first term f(ϕ) is a double-well (or multi-well, e.g., see
refs. 136,141) function with global minima at ϕ= 1 and ϕ=−1; the
second term describes the coupling with the reduced saturation
field u, with g(ϕ) an interpolation function and λ the coupling
coefficient; the third term is the gradient energy due to the
inhomogeneous distribution of ϕ at interfaces, where W(θ) is the

angle-dependent interface thickness with θ ¼ arctanðϕy=ϕxÞ. u
can be directly related to the adatom concentration c through
u ¼ Ωðc � c0eqÞ, where c0eq is the equilibrium concentration for a
flat interface and Ω is the atomic area of the solid phase. The
evolution of ϕ is governed by

τϕ
∂ϕ
∂t ¼ � δF

δϕ ¼ �f 0ðϕÞ þ λug0ðϕÞ þ ∇ � WðθÞ2∇ϕ
� �

� ∂x WðθÞ �W 0ðθÞ � ∂yϕ
� �þ ∂y WðθÞ �W 0ðθÞ � ∂xϕð Þ;

(30)

where τϕ is the characteristic time. The evolution of the saturation
field u is governed by

∂u
∂t

¼ D∇2uþ Fd � u
τs
� 1
2
∂ϕ

∂t
(31)

where D is the diffusion coefficient, Fd is the effective deposition
rate, and τs is the characteristic time scale for atom desorption.
The phase-field equations (Eqs. (30) and (31)) can recover the
sharp-interface BCF model in the limit of W(θ)→ 0140.
The applications of the phase-field models in 2D materials

growth can be categorized into the following three aspects. (1)
Reproducing and explaining experimentally observed growth
morphologies. Examples include the reconstruction of the spiral
growth of SnSe2

141, the verification of impurity-induced bilayered
graphene growth142, and the explanation to island shape change
from quasi-hexagons to triangles and dendrite-like morpholo-
gies143. (2) Investigating the effect of experimental parameters on
growth morphologies. Taking the CVD growth of graphene as an
example, the effects of flux of carbon species144, deposition
rates145, and equilibrium saturation145, and substrate orienta-
tion139 on graphene island morphologies have been investigated
using phase-field simulations, which could provide useful
guidance to the experimental control of the growth qualities. (3)
Further development of the model to include the effect of
additional physical/chemical processes during growth. In addition
to the deposition, edge diffusion, and edge anisotropies, phase-
field simulations have been extended to model multi-island
interactions146, tilt GB topology of 2D materials on substrates with
topological cones147, and to include the chemical reaction kinetics
in the gas phase using a microkinetic model148. These works
improve the fidelity and applicable range of the phase-field model
for 2D materials growth.
Nevertheless, a primary obstacle to applying phase-field models

for computational synthesis of 2D materials is the lack of
connection between the model parameters and the experimen-
tally controllable CVD processing parameters, which is largely due
to the difference in size scales of interest. Most of the existing
phase-field simulations only focus on the growth of a few 2D
islands (up to micrometer scale), which can hardly represent the
effect of the macroscopic CVD parameters. One possible solution
is to enable the “multiscale” modeling approach8, integrating the
FEM (see the section on “Macroscale models”) to account for the
effect of macroscopic CVD parameters on transport phenomena
and the mesoscale phase-field model for 2D crystal growth within
selected zones of the whole substrate. In particular, the steady-
state velocity, concentration, and temperature profiles from FEM
can be incorporated in the phase-field model, as it has been
proposed and applied by Momeni et al.8 (see Fig. 2). The
incorporation of chemical reaction kinetics in the phase-field
model can improve the accuracy of the predictions and expand its
applicability. Phase-field models have also been applied to phase
changes in 2D materials. Notable examples include the multi-
domain microstructure during H-T’ structure transformation in
MoTe2 and the domain switching behaviors under external
stimuli149. A fast Fourier transform algorithm has been imple-
mented to study the domain switching during bending of MoTe2
(see Fig. 3149).
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Phase-field-crystal model
Different from the continuous mesoscale phase-field approach,
the phase-field-crystal (PFC) approach150 describes the thermo-
dynamics and dynamics of phase transformations through an
atomically varying order parameter related to the atomic density
field. With the application of the classical dynamic DFT, PFC can
capture the atomistic-scale morphology and evolution dynamics,
within diffusional time scales, which is usually challenging for
conventional atomistic methods. Recently, PFC has been actively
applied to investigate the defect formation and the atomic
structure of interfaces, GBs, and triple junctions during the growth
of 2D materials151. The unique GB structure and collective domain
dynamics in binary 2D materials, e.g., h-BN, was investigated
(see Fig. 4152).
Compared with the continuous phase-field approach, the

advantage of PFC lies in resolving atomistic-scale interface
structures and growth dynamics of 2D islands; however, due to
the limitation of simulation size, interface dynamics under the
effect of realistic CVD parameters are difficult to realize. Future
directions of PFC simulations for 2D materials growth include

the consideration of atomistic-scale island-substrate interactions
and the integration with the larger-scale phase-field or FEM
simulations.

Kinetic Monte Carlo
KMC is another mesoscale technique for predicting the growth
morphology and kinetic mechanisms of 2D materials, where all
possible kinetic events are listed in an event catalog, and their
stochastic sequence are randomly selected based on their
activation energies153. Activation energies of the related kinetic
processes are usually obtained from atomistic-scale calculations.
KMC identifies the governing kinetic pathways and simulates the
kinetic process. Details of its implementation can be found in
ref. 154.
KMC has been extensively applied to simulate the growth of

graphene, e.g., the evolution of vacancy complexes and formation
of vacancy chains155, the formation and kinetic effect of multi-
member carbon ring complexes156, etching of graphene GBs due to
oxygen migration and reaction157, and GB evolution following the
Stone-Wales mechanism158. Growth of nanoscale graphene islands

Fig. 2 A coupled macroscale/phase-field simulation and experimental comparison for MoS2. a Initial precursor concentration distribution
from FEM. b Phase-field simulation results for MoS2 morphology on substrate at t= 0.25 h, the enlarged images of i–iii boxes are shown in d–f.
c Experimental results for deposition of MoS2 after deposition for t= 0.25 h, the enlarged images of 1–3 boxes are shown in g, h. Reprinted
from ref. 8 under Creative Commons Attribution 4.0 International License. The scale bar in a, b shows 400 μm and the one in d–f shows
400 μm.
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Fig. 4 PFC simulations of the grain growth and coalescence in h-BN. a–f Grain coalescence and inversion domain dynamics. c Atomic site
number N vs. t, showing two regimes N=−0.065t+ 3.045 × 104 and N=−0.085t+ 3.612 × 104 via fitting. d, e Domain shrinking in the white
boxed region of b. f Transient of three merging heart-shaped defects before their annihilation. g–i Time evolution of collective atomic
displacements in the yellow boxed corner of d. Adapted figure with permission from ref. 152. Copyright (2017) by the American Physical Society.

Fig. 3 Variant selection and transformation morphologies in MoTe2 under an applied in-plane strain εii. a Phase diagram in εxx ; εyy
� �

space.
Colored (hatched) regions correspond to one (two) phase regions. Solid lines (analytic) and filled data points (simulations) indicate the strain at
which H and a given T′ variant have equal energies. Dashed lines and open symbols similarly represent two-phase coexistence bounds. (▲,△)
and (●, ○) correspond to simulations with and without bending, respectively, and blue circles (blue solid circle and blue open circle) represent
DFT results at 0. b–d Images of the microstructures with increasing time/strain from left to right for strain paths b–d in phase diagram a. Strain
values εxx ; εyy

� �
are given below each panel. e Corresponding maximum principal stress (GPa) maps for microstructures in d. All simulations are

for 50 μm× 50 μm simulations. Adapted with permission from ref. 149. Copyright (2017) American Chemical Society.
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from carbon monomer nuclei or pre-existing growth fronts has
been captured, showing catalytic growth behaviors159, anisotropic
morphological patterns160, temperature- and deposition-flux-rate-
dependent size and shapes161, inhomogeneous and nonlinear
growth kinetics due to lattice mismatch162, and geometry-
determined growth mechanisms163. The “coastline” graphene
morphology during sublimation164 and the step-flow growth of
epitaxial graphene have also been reported165. Based on KMC
simulations for graphene growth on Cu (111) with and without
hydrogen, the growth protocol was designed for bilayer growth
and N-doped graphene growth166.
Regarding TMDs, the KMC simulations for the growth of WSe2

monolayer on graphene have been used to develop the phase
diagram of domain morphologies as a function of flux and
precursor stoichiometry (Fig. 5)154,167. It was found that the fast
kink nucleation and propagation, rather than edge attachment and
diffusion, could lead to ultrafast growth of monolayer WSe2

