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Double Dirac cones and topologically nontrivial phonons for continuous
square symmetric C4(v) and C2(v) unit cells
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Because phononic topological insulators have primarily been studied in discrete, graphenelike structures with
C6(v) or C3(v) hexagonal symmetry, an open question is how to systematically achieve double Dirac cones and
topologically nontrivial structures using continuous, nonhexagonal unit cells. Here, we address this challenge by
presenting a computational methodology for the inverse design of continuous two-dimensional square phononic
metamaterials exhibiting C4(v) and C2(v) symmetry. This leads to the systematic design of square unit cell
topologies exhibiting a double Dirac degeneracy, which enables topologically protected interface propagation
based on the quantum spin Hall effect (QSHE). Numerical simulations prove that helical edge states emerge at
the interface between two topologically distinct square phononic metamaterials, which opens the possibility of
QSHE-based pseudospin-dependent transport beyond hexagonal lattices.
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I. INTRODUCTION

The discovery of topological insulators (TIs) in quantum
mechanical systems [1–6] has stimulated significant interest
in developing topological analogs in other fields, including
acoustics [7,8], photonics [9–11], and phononics [5,12,13].
TIs have attracted significant scientific interest primarily due
to their potential to enable lossless propagation of wave en-
ergy along well-defined interfaces [14–16]. There are various
approaches to obtaining topologically protected wave propa-
gation, most of which are based on either the quantum hall
effect (QHE) [1], the quantum spin hall effect (QSHE) [16],
or the quantum valley hall effect (QVHE) [17]. Many reports
on obtaining topologically protected wave propagation have
emerged in recent years using these fundamental principles
[5,8,12,13,15,18–35].

A commonality to nearly all studies on phononic TIs is
their dependence on using graphenelike discrete, hexagonally
symmetric (i.e., C6 or C3) lattice structures to obtain double
Dirac cones as the first step to achieving topologically non-
trivial structures. While the usage of hexagonal symmetries
is well established, this limits the design space for TIs, and
fundamental questions regarding the structure and resulting
topological properties of different structural symmetries re-
main unresolved. Because of this, researchers have recently
investigated the possibility of achieving Dirac cones in non-
hexagonal lattices [36–42]. However, the challenge remains
to create continuous unit cells that do not rely on hexagonal
symmetry in order to exhibit a double Dirac cone, while
also forming the basis for spin-orbit coupling-based mode
inversion, thus enabling QSHE-based topologically protected
interfacial wave propagation.

*Corresponding author: parkhs@bu.edu

In this article, we address this challenge by present-
ing a multiobjective gradient-based topology optimization
approach that enables, in contrast to previous topology op-
timization methods for TIs [33,43,44], the ability to design
continuous, square symmetric unit cells that serve as the build-
ing blocks for phononic TIs. We utilize the design procedure
to obtain a double Dirac cone using antiplane shear waves
in an elastic square lattice, and show that breaking symmetry
of the resulting square topology leads to a topologically non-
trivial band gap and pseudospin-dependent wave propagation.
Furthermore, we show that the proposed design methodology
matches the eigensystem properties of the Bernevig-Hughes-
Zhang (BHZ) [45] effective Hamiltonians we derived for
square symmetric unit cells. Therefore, this work opens the
possibility of QSHE-based pseudospin-dependent transport
beyond hexagonal lattices.

II. TOPOLOGY OPTIMIZATION APPROACH

A. Double Dirac cone

Our approach is a three-stage design strategy to match the
eigensystem properties of the BHZ effective Hamiltonian [45]
for the QSHE, in which the frequency of the double Dirac
degeneracy and the width of the topological band gap are
user-specified values. We first search for square lattices with
a fourfold (double) Dirac degeneracy, as illustrated by the C4v

unit cell in Fig. 1(a). Next, we lift the quadruple degeneracy to
open a complete band gap as in Fig. 1(b). Finally, we induce
mode inversion as in Fig. 1(c) such that the interface of the
two unit cells in Figs. 1(b) and 1(c) supports topologically
protected wave propagation.

Each design stage leading to the continuous elastic square
unit cells brings unique challenges, which we address through
different objective functions governing the topology opti-
mization. In the first stage when obtaining the double Dirac
degeneracy, Herring’s rule [46] on irreducible representations
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FIG. 1. Optimized C4v unit cells with (a) Double Dirac cones, (b) complete band gap, (c) spin-orbit coupling-induced mode inversion,
which is implied by the inverted surface colors with respect to (b). The eigenvalue surfaces are calculated using the finite element method
around the high-symmetry point M and are colored in red and blue, which stand for different mode symmetries. The square lattice consists
of 120 × 120 pixels, where each pixel stands for aluminum (black) or void (white). The equifrequency contours correspond to the eigenvalue
surfaces colored in blue. (d) First Brillouin zone of a square unit cell. The irreducible Brillouin zone is shaded in gray. (e) Frequency constraint
points around M. Illustration of (f) C2v and (g) C4v symmetry. The minimal design region is enclosed by red line segments.

specifies that in hexagonal unit cells with C6v symmetry, the
double Dirac degeneracy consists of two deterministic degen-
eracies, which can easily be brought together to create the
double degeneracy [18]. In contrast, the double Dirac degen-
eracy for C4v and C4 symmetries consists of mixed accidental
and deterministic degeneracies, while the double Dirac degen-
eracy for C2v and C2 symmetries can only consist of accidental
degeneracies. Because it is nontrivial to induce double Dirac
degeneracies between deterministic and accidental, or two
accidental, degeneracies, we leverage topology optimization
to accomplish this via the first set of objective functions to a
design frequency ω0,

h = |ω0 − ω(k0)i|, (1)

where ω(k0)i is the frequency of the ith band at the high-
symmetry point k0, or the M point in our approach.