168. KMC
simulations also guided CVD growth of large-scale WSe2 grains by
controlling the three-stage adsorption–diffusion–attachment
mechanisms169. KMC model is also a key component in a more
generalized mechanistic model for growth morphology predictions
of 2D materials47.
In summary, the KMC model can be a useful tool for

investigating the kinetic pathways and morphologies during the
growth of 2D materials. However, the probability-based nature of
KMC makes it most suitable for cases where atomic fluctuations
are high, i.e., the atomistic and nanoscale morphology and kinetics
of 2D materials. For larger-scale simulations, due to the
significantly increased system size and the disparate rates of
different KMC events, a full-KMC is computationally expensive. As
a compromise, multiscale KMC has been developed163; simplifica-
tions should also be made to account for the key events that are
most relevant to the large-scale kinetics163. Under such situations,
the phase-field approach could be a more efficient option.
Meanwhile, the KMC model can provide the governing kinetic
mechanisms for phase-field simulations to improve the validity
and accuracy of the simulation.

MACROSCALE MODELS
Although the growth of 2D materials occurs at the nano- and
mesoscale, it is controlled by physics and parameters that have a
macroscopic nature, e.g., heat and mass transfer, furnace

configuration, and gas-phase reactions. Thus, having a thorough
understanding of the macroscale physics and processes is
essential for controlling the growth of 2D materials and their
synthesis by design. We can classify the macroscale models of the
growth chamber into four groups: (i) experiment-based models,
where rate equations and their constants used to describe the
growth170 are determined from experiments; (ii) analytical models,
where the governing equations are simplified and solved
analytically171; (iii) adaptive models, where a set of experiments
are used to train the model172; and (iv) multiphysics models,
where the coupled system of governing equations at different
length and temporal scales are solved numerically173. Among
these methods, the last group of models have key advantages,
providing a profound understanding to the growth process,
flexibility to apply to different growth conditions, and the ability to
optimize the process.
A practical macroscale model of the growth chamber should

capture the critical governing physics, e.g., the heat and mass
transports and chemical reactions. Setting up these models
requires several key information that can be obtained from lower
scale simulations7 or experiments174. Identifying the gas-phase
reactions, we may approximate some of the reaction parameters
using classical theories, e.g., the collision rate to estimate the
chemisorption rate of species175 or the group contribution
methods to determine the diffusion coefficient176. The other
approximation is for low concentrations of reactive species, where
the change in pressure and heat of reaction can be neglected. In
the latter case, we may decouple the fluid and heat transfer of
gaseous materials from the mass transfer and kinetics. In contrast,
for high concentrations of reactive species in the gas phase, such
as in metalorganic chemical vapor deposition (MOCVD), the
coupled system of equations must be solved176. A summary of
main equations in macroscale models are presented below.

Gas flow
The Navier-Stokes equation governs the flow rates in the growth
chamber,

ρ
∂u
∂t

þ ρ u � ∇ð Þu ¼ ∇ � �pIþ μ ∇uþ ∇uð ÞT
� �h i

þ F; ρ∇ � u ¼ 0;

(32)

where u is the velocity field, p is pressure, I is the unit matrix, μ is
the dynamic viscosity, and F is the volumetric applied force, i.e.,

Fig. 5 KMC simulations of WSe2 growth. a Reaction energy diagram of the growth process based on DFT calculations167. The simulation
starts with adatoms. They react with each other to form the TMD domains. After bonded into the domain, the in-flake atoms are mobile
through edge diffusion and vacancy diffusion. Each state is defined by its state energy, and each process is defined by its transition activation
energy. Adapted from ref. 154 under Creative Commons Attribution 4.0 International License. b Domain morphology diagram on the metal
flux-C/M ratio plane at 973 K from KMC simulations. Five regions are identified: I: no growth, II: quasi-equilibrium compact domain, III: fractal,
IV: dendrite, and V: semi-compact domain. The arrows show a proposed scenario to obtain high-quality domains with high growth rate.
Adapted from ref. 167.
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weight. Furthermore, the density ρ is a function of temperature
and precursor concentration. In general, the concentration of
precursor in the gas phase is low and ρ can be assumed to be only
a function of temperature.

Heat transfer
The two main heat transfer mechanisms in the growth chamber
are convection and conduction that respectively are

Q ¼ ρCP
∂T
∂t

þ ρCPu � ∇T þ ∇ � q; q ¼ �k∇T ; (33i, ii)

where Q is the heat source, CP is the heat capacity at constant
pressure, T is the temperature, q is the heat flux vector, and k is the
thermal conductivity coefficient.

Mass transfer
Commonly, the concentration of precursor materials in the growth
chamber is negligible. Thus, the equation governing the mass
transfer can be formulated with the flow-assisted diffusion of
dilute species

R ¼ ∂c
∂t

þ ∇ � �D∇cð Þ þ u � ∇c; N ¼ �D∇c þ uc; (34i, ii)

where R is the source term for precursor, c is the precursor
concentration, D is the diffusion coefficient, and N is the flux of the
precursor. Equations (32)–(34) must be solved for a set of initial
and boundary conditions, as shown in Table 6.

Chemical reaction
Consider a set of j reactions involving i species of the form aAþ
bBþ ¼ Ð xX þ yY þ ¼ with forward and reverse reaction rate
constants kfj and krj , respectively. These reaction rates depend on
the temperature via an Arrhenius expression, e.g.,

kfj ¼ Af
j T=Trefð Þnexp �Efj =RgT

� �
. Here, Af

j denotes the frequency

factor, n the temperature exponent, Efj the activation energy, and
Rg the gas constant. According to the mass action law, the
reaction rates rj can be described as,

rj ¼ kfj
Y

i 2 react

c�vij
i � krj

Y
i 2prod

c�vij
i ; (35)

where ci is the concentration of i-th species and vij is the
stoichiometric coefficient (negative for reactants and positive for
products). The rate equations provide the information regarding
the concentration of different species, which in combination with
mass and heat balance equations form the complete system of
equations.
Macroscale models provide insight into the growth mechanisms

and flow regimes, and play a crucial role in determining proper
furnace design and growth parameters. Figure 6 shows the
application of a macroscopic model of the flow and concentration
diffusion in a vertical furnace with a side inlet to study the effect of
the gap between the susceptor and substrate. It shows that the
presence of the gap results in the formation of eddy currents close
to the substrate edge, which disturbs precursor concentration and
hinders the formation of 2D materials that is consistent with the
experimental observations. These models have been successfully
used in determining the mechanisms governing the growth of 2D
materials. For example, it was revealed that the concentration
gradient of the precursor is a critical factor in determining the
growth morphology of 2D materials, where a low concentration
gradient along the substrate leads to the formation of multigrain
2D films. In contrast, moderate planar concentration gradients
lead to isolated islands of varying morphologies, and an out-of-
plane gradient leads to the formation of standing 2D materi-
als173,177. Furthermore, macroscale models can be combined with
lower scale models to form a multiscale platform with high fidelity,
e.g., ref. 8.

MATERIALS GENOME APPROACHES
Data-driven methods have been employed to satisfy the urgent
need for theoretical development of 2D materials. The improve-
ment of computational power has resulted in extensive collections
of data and scientifically organized databases, which can be used
by methods such as data mining and machine learning, to
accelerate the computational design of new 2D materials.

Database of 2D materials
Compared with the databases of 3D bulk materials such as the
Crystallographic Open Database178, the Inorganic Crystal
Structure Database179, and the Cambridge Crystallographic
Data Centre180, the database focused on 2D materials is still
under development. Several 2D materials databases have been
attempted primarily based on a high-throughput approach
coupled with first-principles and quantum theory to address
this shortcoming. Besides, data-mining methods have also been
applied to screen those bulk materials databases and identify
possible 2D materials from 3D structures. These approaches can
provide various information about 2D materials that have been
or not been synthesized in experiments. For example, using a
criterion to identify 2D materials, a database has been
developed on the basis of experimental and DFT data181. This
database provides information including exfoliation energy,
bandgap, work function, and elastic-constant values of various
2D materials, and also predicted hundreds of new 2D materials
for the experimental synthesis. DFT and many-body perturba-
tion theory have been used to generate the Computational 2D
Materials Database (C2DB)182. The C2DB contains structural,
thermodynamic, elastic, electronic, magnetic, and optical
information of about two thousand 2D materials in more than
30 crystal structures. A few hundred new monolayer structures

Table 6. Common boundary conditions for the heat and mass transfer
in macroscale models.

Navier-Stokes

No slip on walls u= 0

Normal inflow velocitya u=−U0·n

Laminar inflowb Lent∇t � �pIþ μ ∇tuþ ∇tuð ÞT
� �h i

¼ �pentn

Mass Flowc �
Z

∂Ω

ρ

ρst
� u � nð ÞdbcdS ¼ Qsccm

Zero outlet pressure �pIþ μð∇uþ ð∇uÞTÞ � 2
3 μ ð∇ � uÞI ¼ 0

Heat transfer

Inlet −n · q= 0

Thermal insolation −n · q= 0

Inflow heat fluxd �n � q ¼ �q0
A u�nð ÞR
S
u�nj jds þ ρ hin � hextð Þu � n

Wall temperature T= T(r)

Flow-assisted diffusion

No flux at furnace walls −n ·Ni= 0

Specified
concentration

c= c0(r)

Outflow �n � Di∇ci
Inflow c= cin

an is the unit normal vector of the boundary surface.
bLent is the entrance length, and pent is the entrance pressure.
cρst ¼ PstMn

RTst
; Mn is the mean molar mass, and Tst and Pst are standard

temperature and pressure. Qsccm is the mass flow in the sccm units.
dA is the surface area and q0 is the inward heat flux.
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that were previously unknown, but potentially synthesizable
were also identified. A data-mining method has also been used
to screen the bulk materials from the open database and
identified a few hundred 2D weakly bonded solid materials183.
The band gaps and point groups that determine piezoelectric
and nonlinear optical properties in these materials were also
provided. A search in the database of bulk materials was
performed and DFT calculations were used to explore these
materials for possible exfoliation, where more than one
thousand materials have been identified14. Information includ-
ing electronic, vibrational, magnetic and topological properties
of promising materials was also provided. Similarly, the crystal
database was screened for layered motifs, and hundreds of
stable layered materials were found that can be considered
as candidates for the formation of 2D monolayers via
exfoliation184.

Machine learning method
Machine learning models trained using 2D material databases can
be parameterized, validated, and therefore used for predictive
exploration of novel 2D materials with desired properties. Machine
learning methods can also aid the understanding of the complex
correlations between structures and properties in 2D materials. A
combination of machine learning with MD simulations and in-situ
high-resolution transmission electron microscopy to explore TMDs
has been performed185, where machine learning provided
information for structural optimization and evolution of defects
to help understand the structural transition in 2D TMDs. A
practical method to explore hybrid 2D materials was developed by
coupling machine learning with DFT calculations186. The structural
and electronic properties of different hybrid 2D materials were
provided and various parameters for vdW heterostructures were
screened. A machine learning model with force-filed-inspired
descriptors in material screening for complex systems has been
introduced and used to discover exfoliated 2D-layered materi-
als187. An artificial neural network for titanium dioxide systems
was trained based on the a DFT calculated database, where a
novel quasi 2D titanium dioxide structure was revealed188.
Similarly, new 2D materials with high magnetic moments were
found using a machine learning model trained by first-principles
data189. Machine learning methods have also been used to aid the
development of force fields for classical simulations of materi-
als190. For instance, a force field for classical simulations of stanene
was developed using a machine learning method trained by data
sets from ab-initio results to calculate the mechanical and thermal
properties of stanene190. 2D materials without bulk layered
counterparts are also being discovered, using genetic

algorithms191,192 or particle swarm optimization, both using
energy-based merit criteria and additional biases towards 2D
sheets (see refs. 17,193,194).

OUTLOOK
This overview summarizes the state-of-the-art of modeling efforts
on the growth of 2D-layered materials and outlines the
advantages and limitations of computational models and meth-
ods at different length and time scales. The emphasis is on
modeling, understanding, and predicting the thermodynamics
and kinetics of 2D materials growth. The eventual goal is to
develop computational tools and techniques to realize the
“synthesis by design” of 2D materials.
An ideal computational model should not only capture

accurately the correct physics to allow robust designs but also
be computationally efficient to be employed for active control of
the growth process. The complex nature of the growth of 2D
materials requires applications of a range of models, which
operate at multiple length and temporal scales to capture the full
range of the growth phenomena from macroscale flow and
concentration profiles in the furnace to atomistic reactions leading
to formation and growth of 2D materials at mesoscale. Modeling
the full spectrum of mechanisms involved in the growth of 2D
materials is challenging due to the limitations associated with
each of the computational models at different length and
temporal scales.
A high-fidelity prediction of 2D materials growth often requires

an integration of methods applicable across different scales,
ranging from electronic and atomistic, to mesoscale phenomen-
ological, and large-scale continuum models. For example,
chemical potentials of different phases and the migration energies
of atomic species in different structural and chemical environment
from electronic and atomistic models can be employed to
parametrize mesoscale phase-field models for predicting the
morphology and thus characteristics of as-grown 2D materials
with the boundary conditions specified by the information
obtained from large-scale continuum models such as temperature
distribution in the growth chamber as presented in ref. 8.
Furthermore, technical obstacles to in-situ experimental monitor-
ing of growth hinder the validation of computational predictions.
The current mathematical and numerical models are computa-
tionally expensive and commonly do not capture simultaneously
all the physics involved in a growth process of 2D materials,
limiting their widespread adoption in active control of 2D
materials growth. One promising way to circumvent this challenge
is to use machine learning models trained using experimental and

Fig. 6 Macroscale model of the flow and precursor concentration in a vertical MOCVD furnace. a Snapshots of the concentration profile
within the growth chamber with a heated susceptor where the precursor enters from top left side of the furnace. It indicates the effect of
buoyancy forces on inducing instabilities and back flow formation. b, c Magnified views of the flow and concentration profiles close to the
susceptor/substrate. Eddy current forms when there is a gap between the susceptor and substrate which hinders formation of 2D materials.
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computational databases of the 2D materials structure and growth
conditions such as the ones available at the 2D Crystal
Consortium–Materials Innovation Platform. Finally, the models
and approaches applied in understanding the growth of 2D
materials can be adapted to the growth of other materials that use
the same synthesis techniques, e.g., CVD growth of thin films.
As a future perspective, we can envision two main strategies for

the development of computational models and their applications
to the design and synthesis of 2D materials, which are long-term
challenging goals of the field. First is the open-loop design
approach, where the growth chamber design and synthesis
conditions are determined by performing a series of simulations
mimicking the thermophysical conditions and reaction and
growth kinetics that would be expected in experiments. In this
approach, the models must have high fidelity and a comprehen-
sive sensitivity analysis should be performed to obtain a robust
design. The second approach is the closed-loop design that the
developed models will be utilized to determine the states of the
system to be passed to a controller which adjusts the growth
conditions in real-time. In this approach, the computational
efficiency of the models is key to the success of the design.

DATA AVAILABILITY
All data that was obtained during this project are available from the authors.

Received: 2 May 2019; Accepted: 13 February 2020;

REFERENCES
1. Henini, M. Principles of electronic materials and devices (second edition).

Microelectron. J. 33, 681 (2002).
2. Yi, M. & Shen, Z. A review on mechanical exfoliation for the scalable production

of graphene. J. Mater. Chem. A 3, 11700–11715 (2015).
3. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation

of layered materials. Science 331, 568–571 (2011).
4. Lim, Y. R. et al. Roll-to-roll production of layer-controlled molybdenum disulfide:

a platform for 2D semiconductor-based industrial applications. Adv. Mater. 30,
1705270 (2018).

5. McKee, G. S. B. & Vecchio, K. S. Thermogravimetric analysis of synthesis variation
effects on CVD generated multiwalled carbon nanotubes. J. Phys. Chem. B 110,
1179–1186 (2006).

6. Ostadhossein, A. et al. ReaxFF reactive force-field study of molybdenum dis-
ulfide (MoS2). J. Phys. Chem. Lett. 8, 631–640 (2017).