B. Mode matching during band-gap opening

A further challenge when creating spin-degenerate struc-
tures as in Figs. 1(a)–1(c) is to enforce the coalescence of
eigenvalue surfaces that is inherent in the BHZ model. While
relatively simple for hexagonal lattices, it is nontrivial for
square lattices at the high-symmetry points of the irreducible
Brillouin zone [39,41,42], where failure to match the eigen-
value surfaces along with the resulting small and anisotropic
group velocities leads to significant loss along the topological
interface [33,44,47]. To overcome this challenge, we assign
eight frequency constraint points along the high-symmetry
axis as in Fig. 1(e), forming a circle which encloses the
high-symmetry (M) point of interest. This design objective
constrains the equifrequency contours to be circular as in
Figs. 1(a)–1(c), while satisfying that the eigenvalues of the
BHZ Hamiltonian depend upon the distance away from the
degeneracy, |δk|. The frequency constraints bring the maxi-
mum and minimum frequencies along the circle for each of
the two phonon bands that will be degenerate above and below
the design frequency ω0 to the same frequency value. The
reason for this is twofold: it results in matching not only of

the eigenvalue surfaces, as shown in Fig. 1(a) and the surfaces
colored in blue in Figs. 1(b) and 1(c), but also isotropy and
matching of the group velocity near the high-symmetry (M)
point, which is required in QSHE-based TIs [18].

For the eigenvalue surfaces that are colored in red in
Figs. 1(b) and 1(c), some band splitting along �-M is in-
evitable due to the compatibility relations between different
symmetries [48]. The frequency constraint points in this case
serve to minimize the splitting between the branches. Numer-
ical experiments have shown that these frequency constraints
can be satisfied by the sixth to ninth bands at the M point.
These frequency constraints can also be written as objective
functions which minimize the aforementioned frequency dif-
ferences as

h = | max
l

{ω(k + �kl )i} − min
l

{ω(k + �kl )i}|, (2)

h = | max
l

{ω(k + �kl )i2
} − min

l
{ω(k + �kl )i1

}|, (3)

h = | max
l

{ω(k + �kl )ĩ2} − min
l

{ω(k + �kl )ĩ1}|, (4)

l = 1, . . . , 8.

Equation (2) concerns the isotropy of the dispersion relation
of the four modes involved. For the ith band, eigenvalues
are calculated along a small circle of radius |�kl | = 0.1|�X |
centered at k. We let l denote the eight points along the
smaller circle shown in Fig. 1(e). The absolute values of the
differences between the maximal and minimal frequencies on
this circle are then optimized, such that the equifrequency
contours of the cones become circular. With Eqs. (1) and (2),
we will have two circular double cones centered at k with
coalescing Dirac frequency ω0. However, it is shown in Fig. 2
that the slopes of the two double cones are not guaranteed to
match. To resolve this, we introduce Eqs. (3) and (4). Equation
(3) considers the two branches, marked by subscripts i1 and
i2, below the Dirac frequency. Here, we assume that the band
index i2 is larger than i1. We find the maximum frequency
along the circle of branch i2 and minimum frequency along
the circle of branch i1 and optimize the difference. When the
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FIG. 2. Eigenvalue surfaces and equifrequency contours of optimized unit cells with (a) C4v symmetry, (b) C2v symmetry, (c) C4 symmetry,
and (d) C2 symmetry. The upper panel in each subfigure results from the optimization where the frequency constraints around M are not
invoked, and the lower panel results from the optimization where the frequency constraints around M are invoked. The eigenvalue surfaces and
contours are calculated using the k · p method.

vertices of the cone are fixed at ω0 and the dispersion relation
is approximately linear in the vicinity of k, Eq. (3) essentially
minimizes the differences between the two conical surfaces.
Equation (4) acts upon the two branches above the Dirac
frequency that is marked by subscripts ĩ1 and ĩ2, where ĩ2 > ĩ1,
for the purpose of eigenvalue surface matching. The above
set of objective functions is also invoked during the second
and third stage of optimization, again to ensure coalescence
of the eigenvalue surfaces at the top and bottom edges of the
topological band gap.

To see the effectiveness of the frequency constraints around
M, we compare the results with a new set of unit cells
of different symmetries with double Dirac cones which are
generated by dropping the constraints. As shown in the up-
per panels of Fig. 2, which are optimization results when
Eqs. (2)–(4) are not invoked, all the eigenvalue surfaces show
splitting. The equifrequency contours for C4v and C4 unit
cells are circular, and the ones for C2v and C2 unit cells are
elliptic. In contrast, as shown in the lower panels of Fig. 2, the
coalescence of the eigenvalue surfaces is realized when the
frequency constraints around M are invoked. The roundness
of the equifrequency contour is also improved for C2v and C2

unit cells.
Another issue to resolve emerges when opening a topo-

logically nontrivial band gap from the initial quadruple
degeneracy. Specifically, in a square lattice where spin states
may potentially be formed entirely or in part by accidental
degeneracies, a risk that arises in opening a band gap from
the double Dirac degeneracy is the corresponding lifting of
the accidental degeneracy. To ensure that the accidental de-
generacy remains after the band gap is opened, we assign two
degenerate frequencies, one below (ω0) and the other above
(ω̃0) the user-defined topological band gap. Therefore, the
corresponding objective functions for the corresponding ith
mode become

h = |ω0 − ω(k0)i|; i = i1, i2, (5)

h = |ω̃0 − ω(k0)i|; i = ĩ1, ĩ2, (6)

which, in conjunction with the frequency constraints around
M, results in structures and band gaps as in Fig. 1(b).