7. Hong, S. et al. Computational synthesis of MoS layers by reactive molecular
dynamics simulations: initial sulfidation of MoO surfaces. Nano Lett. 17,
4866–4872 (2017).

8. Momeni, K., Ji, Y., Zhang, K., Robinson, J. A. & Chen, L.-Q. Multiscale Framew.
Simul.-Guide. growth 2D Mater. npj 2D Mater. Appl. 2, 27 (2018).

9. Zhang, X. et al. Defect-controlled nucleation and orientation of WSe2 on hBN:
a route to single-crystal epitaxial monolayers. ACS Nano 13, 3341–3352
(2019).

10. Chen, W., Gui, X., Yang, L., Zhu, H. & Tang, Z. Wrinkling of two-dimensional
materials: methods, properties and applications. Nanoscale Horiz. 4, 291–320
(2019).

11. Momeni, K. & Levitas, V. I. Propagating phase interface with intermediate
interfacial phase: phase field approach. Phys. Rev. B 89 (2014).

12. Mehdipour, H. & Ostrikov, K. Kinetics of low-pressure, low-temperature gra-
phene growth: toward single-layer, single-crystalline structure. ACS Nano 6,
10276–10286 (2012).

13. Jiang, J.-W., Wang, B.-S., Wang, J.-S. & Park, H. S. A review on the flexural mode of
graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity
and nanomechanical resonance. J. Phys. Condens. Matter 27, 83001 (2015).

14. Mounet, N. et al. Two-dimensional materials from high-throughput computa-
tional exfoliation of experimentally known compounds. Nat. Nanotechnol. 13,
246–252 (2018).

15. Zhuang, H. L. & Hennig, R. G. Stability and magnetism of strongly correlated
single-layer VS2. Phys. Rev. B 93, 54429 (2016).

16. Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of
density functional theory. Science 321, 792–794 (2008).

17. Paul, J. T. et al. Computational methods for 2D materials: discovery, property
characterization, and application design. J. Phys. Condens. Matter 29, 473001
(2017).

18. Sun, Y. et al. Low-temperature solution synthesis of few-layer 1T′-MoTe2
nanostructures exhibiting lattice compression. Angew. Chem. Int. Ed. 55,
2830–2834 (2016).

19. Kretschmer, S., Komsa, H.-P., Bøggild, P. & Krasheninnikov, A. V. Structural
transformations in two-dimensional transition-metal dichalcogenide MoS2
under an electron beam: insights from first-principles calculations. J. Phys. Chem.
Lett. 8, 3061–3067 (2017).

20. Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-
dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214
(2014).

21. Gan, L.-Y., Zhang, Q., Zhao, Y.-J., Cheng, Y. & Schwingenschlögl, U. Order-
disorder phase transitions in the two-dimensional semiconducting transition
metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te). Sci. Rep. 4, 6691
(2015).

22. Komsa, H.-P. & Krasheninnikov, A. V. Two-dimensional transition metal dichal-
cogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3,
3652–3656 (2012).

23. Dumcenco, D. O., Kobayashi, H., Liu, Z., Huang, Y.-S. & Suenaga, K. Visualization
and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers.
Nat. Commun. 4, 1351 (2013).

24. Azizi, A. et al. Spontaneous formation of atomically thin stripes in transition
metal dichalcogenide monolayers. Nano Lett. 16, 6982–6987 (2016).

25. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94
elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

26. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions
from ground-state electron density and free-atom reference data. Phys. Rev. Lett.
102, 73005 (2009).

27. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der
Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401
(2004).

28. He, J., Hummer, K. & Franchini, C. Stacking effects on the electronic and optical
properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and
WSe2. Phys. Rev. B 89, 75409 (2014).

29. Dreyer, C. E., Janotti, A. & Van de Walle, C. G. Absolute surface energies of polar
and nonpolar planes of GaN. Phys. Rev. B 89, 81305 (2014).

30. Mathew, K. et al. MPInterfaces: A Materials Project based Python tool for high-
throughput computational screening of interfacial systems. Comput. Mater. Sci.
122, 183–190 (2016).

31. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic
band method for finding saddle points and minimum energy paths. J. Chem.
Phys. 113, 9901–9904 (2000).

32. Eichfeld, S. M., Colon, V. O., Nie, Y., Cho, K. & Robinson, J. A. Controlling
nucleation of monolayer WSe2 during metal-organic chemical vapor deposition
growth. 2D Mater. 3, 25015 (2016).

33. Tuckerman, M. E. Statistical mechanics: theory and molecular simulation (Oxford
Univ. Press, 2010).

34. Bucko, T. Ab initio calculations of free-energy reaction barriers. J. Phys. Condens.
Matter 20, 64211 (2008).

35. Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding
minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

36. Misawa, M. et al. Reactivity of sulfur molecules on MoO3 (010) surface. J. Phys.
Chem. Lett. 8, 6206–6210 (2017).

37. Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo
free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

38. Sun, H. et al. Theory of thin-film-mediated exfoliation of van der Waals bonded
layered materials. Phys. Rev. Mater. 2, 94004 (2018).

39. van Erp, T. S. & Bolhuis, P. G. Elaborating transition interface sampling methods.
J. Comput. Phys. 205, 157–181 (2005).

40. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA
99, 12562–12566 (2002).

41. Darve, E. & Pohorille, A. Calculating free energies using average force. J. Chem.
Phys. 115, 9169–9183 (2001).

42. Kaminski, J. W., Kratzer, P. & Ratsch, C. Towards a standardized setup for surface
energy calculations. Phys. Rev. B 95, 85408 (2017).

43. Liu, Y., Bhowmick, S. & Yakobson, B. I. BN white graphene with ‘colorful’ edges:
the energies and morphology. Nano Lett. 11, 3113–3116 (2011).

44. Chetty, N. & Martin, R. M. First-principles energy density and its applications to
selected polar surfaces. Phys. Rev. B 45, 6074–6088 (1992).

K. Momeni et al.

14

npj Computational Materials (2020)    22 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



45. Artyukhov, V. I., Liu, Y. & Yakobson, B. I. Equilibrium at the edge and atomistic
mechanisms of graphene growth. Proc. Natl Acad. Sci. USA 109, 15136–15140
(2012).

46. Li, X. et al. Edge-controlled growth and etching of two-dimensional GaSe
monolayers. J. Am. Chem. Soc. 139, 482–491 (2017).

47. Rajan, A. G., Warner, J. H., Blankschtein, D. & Strano, M. S. Generalized
mechanistic model for the chemical vapor deposition of 2D transition metal
dichalcogenide monolayers. ACS Nano 10, 4330–4344 (2016).

48. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev.
Mod. Phys. 86, 253–305 (2014).

49. Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related
species. Chem. Phys. Lett. 128, 501–503 (1986).

50. Komsa, H. P., Berseneva, N., Krasheninnikov, A. V. & Nieminen, R. M. Charged
point defects in the flatland: Accurate formation energy calculations in twodi-
mensional materials. Phys. Rev. X 4, 31044 (2014).

51. Rao, R. et al. Dynamics of cleaning, passivating and doping monolayer MoS2 by
controlled laser irradiation. 2D Mater. 6, 45031 (2019).

52. Rastogi, P., Kumar, S., Bhowmick, S., Agarwal, A. & Chauhan, Y. S. Doping stra-
tegies for monolayer MoS2 via surface adsorption: a systematic study. J. Phys.
Chem. C. 118, 30309–30314 (2014).

53. Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & Van de Walle, C. G.
Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97,
214104 (2018).

54. Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater.
16, 964–967 (2017).

55. Zhang, F. et al. Full orientation control of epitaxial MoS2 on hBN assisted by
substrate defects. Phys. Rev. B 99, 155430 (2019).

56. Lee, G.-D. et al. Diffusion, coalescence, and reconstruction of vacancy defects in
graphene layers. Phys. Rev. Lett. 95, 205501 (2005).

57. Kotakoski, J., Krasheninnikov, A. V. & Nordlund, K. Energetics, structure, and
long-range interaction of vacancy-type defects in carbon nanotubes: atomistic
simulations. Phys. Rev. B 74, 245420 (2006).