C. Mode inversion

Once the topology that has a band gap with two sets of
degenerate modes at the top (modes ĩ) and bottom (modes
i) of the band gap is obtained, the resulting mode shapes of
the degenerate modes are used as the reference modes for
the subsequent mode inversion step, which mimics strong
spin-orbit coupling (SOC) [18]. The quality of mode inversion
is measured by the square of normalized inner product of
the displacement field, also known as the modal assurance
criterion (MAC) [49]

γi, j =
〈
U 0

i

∣∣Uj
〉2

∥∥U 0
i

∥∥2∥∥Uj

∥∥2 , (7)

where U 0
i denotes the ith reference displacement mode, and

Uj denotes the jth displacement mode in the unit cell with
mode inversion. The value of γi, j varies between zero and 1
such that when γi, j is equal to 1, the mode shapes of U 0

i and
Uj are the same.

The optimization process to achieve mode inversion in-
cludes two steps. It starts from the four degenerate modes j in
the double Dirac degeneracy as in Fig. 1(a), where we identify
j and j̃ by searching for max{γi, j} given i and ĩ, respec-
tively. max{γi, j} between the corresponding modes is then
maximized to improve the inversion quality. Simultaneously,
the frequency differences between ω0 and ω(k0) j̃ and ω̃0 and
ω(k0) j are minimized to induce mode inversion by bringing
modes j̃ to the lower edge of the band gap, and modes j to
the upper edge of the band gap. This mode inversion process
is achieved through the following objective functions:

f = − max{γi, j}; i = i1, i2, ĩ1, ĩ2,

j = j
1
, j

2
, j̃1, j̃2, (8)

h = |ω0 − ω(k0) j̃ |, j̃ = j̃1, j̃2, (9)

h = |ω̃0 − ω(k0) j |, j = j
1
, j

2
, (10)
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which leads to structures and band gaps as in Fig. 1(c). We
emphasize that we do not need to explicitly prescribe symme-
try breaking to mimic SOC in order to successfully complete
this stage of the optimization process.

The multiobjective optimization problem including fre-
quency constraints around M can be written as

min
xe

∑
p

αp fp(xe) +
∑

q

βqhq(xe)

Subject to K(k)U = ω2MU, (11)

xe ∈ [0, 1],

where p and q are indices representing objective functions in-
volving eigenvectors and eigenvalues, respectively, αp and βq

are weights, K is the stiffness matrix, and M is the mass ma-
trix. fp(xe), which is a function of relative density xe, is only
invoked when mode inversion is considered at the third stage
of optimization. Equation (11) is solved deterministically by
the gradient based optimizer method of moving asymptotes
[50]. The design sensitivities of the objective functions are
calculated using adjoint analysis, with special treatment for re-
peated eigenvalues and their corresponding eigenvectors [51].
The material properties are interpolated using solid isotropic
material with penalization [52]. The minimum features of the
design are controlled by a filter based on a Helmholtz-type
partial differential equation where the final design which is
free of partial density elements is obtained through Heaviside
projection [53]. For the C2v and C4v symmetries we focus
on here, the minimal design region is specified in Figs. 1(f)
and 1(g), with the full unit cells reconstructed through the
illustrated symmetry operations. The unit cells are made of
aluminum, with shear modulus μ = 25.556 GPa and density
ρ = 2700 kg/m3.

III. BHZ HAMILTONIANS FOR SQUARE UNIT CELLS

Before providing numerical examples illustrating the util-
ity of the proposed topology optimization approach, we first
demonstrate that the double Dirac cones, as well as the de-
generate modes at the top and bottom of the topologically
nontrivial band gap, match those expected from the BHZ
model Hamiltonian [45] for the QSHE. In order to do so, we
first need to obtain the BHZ Hamiltonians for square lattices,
i.e., for C2, C2v , C4, and C4v symmetries. To do so, we first
note that the BHZ Hamiltonian can be written in the form

H(k) =
[
H+ 0
0 H−

]
, (12)

where

H± =
[

M + Bδk2 Aδk∓
A∗δk± −M − Bδk2

]
. (13)

The topological transition between trivial and nontrivial states
depends on the behavior of parameters A, B, and M, which de-
termine the strength of the first-order mode coupling, second-
order mode coupling, and the gap size of the topological

band gap, respectively. For example, when the two pseudospin
states are degenerate, M and B vanish, leading to the formation
of double Dirac cones. When strong spin-orbit coupling is
introduced to lift the fourfold degeneracy, a complete topo-
logical band gap is formed with inverted eigenmodes that
appear above and below the band gap, while the eigenvalue
and group velocity degeneracy are kept intact at the edges
of the band gap. The above effective Hamiltonian can be
derived from a second-order k · p perturbation [48,54]. Here,
we derive the effective BHZ Hamiltonians for C4v , C4, C2v ,
and C2 symmetry to show the necessity of our optimization
steps as explained in the previous section to match the BHZ
model.

The k · p perturbation method is established based on the
fact that eigenvectors in the neighborhood of a degeneracy can
be expressed as a linear combination of the eigenvectors of
the degeneracy, i.e., u(k′) = eiδk·r ∑N

n=1 ψnun(k), where N is
the eigenvalue multiplicity. For a general three-dimensional
phononic unit cell, we substitute this relation into the equilib-
rium equation, ∇ · [C : ∇su(k)] = −E (k)ρu(k), and get

N∑
n=1

ψn[E (k)δmn + δk · p + δkδk : q] = Em(k′)ψm, (14)

where

p = 〈um|p|un〉 = −
∫

iu∗
m · [C : ∇s + ∇ · (C·)]und
, (15)

q =
∫

u∗
m · C · und
. (16)

Here, C is the stiffness tensor and u is orthonormalized such
that

∫
ρu∗

mun = δmn. Therefore, the effective Hamiltonian can
be written as

H = H0 + H′, (17)

where H0 = E (k)δmn + δkδk : q and the linear perturbation
term H′ = δk · p. δk is the incremental wave number away
from the degenerate point. Subsequently, we will drop the δ

symbol for simplicity. For the antiplane shear wave motion
we consider here, the mth displacement mode only contains
the out-of-plane component, denoted as um, and the stiffness
tensor is replaced by the shear modulus μ.

A. C4v unit cells

For the double Dirac cones we consider here, H0 can be
written as a diagonal matrix, and H′ can be simplified by
checking the nonzero 〈um|p|un〉 entries via symmetry anal-
ysis. For C4v symmetry the four modes involved, um, have
the same symmetry as [px, py, dx2−y2 , dxy], respectively. The
p-like modes transform as E irreducible representation, the
dx2−y2 -like modes transform as B1 irreducible representation,
the dxy-like modes transform as B2 irreducible representation,
and that operator p transforms as a vector corresponding to E
irreducible representation. After checking the direct product
of related irreducible representations, we find that the nonzero
entries only appear in the off-diagonal blocks and the detailed
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entries are

H′
mn =

⎡
⎢⎢⎣

0 0 〈u1|kx px|u3〉 〈u1|ky py|u4〉
0 0 〈u2|ky py|u3〉 〈u2|kx px|u4〉

〈u3|kx px|u1〉 〈u3|ky py|u2〉 0 0
〈u4|ky py|u1〉 〈u4|kx px|u2〉 0 0

⎤
⎥⎥⎦. (18)

Notice that there is a vanishing px (py) component of the operator p in C4v symmetry. Evaluation of Eq. (18) shows that H′
mn in

general has the following form:

H′
mn =

⎡
⎢⎣

0 0 Akx Bky

0 0 −Aky Bkx

A∗kx −A∗ky 0 0
B∗ky B∗kx 0 0

⎤
⎥⎦, (19)

where A and B are purely imaginary according to Eq. (15). Rewriting Eq. (19) on the new basis [u1 + iu2, u3 + iu4, u1 − iu2, u3 −
iu4] with k± = kx ± iky, we have

H′
mn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
(A + B)k−

2
0

(A − B)k−
2

(A∗ + B∗)k+
2

0
(A∗ − B∗)k−

2
0

0
(A − B)k+

2
0

(A + B)k+
2

(A∗ − B∗)k+
2

0
(A∗ + B∗)k−

2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Equation (20) gives two sets of eigenvalues ±A|k| and ±B|k|, which describe double Dirac cones with unmatched eigenvalue
surfaces. However, the BHZ model demands that the eigenvalue surfaces should also match, essentially, A = B. It, therefore,
necessitates the topology optimization step described in Sec. II B which seeks to minimize the eigensurface difference such that
the effective Hamiltonian will take the following block-diagonal form:

H′
mn =

⎡
⎢⎣

0 Ak− 0 0
A∗k+ 0 0 0

0 0 0 Ak+
0 0 A∗k− 0

⎤
⎥⎦. (21)

When a topological band gap is opened, the above effective Hamiltonian will no longer be adequate in describing the system,
because now it must involve second-order perturbation to lift the degeneracy, where the formulation is given by [48]

H′
mn → H′

mn +
∑

α

H′
mαH′

αn

Em − Eα

, (22)

where α labels the degenerate mode on the other edge of the gap opposite to the mth mode. The two sets of degenerate eigenvalues
are given as [Ep, Ep, Ed , Ed ] for their p- and d-like modes. Due to the unbroken C4v symmetry during the optimizations,
components of H′

mα and H′
αn of the optimized unit cells have the same form as in Eqs. (18) and (19). The effective Hamiltonian

for the general C4v case can now be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ep + |A|2k2
x + |B|2k2

y

Ep − Ed
−|A|2 − |B|2

Ep − Ed
kxky Akx Bky

−|A|2 − |B|2
Ep − Ed

kxky Ep + |A|2k2
y + |B|2k2

x

Ep − Ed
−Aky Bkx

A∗kx −A∗ky Ed − |A|2(k2
x + k2

y

)
Ep − Ed

0

B∗ky B∗kx 0 Ed − |B|2(k2
x + k2

y

)
Ep − Ed

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)
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Rewriting Eq. (23) using the pseudospin states as the new basis [u1 + iu2, u3 + iu4, u1 − iu2, u3 − iu4], we have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ep + (|A|2 + |B|2)k2

2(Ep − Ed )

(A + B)k−
2

(|A|2 − |B|2)k2
−

2(Ep − Ed )

(A − B)k−
2

(A∗ + B∗)k+
2

Ed − (|A|2 + |B|2)k2

2(Ep − Ed )

(A∗ − B∗)k−
2

− (|A|2 − |B|2)k2

2(Ep − Ed )
(|A|2 − |B|2)k2

+
2(Ep − Ed )

(A − B)k+
2

Ep + (|A|2 + |B|2)k2

2(Ep − Ed )

(A + B)k+
2

(A∗ − B∗)k+
2

−|A|2 − |B|2)k2

2(Ep − Ed )

(A∗ + B∗)k−
2

Ed − (|A|2 + |B|2)k2

2(Ep − Ed )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

where k± = kx ± iky. Observe that the matrix entries of Eq. (20) now appear at the same location in Eq. (24). Similar to Eq. (20),
this effective Hamiltonian gives two sets of unmatched eigenvalue surfaces which are degenerate only at the high-symmetry (M)
point mentioned earlier. This motivates our approach of leveraging topology optimization to minimize the frequency difference
between eigenvalue surfaces in Sec. II B. For the BHZ Hamiltonian, this means that effectively A = B and the Hamiltonian can
be reduced to ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ep + |A|2k2

Ep − Ed
Ak− 0 0

A∗k+ Ed − |A|2k2

Ep − Ed
0 0

0 0 Ep + |A|2k2

Ep − Ed
Ak+

0 0 A∗k− Ed − |A|2k2

Ep − Ed

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Finally, we let M = (Ep − Ed )/2 and B = |A|2/(Ep − Ed ) + D, where D comes from the second-order term in H0. This brings
the effective Hamiltonian to the block-diagonal form as in Eqs. (12) and (13).