58. Momeni, K., Attariani, H. & Lesar, R. A. Structural transformation in monolayer
materials: A 2D to 1D transformation. Phys. Chem. Chem. Phys. 18, 19873–19879
(2016).

59. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide.
Nano Lett. 13, 2615–2622 (2013).

60. Zou, X., Liu, Y. & Yakobson, B. I. Predicting dislocations and grain boundaries in
two-dimensional metal-disulfides from the first principles. Nano Lett. 13,
253–258 (2013).

61. Xu, F., Yu, H., Sadrzadeh, A. & Yakobson, B. I. Riemann surfaces of carbon as
graphene nanosolenoids. Nano Lett. 16, 34–39 (2016).

62. Yu, Z. G., Zhang, Y.-W. & Yakobson, B. I. An anomalous formation pathway for
dislocation-sulfur vacancy complexes in polycrystalline monolayer MoS2. Nano
Lett. 15, 6855–6861 (2015).

63. Sha, Z. D. et al. Inverse pseudo Hall-Petch relation in polycrystalline graphene.
Sci. Rep. 4, 5991 (2014).

64. Grantab, R., Shenoy, V. B. & Ruoff, R. S. Anomalous strength characteristics of tilt
grain boundaries in graphene. Science 330, 946–948 (2010).

65. Zhang, Z., Yang, Y., Xu, F., Wang, L. & Yakobson, B. I. Unraveling the sinuous
grain boundaries in graphene. Adv. Funct. Mater. 25, 367–373 (2015).

66. Liu, Y., Xu, F., Zhang, Z., Penev, E. S. & Yakobson, B. I. Two-dimensional mono-
elemental semiconductor with electronically inactive defects: the case of
phosphorus. Nano Lett. 14, 6782–6786 (2014).

67. Jones, J. E. On the determination of molecular fields. II. From the equation of
state of a gas. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 106, 463–477 (1924).

68. Wen, M., Carr, S., Fang, S., Kaxiras, E. & Tadmor, E. B. Dihedral-angle-corrected
registry-dependent interlayer potential for multilayer graphene structures. Phys.
Rev. B 98, 235404 (2018).

69. Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for
graphitic systems. Phys. Rev. B 71, 235415 (2005).

70. Naik, M. H., Maity, I., Maiti, P. K. & Jain, M. Kolmogorov–Crespi potential for-
multilayer transition-metal dichalcogenides: capturing structural transforma-
tions in Moire ́ superlattices. J. Phys. Chem. C. 123, 9770–9778 (2019).

71. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full
periodic table force field for molecular mechanics and molecular dynamics
simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

72. Stillinger, F. H. & Weber, T. A. Computer simulation of local order in condensed
phases of silicon. Phys. Rev. B 31, 5262–5271 (1985).

73. Jiang, J.-W. Parametrization of Stillinger–Weber potential based on valence force
field model: application to single-layer MoS2 and black phosphorus. Nano-
technology 26, 315706 (2015).

74. Jiang, J.-W., Park, H. S. & Rabczuk, T. Molecular dynamics simulations of single-layer
molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical
properties, and thermal conductivity. J. Appl. Phys. 114, 64307–64311 (2013).

75. Jiang, J.-W., Qi, Z., Park, H. S. & Rabczuk, T. Elastic bending modulus of single-
layer molybdenum disulfide (MoS2): finite thickness effect. Nanotechnology 24,
435705 (2013).

76. Yapicioglu, H., Kandemir, A., Sevik, C., Çağın, T. & Kinaci, A. Thermal transport
properties of MoS2 and MoSe2 monolayers. Nanotechnology 27, 55703
(2016).

77. Norouzzadeh, P. & Singh, D. J. Thermal conductivity of single-layer WSe2 by a
Stillinger–Weber potential. Nanotechnology 28, 75708 (2017).

78. Jiang, J.-W., Rabczuk, T. & Park, H. S. A Stillinger–Weber potential for single-
layered black phosphorus, and the importance of cross-pucker interactions for a
negative Poisson’s ratio and edge stress-induced bending. Nanoscale 7,
6059–6068 (2015).

79. Xu, W., Zhu, L., Cai, Y., Zhang, G. & Li, B. Direction dependent thermal con-
ductivity of monolayer phosphorene: parameterization of Stillinger-Weber
potential and molecular dynamics study. J. Appl. Phys. 117, 214308 (2015).

80. Jiang, J.-W. & Zhou, Y.-P. In Parameterization of Stillinger-Weber Potential for Two-
Dimensional Atomic Crystal Chapter 1 (IntechOpen, 2017). https://doi.org/
10.5772/intechopen.71929.

81. Allinger, N. L., Yuh, Y. H. & Lii, J. H. Molecular mechanics. The MM3 force field for
hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989).

82. Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase
applications overview with details on alkane and benzene compounds. J. Phys.
Chem. B 102, 7338–7364 (1998).

83. Keating, P. N. Effect of invariance requirements on the elastic strain energy of
crystals with application to the diamond structure. Phys. Rev. 145, 637–645
(1966).

84. Allinger, N. L. Calculation of molecular structure and energy by force-field
methods. Adv. Phys Org. Chem. 13, 1–82 (1976).

85. Allinger, N. L. Conformational analysis. 130. MM2. A hydrocarbon force field
utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977).

86. Allinger, N. L., Chen, K., Katzenellenbogen, J. A., Wilson, S. R. & Anstead, G. M.
Hyperconjugative effects on carbon—carbon bond lengths in molecular
mechanics (MM4). J. Comput. Chem. 17, 747–755 (1996).

87. Tu, Z. & Ou-Yang, Z. Single-walled and multiwalled carbon nanotubes viewed as
elastic tubes with the effective Young’s moduli dependent on layer number.
Phys. Rev. B 65, 233407 (2002).

88. Chang, T. & Gao, H. Size-dependent elastic properties of a single-walled carbon
nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074
(2003).

89. Tersoff, J. Empirical interatomic potential for carbon, with applications to
amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988).

90. Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO)
potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14,
783–802 (2002).

91. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons
with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000).

92. Liang, T., Devine, B., Phillpot, S. R. & Sinnott, S. B. Variable charge reactive
potential for hydrocarbons to simulate organic-copper interactions. J. Phys.
Chem. A 116, 7976–7991 (2012).

93. Van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive
force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

94. Liang, T. et al. Reactive potentials for advanced atomistic simulations. Annu. Rev.
Mater. Res. 43, 109–129 (2013).

95. Fonseca, A. F. et al. Graphene–titanium interfaces from molecular dynamics
simulations. ACS Appl. Mater. Interfaces 9, 33288–33297 (2017).

96. Mortazavi, B., Pereira, L. F. C., Jiang, J.-W. & Rabczuk, T. Modelling heat con-
duction in polycrystalline hexagonal boron-nitride films. Sci. Rep. 5, 13228
(2015).

97. Mukhopadhyay, T., Mahata, A., Adhikari, S. & Asle Zaeem, M. Probing the shear
modulus of two-dimensional multiplanar nanostructures and heterostructures.
Nanoscale 10, 5280–5294 (2018).

98. Klaver, T. P. C., Zhu, S.-E., Sluiter, M. H. F. & Janssen, G. C. A. M. Molecular
dynamics simulation of graphene on Cu (100) and (111) surfaces. Carbon N. Y.
82, 538–547 (2015).

99. Hong, S. et al. Chemical vapor deposition synthesis of MoS2 layers from the
direct sulfidation of MoO3 surfaces using reactive molecular dynamics simula-
tions. J. Phys. Chem. C. 122, 7494–7503 (2018).

100. Tersoff, J. New empirical model for the structural properties of silicon. Phys. Rev.
Lett. 56, 632–635 (1986).

101. Tersoff, J. New empirical approach for the structure and energy of covalent
systems. Phys. Rev. B 37, 6991–7000 (1988).

102. Jiang, J.-W. & Wang, J.-S. Manipulation of heat current by the interface between
graphene and white graphene. Europhys. Lett. 96, 16003 (2011).

103. Mahdizadeh, S. J. & Akhlamadi, G. Optimized Tersoff empirical potential for
germanene. J. Mol. Graph. Model. 72, 1–5 (2017).

K. Momeni et al.

15

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020)    22 

https://doi.org/10.5772/intechopen.71929
https://doi.org/10.5772/intechopen.71929


104. Tersoff, J. Modeling solid-state chemistry: interatomic potentials for multi-
component systems. Phys. Rev. B 39, 5566–5568 (1989).