B. C2v unit cells

For C2v unit cells with double Dirac cones, symmetry analysis show that the effective Hamiltonian has the same form as
Eq. (18), where there is vanishing operator components px (py). However, due to the lack of C4 symmetry, H′

mn has the following
form:

H′
mn =

⎡
⎢⎣

0 0 Akx Bky

0 0 −Cky Dkx

A∗kx −C∗ky 0 0
B∗ky D∗kx 0 0

⎤
⎥⎦. (26)

Again, Eq. (26) corresponds to two sets of unmatched eigenvalues surfaces. Furthermore, the group velocity is anisotropic due to
the eigenvalues’ dependence upon both kx and ky. This again motivates our topology optimization approach described in Sec. II B
to effectively minimize the frequency differences between the eigenvalue surfaces. Within this analytic derivation, this implies
that the effective Hamiltonian of the resultant unit cell will give A = B = C = D, and take the block-diagonal form as in Eq. (20).
For the second-order perturbation, we substitute Eq. (26) into Eq. (22) and change basis from um to [u1 + iu2, u3 + iu4, u1 −
iu2, u3 − iu4] to get H′. The block-diagonal form will hold when the eigenvalue surfaces are matched with A = B = C = D.

C. C4 and C2 unit cells

For C4 and C2 unit cells with double Dirac cones, there is no vanishing operator component of p; therefore,

H′
mn =

⎡
⎢⎣

0 0 〈u1|k · p|u3〉 〈u1|k · p|u4〉
0 0 〈u2|k · p|u3〉 〈u2|k · p|u4〉

〈u3|k · p|u1〉 〈u3|k · p|u2〉 0 0
〈u4|k · p|u1〉 〈u4|k · p|u2〉 0 0

⎤
⎥⎦. (27)

Specifically, for C4 and C2

H′
mn =

⎡
⎢⎣

0 0 A1kx − A2ky B1kx + B2ky

0 0 −A2kx − A1ky B2kx − B1ky

A∗
1kx − A∗

2ky −A∗
2kx − A∗

1ky 0 0
B∗

1kx + B∗
2ky B∗

2kx − B∗
1ky 0 0

⎤
⎥⎦

(C4 )

, (28)
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FIG. 3. Eigenvalue surfaces of optimized unit cells with (a) C4v symmetry, (b) C2v symmetry, (c) C4 symmetry, and (d) C2 symmetry. The
surfaces which are calculated using FEM are colored in green, and the surfaces which are calculated using effective Hamiltonian are colored
in yellow.

H′
mn =

⎡
⎢⎢⎣

0 0 A1kx + A2ky −B1kx + B2ky

0 0 C1kx − C2ky D1kx + D2ky

A∗
1kx + A∗

2ky C∗
1 kx − C∗

2 ky 0 0
−B∗

1kx + B∗
2ky D∗

1kx + D∗
2ky 0 0

⎤
⎥⎥⎦

(C2 )

. (29)

For C4 symmetry, the two sets of eigenvalues, ±V±|k|, again describe double Dirac cones with unmatched eigenvalue surfaces.
Since the eigenvalues only depend on |k|, the group velocities are isotropic and given as

V± =
√

2(|A1|2 + |A2|2 + |B1|2 + |B2|2 ± �)

2
,

� = (|A1|2 + |A2|2)2 + (|B1|2 + |B2|2)2 − 4(A1A∗
2B2B∗

1 + A2A∗
1B1B∗

2 )

+ 2(|A1|2|B1|2 + |A2|2|B2|2 − |A1|2|B2|2 − |A2|2|B1|2). (30)

For C2 symmetry, the eigenvalues’ dependence on both kx

and ky leads to anisotropic group velocity, and the eigenvalue
surfaces are also unmatched. We then substitute Eqs. (28) and
(29) into Eq. (22) and change to the new basis to obtain the
effective Hamiltonians under second-order perturbation for C4

and C2, respectively. The block-diagonal form will hold when
the eigenvalue surfaces are matched, while the anisotropy
in group velocity is addressed by topology optimization as
described in Sec. II B.

D. Comparison of optimization results with BHZ
effective Hamiltonians

We show in Fig. 3 finite element method (FEM) calcu-
lations of the optimized C4v , C4, C2v , and C2 unit cells and
the eigenvalues from the above-derived perturbation theory.

Specifically, Fig. 3 shows that the effective Hamiltonians
not only match the numerical results, but also successfully
approximate the BHZ model due to the optimization of the
frequency difference between the surfaces, as shown in Fig. 3.
From the previous section, we can see that the difficulty in
designing C4v and C4 symmetric cases lies in matching the
eigenvalue surfaces, while for C2v and C2 symmetric cases, it
lies in both the cancellation of anisotropy of group velocity
and the matching of eigenvalue surfaces. Due to the fact
that the minimal design domains for C4 and C2v symmetric
cases are of the same size which occupies a quarter of the
square lattice, these two cases have roughly the same design
complexity for the optimizer when it searches for the optimal
configuration in the feasible region. However, the minimal
design domain for the C2 symmetric case occupies one-half
of the square lattice, which significantly increases the design
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FIG. 4. (a) Optimized C4v unit cells that exhibit double Dirac cones (middle), band-gap opening in the second stage of optimization (left),
and mode inversion (right). (b) Optimized C2v unit cells that exhibit double Dirac cones (middle), band-gap opening in the second stage of
optimization (left), and mode inversion (right).

complexity; therefore, it is in general more difficult to gener-
ate structures that satisfy the conditions set forth by the BHZ
effective Hamiltonian.

IV. NUMERICAL RESULTS

A. C4v and C2v unit cells

We first discuss results for C4v symmetric unit cells in
Fig. 4(a), where the middle panel shows the unit cell ex-
hibiting double Dirac cones with linear dispersion in the
neighborhood of the degeneracy at a normalized frequency

 = 1.295. Here, the two p-like modes are degenerate and
deterministic, while the two d-like modes are accidentally
degenerate. The left panel in Fig. 4(a) shows the unit cell for
which a complete band gap is opened, lifting the accidental
degeneracy between the p- and d-like modes, while the right
panel in Fig. 4(a) shows the unit cell after optimization in-
ducing inversion of the modes in the left panel. The mode
inversion process brings the p-like modes to the lower edge of
the band gap, while the d-like modes are brought to the upper
edge of the band gap. The complete band gaps within the these
two complementary unit cells are centered at the frequency of
the original double Dirac cones with upper edge at 
 = 1.239
and lower edge at 
 = 1.351, resulting in an 8.65% relative
band-gap size.

The results of the optimization process for the C2v unit cell
are shown in Fig. 4(b). The topologies for the C2v unit cell
are quite similar to the C4v unit cells in Fig. 4(a), where slight
variations of the geometry along the orthogonal directions can
be found that demonstrate that the unit cells belong to the C2v

symmetry group. In this case, both the p- and d-like modes
are accidentally degenerate at either the double Dirac cone or
the edges of the topological band gap, where the user-defined
degenerate frequencies are set to be the same as the ones in
the C4v cases. One difference compared to the C4v results is
that in opening the band gap in the left panel of Fig. 4(b), the
optimization brings the degenerate p-like modes to the lower
edge of the band gap while the d-like modes degenerate at
the upper edge of the band gap. Mode inversion inverts the
position of the p- and d-like modes as shown in the right
panel of Fig. 4(b). For both the C4v and C2v unit cells, we have
verified through calculation of Chern numbers that the unit
cells which have quadrupolar d-like modes at the lower edge
of the topological band gap are topologically nontrivial [55],
while the mode-inverted counterpart is topologically trivial.

We verified the existence of opposite pseudospin states by
examining the eigenspectral properties of a supercell, which
consists of a topologically nontrivial unit cell interfacing with
a topologically trivial unit cell, where for consistency the non-
trivial unit cells were always below the interface. As shown by

FIG. 5. Band-structure calculations for supercell constructed from (left) C4v and (right) C2v unit cells. (a), (f) Supercell band structure,
where the dispersion of the opposite pseudospin states are colored red and blue. The bulk bands are colored in gray. (b), (g) Supercell. (c), (h)
mode localization calculated at points A and B. (d), (e), (i), (j) Poynting vectors of the pseudospin states.
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FIG. 6. One-way wave propagation simulation and transmission calculation for TI constructed from (left) C4v and (right) C2v unit cells.
(a), (g) Defect free. (b), (h) Disorder. (c), (i) Defect. (d), (j) Zigzag bend. (e), (k) Double bend. (f), (l) Normalized energy transmission.

the left panel of Fig. 5, the C4v supercell shows two opposite
spin states crossing the band gap centered at the degenerate
frequency of the double Dirac cones, with a complete bulk
band gap matching the design frequencies. There exists a
small edge state gap of 0.48% of the topological band gap,
which is caused by the symmetry breaking at the interface
[56,57]. It is shown in Fig. 5(c) that the displacement is
localized within one unit cell above and below the interface.
The Poynting vector calculations in Figs. 5(d) and 5(e) show
the energy propagation in opposite directions for the two
pseudospin states for the C4v case, while similar pseudospin
behavior is observed in Figs. 5(i) and 5(j) for the C2v case.
Because the double Dirac degeneracy for the C2v case orig-
inates from two accidental degeneracies, there is a slightly
larger edge-state gap of 0.98% of the total band gap.

Finally, we demonstrate in Fig. 6 the topologically pro-
tected interfacial wave propagation by presenting a series of
one-way wave propagation simulations within the TIs con-
structed by the designs shown previously. The simulation
domain is surrounded by two layers of unit cells working
as crystalline perfectly matched layers (PMLs) to minimize
scattering at the boundaries. The normalized transmission
is measured by comparing the averaged energy flux at the
input and output regions of the simulation domain, and is

measured within three unit cells above and below the in-
terface, respectively. The simulations are conducted at 
 =
1.3174, which is slightly above the pseudospin crossing
frequency. The results show that the TIs constructed by op-
timized C4v and C2v unit cells are immune to defects such as
disordered unit cells, cavity, zigzag bend, and double bend.
For the C4v cases, the transmission is greater than 0.99 for
all cases for the majority of the topological band gap. For the
C2v cases, the transmission is greater than 0.983 for all cases,
again showing robustness to disorder and defects. For the
zigzag and double bend cases, the transmission dips slightly
at the edges of the band gap in Figs. 4(a) and 4(b), though for
the largest drop in transmission to 0.9, this translates into only
a 10 log10 0.9 = −0.458 dB loss.