105. Jiang, J.-W. & Wang, J.-S. Theoretical study of thermal conductivity in single-
walled boron nitride nanotubes. Phys. Rev. B 84, 85439 (2011).

106. Liu, B. et al. Thermal conductivity of silicene nanosheets and the effect of
isotopic doping. J. Phys. D. Appl. Phys. 47, 165301 (2014).

107. McGuigan, B. C., Pochet, P. & Johnson, H. T. Critical thickness for interface misfit
dislocation formation in two-dimensional materials. Phys. Rev. B 93, 214103
(2016).

108. Raju, M., van Duin, A. & Ihme, M. Phase transitions of ordered ice in graphene
nanocapillaries and carbon nanotubes. Sci. Rep. 8, 3851 (2018).

109. Huang, X., Yang, H., van Duin, A. C. T., Hsia, K. J. & Zhang, S. Chemomechanics
control of tearing paths in graphene. Phys. Rev. B 85, 195453 (2012).

110. Paupitz, R. et al. Graphene to fluorographene and fluorographane: a theoretical
study. Nanotechnology 24, 35706 (2012).

111. Neyts, E. C., van Duin, A. C. T. & Bogaerts, A. Formation of single layer graphene
on nickel under far-from-equilibrium high flux conditions. Nanoscale 5,
7250–7255 (2013).

112. Achtyl, J. L. et al. Aqueous proton transfer across single-layer graphene. Nat.
Commun. 6, 6539 (2015).

113. Raju, M., Govindaraju, P. B., van Duin, A. C. T. & Ihme, M. Atomistic and con-
tinuum scale modeling of functionalized graphyne membranes for water
desalination. Nanoscale 10, 3969–3980 (2018).

114. Berdiyorov, G. R., Neek-Amal, M., Peeters, F. M. & van Duin, A. C. T. Stabilized
silicene within bilayer graphene: a proposal based on molecular dynamics and
density-functional tight-binding calculations. Phys. Rev. B 89, 24107 (2014).

115. Berdiyorov, G. R. & Peeters, F. M. Influence of vacancy defects on the thermal
stability of silicene: a reactive molecular dynamics study. RSC Adv. 4, 1133–1137
(2014).

116. Kushima, A., Qian, X., Zhao, P., Zhang, S. & Li, J. Ripplocations in van der Waals
layers. Nano Lett. 15, 1302–1308 (2015).

117. Yilmaz, D. E., Lotfi, R., Ashraf, C., Hong, S. & van Duin, A. C. T. Defect design of
two-dimensional MoS2 structures by using a graphene layer and potato stamp
concept. J. Phys. Chem. C. 122, 11911–11917 (2018).

118. Mortazavi, B. et al. Strong thermal transport along polycrystalline transition
metal dichalcogenides revealed by multiscale modeling for MoS2. Appl. Mater.
Today 7, 67–76 (2017).

119. Yan, R. et al. Thermal conductivity of monolayer molybdenum disulfide
obtained from temperature-dependent Raman spectroscopy. ACS Nano 8,
986–993 (2014).

120. Osti, N. C. et al. Effect of metal ion intercalation on the structure of MXene and
water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces 8, 8859–8863
(2016).

121. Berdiyorov, G. R. & Mahmoud, K. A. Effect of surface termination on ion inter-
calation selectivity of bilayer Ti3C2T2(T=F, O and OH) MXene. Appl. Surf. Sci. 416,
725–730 (2017).

122. Osti, N. C. et al. Influence of metal ions intercalation on the vibrational dynamics
of water confined between MXene layers. Phys. Rev. Mater. 1, 65406 (2017).

123. Overbury, S. H. et al. Complexity of intercalation in MXenes: destabilization of
urea by two-dimensional titanium carbide. J. Am. Chem. Soc. 140, 10305–10314
(2018).

124. Sang, X. et al. In situ atomistic insight into the growth mechanisms of single
layer 2D transition metal carbides. Nat. Commun. 9, 2266 (2018).

125. Wang, N. & Komvopoulos, K. The effect of deposition energy of energetic atoms
on the growth and structure of ultrathin amorphous carbon films studied by
molecular dynamics simulations. J. Phys. D. Appl. Phys. 47, 245303 (2014).

126. Ma, T., Hu, Y.-Z., Wang, H. & Li, X. Microstructural and stress properties of
ultrathin diamondlike carbon films during growth: Molecular dynamics simu-
lations. Phys. Rev. B 75, 35425 (2007).

127. Wang, X., Tabarraei, A. & Spearot, D. E. Fracture mechanics of monolayer
molybdenum disulfide. Nanotechnology 26, 175703 (2015).

128. Reddy, C. D., Gen Yu, Z. & Zhang, Y.-W. Two-dimensional van der Waals C60
molecular crystal. Sci. Rep. 5, 12221 (2015).

129. Paul, S. & Momeni, K. Mechanochemistry of stable diamane and atomically thin
diamond films synthesis from bi- and multilayer graphene: a computational
study. J. Phys. Chem. C. 123, 15751–15760 (2019).

130. Edward, L.-J. J. & Sydney, C. On the forces between atoms and ions. Proc. R. Soc.
A Math. Phys. Eng. Sci. 109, 584–597 (1925).

131. Cheng, Y.-T. et al. Cu cluster deposition on ZnO(101¯0): morphology and growth
mode predicted from molecular dynamics simulations. Surf. Sci. 621, 109–116
(2014).

132. Cui, L., Shi, S., Li, Z., Wei, G. & Du, X. Manipulating thermal conductance of
supported graphene via surface hydroxylation of substrates. J. Phys. Chem. C.
122, 27689–27695 (2018).

133. Burton, W. K., Cabrera, N., Frank, F. C. & Francis, M. N. The growth of crystals and
the equilibrium structure of their surfaces. Philos. Trans. R. Soc. Lond. Ser. A,
Math. Phys. Sci. 243, 299–358 (1951).

134. Steinbach, I. Phase-field model for microstructure evolution at the mesoscopic
scale. Annu. Rev. Mater. Res. 43, 89–107 (2013).

135. Liu, F. & Metiu, H. Stability and kinetics of step motion on crystal surfaces. Phys.
Rev. E 49, 2601–2616 (1994).

136. Karma, A. & Plapp, M. Spiral surface growth without desorption. Phys. Rev. Lett.
81, 4444–4447 (1998).

137. Pierre-Louis, O. Phase field models for step flow. Phys. Rev. E 68, 21604 (2003).
138. Hu, Z., Lowengrub, J. S., Wise, S. M. & Voigt, A. Phase-field modeling of epitaxial

growth: applications to step trains and island dynamics. Phys. D. Nonlinear
Phenom. 241, 77–94 (2012).

139. Meca, E., Lowengrub, J., Kim, H., Mattevi, C. & Shenoy, V. B. Epitaxial graphene
growth and shape dynamics on copper: phase-field modeling and experiments.
Nano Lett. 13, 5692–5697 (2013).

140. Meca, E., Shenoy, V. B. & Lowengrub, J. Phase-field modeling of two-dimensional
crystal growth with anisotropic diffusion. Phys. Rev. E 88, 52409 (2013).

141. Wu, J. et al. Spiral growth of SnSe2 crystals by chemical vapor deposition. Adv.
Mater. Interfaces 3, 1600383 (2016).

142. Li, J. et al. Impurity-induced formation of bilayered graphene on copper by
chemical vapor deposition. Nano Res 9, 2803–2810 (2016).

143. Zhang, K. et al. Manganese doping of monolayer MoS2: the substrate is critical.
Nano Lett. 15, 6586–6591 (2015).

144. Hao, Y. et al. The role of surface oxygen in the growth of large single-crystal
graphene on copper. Science 342, 720–723 (2013).

145. Luo, B. et al. Etching-controlled growth of graphene by chemical vapor
deposition. Chem. Mater. 29, 1022–1027 (2017).

146. Artyukhov, V. I., Hu, Z., Zhang, Z. & Yakobson, B. I. Topochemistry of Bowtie- and
star-shaped metal dichalcogenide nanoisland formation. Nano Lett. 16,
3696–3702 (2016).