B. C4 and C2 unit cells

The supercell band structures and edge states for C4 and
C2 unit cells are shown in Fig. 7, where opposite spin states
cross the band gap, with a complete bulk band gap matching
the design frequencies as in Figs. 7(a) and 7(f). There ex-
ists a small edge-state gap of 3.7% of the topological band
gap in the C4 supercell, and we also found a similar edge-
state gap of 2.9% in the C2 supercell. It is shown in both

FIG. 7. Band-structure calculations for supercell constructed from (left) C4 and (right) C2 unit cells. (a), (f) Supercell band structure, where
the dispersion of the opposite pseudospin states are colored red and blue. The bulk bands are colored in gray. (b), (g) Supercell. (c), (h) Mode
localization calculated at points A and B. (d), (e), (i), (j) Poynting vectors of the pseudospin states.
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FIG. 8. One-way wave propagation simulation and transmission calculation for TI constructed from (left) C4 and (right) C2 unit cells.
(a), (g) Defect free. (b), (h) Disorder. (c), (i) Defect. (d), (j) Zigzag bend. (e), (k) Double bend. (f), (l) Normalized energy transmission.

panels of Fig. 7 that the displacement localizes within one unit
cell above and below the interface, and the energy propagates
in opposite directions for the pseudospins in different states.

Finally, the one-way wave propagation simulation and
transmission results for C4 and C2 unit cells are shown in
Fig. 8. The one-way wave propagation simulation is again
done at 
 = 1.3174. It is seen that the TIs constructed by C4

and C2 unit cells can resist defects such as disorder, cavity,
zigzag bend, and double bend. However, due to the existence
of the small edge-state gap, the transmission of zigzag and
double bend cases in C4 falls below 99%, below the frequency
where the small gap occurs, and there is a sharp transmis-
sion drop for the disorder case near the upper edge of the
topological band gap. For the C2 unit cell, the transmission
is consistently above 98.5% for the majority of the gap.

V. CONCLUSION

In conclusion, we report the systematic design of dou-
ble Dirac cones and topologically nontrivial phonons based
on the QSHE for continuous, square symmetric unit cells
by a gradient-based multiobjective topology optimization ap-
proach. The objective functions are judiciously formulated
to mimic the eigenmode behaviors of the BHZ effective

Hamiltonian, such that the resulting optimized designs ex-
hibit mode degeneracies at user-defined frequencies along
with matched group velocities, and topologically comple-
mentary unit cells that exhibit mode inversion. Supercell
band-structure calculations show that the one-way propa-
gating edge modes span the topological band gap for both
C4v and C2v cases, leading to robust, defect-immune, and
backscattering-resistant TIs, where the pseudospin states are
formed entirely or in part by accidental degeneracies through
the topology optimization approach. While these results thus
open the possibility for realizing QSHE-based pseudospin-
dependent transport beyond hexagonal lattices, significant
future work remains to elucidate any novel physical behav-
ior that may emerge in square unit cell-based phononic TIs.
Finally, because of the universality of the BHZ model for
describing the QSHE in photonics and acoustics, our effec-
tive Hamiltonian inspired optimization approach can be easily
extended to these areas.

ACKNOWLEDGMENTS

H.S.P. and Y.L. acknowledge the support of the Army Re-
search Office, Grant No. W911NF-18-1-0380, and the College
of Engineering at Boston University.

[1] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[2] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438,

201 (2005).
[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[5] S. D. Huber, Nat. Phys. 12, 621 (2016).
[6] J. Wang and S.-C. Zhang, Nat. Mater. 16, 1062 (2017).
[7] S. A. Cummer, J. Christensen, and A. Alù, Nat. Rev. Mater.

1, 16001 (2016).
[8] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B.

Zhang, Phys. Rev. Lett. 114, 114301 (2015).
[9] A. B. Khanikaev and G. Shvets, Nat. Photonics 11, 763 (2017).

[10] L. Lu, J. D. Joannopoulos, and M. Soljacic, Nat. Phys. 8, 821
(2014).

[11] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,
M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and
I. Carusotto, Rev. Mod. Phys. 91, 015006
(2019).

[12] J. Cha, K. W. Kim, and C. Daraio, Nature 564, 229 (2018).
[13] J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, Nat.

Mater. 16, 298 (2017).
[14] J. E. Moore, Nature 464, 194 (2010).
[15] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P.

Liu, and Y.-F. Chen, Nat. Phys. 12, 1124 (2016).
[16] X.-L. Qi and S.-C. Zhang, Phys. Today 63(1), 33 (2010).
[17] Y. Ren, Z. Qiao, and Q. Niu, Rep. Prog. Phys. 79, 066501

(2016).
[18] S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Nat. Commun.

6, 8682 (2015).

064308-10

https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1038/nature04235
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/nphys3801
https://doi.org/10.1038/nmat5012
https://doi.org/10.1038/natrevmats.2016.1
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1038/s41566-017-0048-5
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1038/s41586-018-0764-0
https://doi.org/10.1038/nmat4807
https://doi.org/10.1038/nature08916
https://doi.org/10.1038/nphys3867
https://doi.org/10.1063/1.3293411
https://doi.org/10.1088/0034-4885/79/6/066501
https://doi.org/10.1038/ncomms9682


DOUBLE DIRAC CONES AND TOPOLOGICALLY … PHYSICAL REVIEW B 103, 064308 (2021)

[19] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, and
W. T. M. Irvine, Proc. Natl. Acad. Sci. USA 112, 14495 (2015).

[20] P. Wang, L. Lu, and K. Bertoldi, Phys. Rev. Lett. 115, 104302
(2015).

[21] A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alu, Nat.
Commun. 6, 8260 (2015).

[22] R. Susstrunk and S. D. Huber, Proc. Natl. Acad. Sci. USA 113,
E4767 (2016).

[23] R. Susstrunk and S. D. Huber, Science 349, 47 (2015).
[24] R. K. Pal, M. Schaeffer, and M. Ruzzene, J. Appl. Phys. 119,

084305 (2016).
[25] J.-W. Jiang, B.-S. Wang, and H. S. Park, Nanoscale 10, 13913

(2018).
[26] S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, Nat. Commun. 9,

1370 (2018).
[27] T.-W. Liu and F. Semperlotti, Phys. Rev. Appl. 9, 014001

(2018).
[28] M. Miniaci, R. K. Pal, B. Morvan, and M. Ruzzene, Phys. Rev.

X 8, 031074 (2018).
[29] Y. Wu, R. Chaunsali, H. Yasuda, K. Yu, and J. Yang, Sci. Rep.

8, 112 (2018).
[30] M. Yan, J. Lu, F. Li, W. Deng, X. Huang, J. Ma, and Z. Liu, Nat.

Mater. 17, 993 (2018).
[31] S.-Y. Yu, C. He, Z. Wang, F.-K. Liu, X.-C. Sun, Z. Li, H.-Z. Lu,

M.-H. Lu, X.-P. Liu, and Y.-F. Chen, Nat. Commun. 9, 3072
(2018).

[32] H. Zhu, T.-W. Liu, and F. Semperlotti, Phys. Rev. B 97, 174301
(2018).

[33] Y. Chen, F. Meng, and X. Huang, Mech. Syst. Signal Process.
146, 107054 (2021).

[34] Z. Du, H. Chen, and G. Huang, J. Mech. Phys. Solids 135,
103784 (2020).

[35] M. Saba, S. Wong, M. Elman, S. S. Oh, and O. Hess, Phys. Rev.
B 101, 054307 (2020).

[36] G. van Miert and C. M. Smith, Phys. Rev. B 93, 035401
(2016).

[37] X. Qin, Y. Liu, G. Yang, and D. Zhao, Phys. Chem. Chem. Phys.
22, 6619 (2020).

[38] W. Luo and H. Xiang, Nano Lett. 15, 3230 (2015).
[39] M. Ezawa, New J. Phys. 16, 065015 (2014).
[40] B.-Z. Xia, S.-J. Zheng, T.-T. Liu, J.-R. Jiao, N. Chen, H.-Q. Dai,

D.-J. Yu, and J. Liu, Phys. Rev. B 97, 155124 (2018).
[41] B. Li, Z. Li, J. Christensen, and K. Tan, Appl. Phys. Lett. 114,

081906 (2019).
[42] S.-Y. Huo, H.-B. Huang, L.-Y. Feng, and J.-J. Chen, Appl. Phys.

Express 12, 094003 (2019).
[43] S. S. Nanthakumar, X. Zhuang, H. S. Park, C. Nguyen, Y. Chen,

and T. Rabczuk, J. Mech. Phys. Solids 125, 550 (2019).
[44] R. E. Christiansen, F. Wang, and O. Sigmund, Phys. Rev. Lett.

122, 234502 (2019).
[45] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[46] C. Herring, Phys. Rev. 52, 361 (1937).
[47] H.-W. Dong, S.-D. Zhao, R. Zhu, Y.-S. Wang, L. Cheng, and

C. Zhang, J. Sound Vib. 493, 115687 (2021).
[48] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group The-

ory: Application to the Physics of Condensed Matter (Springer,
Berlin, 2007).

[49] T. S. Kim and Y. Y. Kim, Comput. Struct. 74, 375 (2000).
[50] K. Svanberg, Int. J. Numer. Methods Eng. 24, 359 (1987).
[51] B. Wu, Z. Xu, and Z. Li, Commun. Numer. Methods Eng. 23,

241 (2007).
[52] M. P. Bendsøe, Struct. Optim. 1, 193 (1989).
[53] B. S. Lazarov and O. Sigmund, Int. J. Numer. Methods Eng. 86,

765 (2011).
[54] L.-H. Wu and X. Hu, Phys. Rev. Lett. 114, 223901 (2015).
[55] Z. Zhang, Y. Tian, Y. Cheng, X. Liu, and J. Christensen, Phys.

Rev. B 96, 241306(R) (2017).
[56] J. Chen, H. Huang, S. Huo, Z. Tan, X. Xie, J. Cheng, and G. L.

Huang, Phys. Rev. B 98, 014302 (2018).
[57] S. Yves, R. Fleury, F. Lemoult, M. Fink, and G. Lerosey, New

J. Phys. 19, 075003 (2017).

064308-11

https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1073/pnas.1605462113
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1063/1.4942357
https://doi.org/10.1039/C8NR04314K
https://doi.org/10.1038/s41467-018-03830-8
https://doi.org/10.1103/PhysRevApplied.9.014001
https://doi.org/10.1103/PhysRevX.8.031074
https://doi.org/10.1038/s41598-017-18410-x
https://doi.org/10.1038/s41563-018-0191-5
https://doi.org/10.1038/s41467-018-05461-5
https://doi.org/10.1103/PhysRevB.97.174301
https://doi.org/10.1016/j.ymssp.2020.107054
https://doi.org/10.1016/j.jmps.2019.103784
https://doi.org/10.1103/PhysRevB.101.054307
https://doi.org/10.1103/PhysRevB.93.035401
https://doi.org/10.1039/D0CP00244E
https://doi.org/10.1021/acs.nanolett.5b00418
https://doi.org/10.1088/1367-2630/16/6/065015
https://doi.org/10.1103/PhysRevB.97.155124
https://doi.org/10.1063/1.5085782
https://doi.org/10.7567/1882-0786/ab3514
https://doi.org/10.1016/j.jmps.2019.01.009
https://doi.org/10.1103/PhysRevLett.122.234502
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRev.52.361
https://doi.org/10.1016/j.jsv.2020.115687
https://doi.org/10.1016/S0045-7949(99)00056-5
https://doi.org/10.1002/nme.1620240207
https://doi.org/10.1002/cnm.895
https://doi.org/10.1007/BF01650949
https://doi.org/10.1002/nme.3072
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1103/PhysRevB.96.241306
https://doi.org/10.1103/PhysRevB.98.014302
https://doi.org/10.1088/1367-2630/aa66f8