147. Yu, H. et al. Tilt grain boundary topology induced by substrate topography. ACS
Nano 11, 8612–8618 (2017).

148. Meca, E., Shenoy, V. B. & Lowengrub, J. H. H2-dependent attachment kinetics
and shape evolution in chemical vapor deposition graphene growth. 2D Mater.
4, 31010 (2017).

149. Berry, J., Zhou, S., Han, J., Srolovitz, D. J. & Haataja, M. P. Dynamic phase engi-
neering of bendable transition metal dichalcogenide monolayers. Nano Lett. 17,
2473–2481 (2017).

150. Emmerich, H. et al. Phase-field-crystal models for condensed matter dynamics
on atomic length and diffusive time scales: an overview. Adv. Phys. 61, 665–743
(2012).

151. Elder, K. L. M., Seymour, M., Lee, M., Hilke, M. & Provatas, N. Two-component
structural phase-field crystal models for graphene symmetries. Philos. Trans. R.
Soc. A Math. Phys. Eng. Sci. 376, 20170211 (2018).

152. Taha, D., Mkhonta, S. K., Elder, K. R. & Huang, Z.-F. Grain boundary structures and
collective dynamics of inversion domains in binary two-dimensional materials.
Phys. Rev. Lett. 118, 255501 (2017).

153. Battaile, C. C. The kinetic Monte Carlo method: foundation, implementation, and
application. Comput. Methods Appl. Mech. Eng. 197, 3386–3398 (2008).

154. Nie, Y. et al. A kinetic Monte Carlo simulation method of van der Waals epitaxy
for atomistic nucleation-growth processes of transition metal dichalcogenides.
Sci. Rep. 7, 2977 (2017).

155. Trevethan, T., Latham, C. D., Heggie, M. I., Briddon, P. R. & Rayson, M. J. Vacancy
diffusion and coalescence in graphene directed by defect strain fields. Nanos-
cale 6, 2978–2986 (2014).

156. Whitesides, R. & Frenklach, M. Effect of reaction kinetics on graphene-edge
morphology and composition. Z. fur Physikalische Chem. 229, 597–614 (2015).

157. Wang, B., Puzyrev, Y. S. & Pantelides, S. T. Enhanced chemical reactions of
oxygen at grain boundaries in polycrystalline graphene. Polyhedron 64, 158–162
(2013).

158. Zhuang, J., Zhao, R., Dong, J., Yan, T. & Ding, F. Evolution of domains and grain
boundaries in graphene: a kinetic Monte Carlo simulation. Phys. Chem. Chem.
Phys. 18, 2932–2939 (2016).

159. Taioli, S. Computational study of graphene growth on copper by first-principles
and kinetic Monte Carlo calculations. J. Mol. Model. 20, 2260 (2014).

160. Fan, L. et al. Topology evolution of graphene in chemical vapor deposition, a
combined theoretical/experimental approach toward shape control of gra-
pheme domains. Nanotechnology 23, 115605 (2012).

161. Gaillard, P., Schoenhalz, A. L., Moskovkin, P., Lucas, S. & Henrard, L. Growth of
nitrogen-doped graphene on copper: multiscale simulations. Surf. Sci. 644,
102–108 (2016).

162. Wu, P. et al. Lattice mismatch induced nonlinear growth of graphene. J. Am.
Chem. Soc. 134, 6045–6051 (2012).

K. Momeni et al.

16

npj Computational Materials (2020)    22 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



163. Jiang, H. & Hou, Z. Large-scale epitaxial growth kinetics of graphene: a kinetic
Monte Carlo study. J. Chem. Phys. 143, 84109 (2015).

164. Huang, J. Y. et al. In situ observation of graphene sublimation and multi-
layer edge reconstructions. Proc. Natl Acad. Sci. USA 106, 10103–10108
(2009).

165. Ming, F. & Zangwill, A. Model and simulations of the epitaxial growth of
graphene on non-planar 6H–SiC surfaces. J. Phys. D. Appl. Phys. 45, 154007
(2012).

166. Qiu, Z., Li, P., Li, Z. & Yang, J. Atomistic simulations of graphene growth: from
kinetics to mechanism. Acc. Chem. Res. 51, 728–735 (2018).

167. Nie, Y. et al. First principles kinetic Monte Carlo study on the growth patterns of
WSe2 monolayer. 2D Mater. 3, 25029 (2016).

168. Chen, S. et al. Origin of ultrafast growth of monolayer WSe2 via chemical vapor
deposition. npj Comput. Mater. 5, 28 (2019).

169. Yue, R. et al. Nucleation and growth of WSe2: enabling large grain transition
metal dichalcogenides. 2D Mater. 4, 45019 (2017).

170. Safron, N. S. & Arnold, M. S. Experimentally determined model of atmospheric
pressure CVD of graphene on Cu. J. Mater. Chem. C. 2, 744–755 (2014).

171. Eversteyn, F. C., Severin, P. J. W., Brekel, C. H. Jvd & Peek, H. L. A stagnant layer
model for the epitaxial growth of silicon from silane in a horizontal reactor. J.
Electrochem. Soc. 117, 925–931 (1970).

172. Chen, J., Wong, D. S. H., Jang, S. S. & Yang, S. L. Product and process develop-
ment using artificial neural‐network model and information analysis. AIChE J. 44,
876–887 (1998).

173. Vilá, R. A. et al. Bottom-up synthesis of vertically oriented two-dimensional
materials. 2D Mater. 3, 41003 (2016).

174. Lee, P. W., Omstead, T. R., McKenna, D. R. & Jensen, K. F. In situ mass spec-
troscopy studies of the decomposition of organometallic arsenic compounds
in the presence of Ga(CH3)3 and Ga(C2H5)3. J. Cryst. Growth 93, 134–142
(1988).

175. Theodoropoulos, C. et al. Kinetic and transport modeling of the metallor-
ganic chemical vapor deposition of InP from trimethylindium and phosphine
and comparison with experiments. J. Electrochem. Soc. 142, 2086–2094
(1995).

176. Poling, B. E., Prausnitz, J. M. & O’connell, J. P. The Properties of Gases and Liquids,
Vol. 5 (Mcgraw-Hill, New York, 2001).

177. Zhang, F. et al. Controlled synthesis of 2D transition metal dichalcogenides:
from vertical to planar MoS2. 2D Mater. 4, 25029 (2017).

178. Grazulis, S. et al. Crystallography open database - an open-access collection of
crystal structures. J. Appl. Crystallogr 42, 726–729 (2009).

179. Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the
Inorganic Crystal Structure Database (ICSD): accessibility in support of materials
research and design. Acta Crystallogr. Sect. B 58, 364–369 (2002).

180. Allen, F. H. et al. The Cambridge Crystallographic Data Centre: computer-based
search, retrieval, analysis and display of information. Acta Crystallogr. Sect. B 35,
2331–2339 (1979).

181. Choudhary, K., Kalish, I., Beams, R. & Tavazza, F. High-throughput identification
and characterization of two-dimensional materials using density functional
theory. Sci. Rep. 7, 5179 (2017).

182. Haastrup, S. et al. The Computational 2D Materials. Database.: high.-throughput
modeling Discov. atomically thin Cryst. 2D Mater. 5, 42002 (2018).

183. Cheon, G. et al. Data mining for new two- and one-dimensional weakly bonded
solids and lattice-commensurate heterostructures. Nano Lett. 17, 1915–1923
(2017).

184. Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-scaling identification
of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101
(2017).

185. Patra, T. K. et al. Defect dynamics in 2-D MoS2 probed by using machine
learning, atomistic simulations, and high-resolution microscopy. ACS Nano 12,
8006–8016 (2018).

186. Tawfik, S. A. et al. Efficient prediction of structural and electronic properties of
hybrid 2D materials using complementary DFT and machine learning approa-
ches. Adv. Theory Simul. 2, 1800128 (2019).

187. Choudhary, K., DeCost, B. & Tavazza, F. Machine learning with force-field-
inspired descriptors for materials: fast screening and mapping energy land-
scape. Phys. Rev. Mater. 2, 83801 (2018).

188. Eivari, H. A. et al. Two-dimensional hexagonal sheet of TiO2. Chem. Mater. 29,
8594–8603 (2017).

189. Miyazato, I., Tanaka, Y. & Takahashi, K. Accelerating the discovery of hidden two-
dimensional magnets using machine learning and first principle calculations. J.
Phys. Condens. Matter 30, 06LT01 (2018).

190. Cherukara, M. J. et al. Ab initio-based bond order potential to investigate low
thermal conductivity of stanene nanostructures. J. Phys. Chem. Lett. 7,
3752–3759 (2016).

191. Revard, B. C., Tipton, W. W., Yesypenko, A. & Hennig, R. G. Grand-canonical
evolutionary algorithm for the prediction of two-dimensional materials. Phys.
Rev. B 93, 54117 (2016).

192. Singh, A. K. et al. Genetic algorithm prediction of two-dimensional group-IV
dioxides for dielectrics. Phys. Rev. B 95, 155426 (2017).

193. Chmiela, S. et al. Machine learning of accurate energy-conserving molecular
force fields. Sci. Adv. 3, e1603015 (2017).

194. Botu, V., Batra, R., Chapman, J. & Ramprasad, R. Machine learning force fields:
construction, validation, and outlook. J. Phys. Chem. C. 121, 511–522 (2017).

195. Song, Z., Artyukhov, V. I., Yakobson, B. I. & Xu, Z. Pseudo Hall–Petch strength
reduction in polycrystalline graphene. Nano Lett. 13, 1829–1833 (2013).

196. Okada, M. et al. Direct chemical vapor deposition growth of WS2 atomic layers
on hexagonal boron nitride. ACS Nano 8, 8273–8277 (2014).

197. Kobayashi, Y. et al. Growth and optical properties of high-quality monolayer
WS2 on graphite. ACS Nano 9, 4056–4063 (2015).

198. Huang, J. et al. Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate
and its device applications. Nanoscale 7, 4193–4198 (2015).

199. Chen, L. et al. Step-edge-guided nucleation and growth of aligned WSe2
on sapphire via a layer-over-layer growth mode. ACS Nano 9, 8368–8375
(2015).

200. Eichfeld, S. M. et al. Highly scalable, atomically thin WSe2 grown via
metal–organic chemical vapor deposition. ACS Nano 9, 2080–2087 (2015).

201. Yanase, T. et al. Chemical vapor deposition of NbS2 from a chloride source with
H2 Flow: orientation control of ultrathin crystals directly grown on SiO2/Si
substrate and charge density wave transition. Cryst. Growth Des. 16, 4467–4472
(2016).

202. Friday, M., Angeles, L., Reyes-lillo, S. & Rabe, K. Bulletin of the American Physical
Society APS March Meeting 2018. 2018 (2018).

203. Hotta, T. et al. Molecular beam epitaxy growth of monolayer niobium diselenide
flakes. Appl. Phys. Lett. 109, 133101 (2016).

204. Efetov, D. K. et al. Specular interband Andreev reflections at van der Waals
interfaces between graphene and NbSe2. Nat. Phys. 12, 328–332 (2016).

205. Zhou, L. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J.
Am. Chem. Soc. 137, 11892–11895 (2015).

206. Farahani, H., Rajabpour, A. & Reyhani, A. Interfacial thermal resistance between
few-layer MoS2 and silica substrates: a molecular dynamics study. Comput.
Mater. Sci. J. 142, 1–6 (2018).

207. Hong, Y., Ju, M. G., Zhang, J. & Zeng, X. C. Phonon thermal transport in a
graphene/MoSe2 van der Waals heterobilayer. Phys. Chem. Chem. Phys. 20,
2637–2645 (2018).

208. Filippova, V. P., Kunavin, S. A. & Pugachev, M. S. Calculation of the parameters of
the Lennard-Jones potential for pairs of identical atoms based on the properties
of solid substances. Inorg. Mater. Appl. Res. 6, 1–4 (2015).

209. Al-Matar, A. K. & Rockstraw, D. A. A generating equation for mixing rules and
two new mixing rules for interatomic potential energy parameters. J. Comp.
Chem. 25, 660–668 (2004).

210. Hiura, H., Miyazaki, T. & Kanayama, T. Formation of metal-encapsulating Si cage
clusters. Phys. Rev. Lett. 86, 1733–1736 (2001).

211. Mundin, K. C. & Ellis, D. E. Stochastic classical molecular dynamics coupled to
functional density theory: applications to large molecular systems. Braz. J. Phys.
29, 199–214 (1999).

212. Morris, G. M. et al. van Der Waals Potential Energy (2003). Available at: http://
www.img.bio.uni-goettingen.de/mswww/internal/manuals/autodock/AD3.
a.0UserGuide.html (Accessed 23 March 2019).

213. Lewis, L. J. & Mousseau, N. Tight-binding molecular-dynamics studies of defects
and disorder in covalently bonded materials. Comput. Mater. Sci. 12, 210–241
(1998).

214. Turner, G. W., Chushak, Y. G. & Bartell, L. S. Molecular dynamics investigation of
transient nucleation in the freezing of clusters of SeF6. J. Phys. Chem. A 108,
1666–1670 (2004).

215. Monajjemi, M., Ketabi, S., Hashemian Zadeh, M. & Amiri, A. Simulation of DNA
bases in water: comparison of the Monte Carlo algorithm with molecular
mechanics force fields. Biochem 71, S1–S8 (2006).

216. Landron, C. et al. Liquid alumina: detailed atomic coordination determined from
neutron diffraction data using empirical potential structure refinement. Phys.
Rev. Lett. 86, 4839–4842 (2001).

217. Bartell, L. S. & Xu, S. Molecular synamics examination of an anomalous phase of
TeFe molecules. J. Phys. Chem. 95, 8939–8941 (1991).

ACKNOWLEDGEMENTS
K.M. and L.Q.C. are partially supported by the Hamer Professorship at Penn State,
Louisiana Tech University, the National Science Foundation 2D Crystal Consortium –

K. Momeni et al.

17

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020)    22 

http://www.img.bio.uni-goettingen.de/mswww/internal/manuals/autodock/AD3.a.0UserGuide.html
http://www.img.bio.uni-goettingen.de/mswww/internal/manuals/autodock/AD3.a.0UserGuide.html
http://www.img.bio.uni-goettingen.de/mswww/internal/manuals/autodock/AD3.a.0UserGuide.html


Material Innovation Platform (2DCC-MIP) under NSF cooperative agreement DMR-
1539916, and the NSF-CAREER under NSF cooperative agreement CBET-1943857. Y.Z.
J. is supported by the I/UCRC Center for Atomically Thin Multifunctional Coatings
(ATOMIC) seed project SP001-17 and the 2DCC-MIP. This project is also partly
supported by DoE-ARPA-E OPEN, NASA-EPSCoR, Louisiana EPSCoR-OIA-1541079 (NSF
(2018)-CIMMSeed-18 and NSF(2018)-CIMMSeed-19), and LEQSF(2015-18)-LaSPACE. J.
W.J. is supported by the Recruitment Program of Global Youth Experts of China, the
National Natural Science Foundation of China (NSFC) under Grant Number 11822206,
and the Innovation Program of Shanghai Municipal Education Commission under
Grant Number 2017-01-07-00-09-E00019. H.S.P. acknowledges the support of the
Mechanical Engineering Department at Boston University. A.C.T.v.D., D.Y., and Y.S.
acknowledge funding from the Fluid Interface Reactions, Structures and Transport
(FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of
Energy (DOE), Office of Science, Basic Energy Science for MXene force-field
development and application work.

AUTHOR CONTRIBUTIONS
All authors contributed to collecting the references and outlining the review paper.
K.M. drafted the review. All authors participated in revising the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to K.M.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

K. Momeni et al.

18

npj Computational Materials (2020)    22 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Multiscale computational understanding and growth of 2D materials: a review
	Introduction
	Atomistic computational methods
	First-principles calculations
	Thermodynamic stability
	Kinetically stabilized 2D Materials
	Interlayer/substrate interactions
	Precursor chemistry and kinetics
	Growth front advancement
	Defects

	Molecular dynamics
	Empirical potentials
	Lennard-Jones potential
	Stillinger-Weber potential
	Force-field potential
	Reactive interatomic potentials
	Tersoff potential
	ReaxFF potential
	REBO/AIREBO potentials
	COMB3 potential


	Mesoscale simulations
	Phase-field model
	Phase-field-crystal model
	Kinetic Monte Carlo

	Macroscale models
	Gas flow
	Heat transfer
	Mass transfer
	Chemical reaction

	Materials genome approaches
	Database of 2D materials
	Machine learning method

	Outlook
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




