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Abstract

Inspired by the pioneering work of Professor T.J.R. Hughes on the variational multi-scale method, this document
summarizes recent developments in multiple-scale modeling using a newly developed technique called the bridging scale.
The bridging scale consists of a two-scale decomposition in which the coarse scale is simulated using continuum meth-
ods, while the fine scale is simulated using atomistic approaches. The bridging scale offers unique advantages in that the
coarse and fine scales evolve on separate time scales, while the high frequency waves emitted from the fine scale are
eliminated using lattice impedance techniques. Recent advances in extending the bridging scale to quantum mechani-
cal/continuum coupling are briefly described. The method capabilities are demonstrated via quasistatic nanotube bend-
ing, dynamic crack propagation and dynamic shear banding.
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1. Introduction

The rapid advances in nanotechnology, nanomaterials and nanomechanics offer huge potentials in na-
tional defense, homeland security, and private industry. An emphasis on nanoscale entities will make
our manufacturing technologies and infrastructure more sustainable in terms of reduced energy usage
and environmental pollution. Recent advances in the research community on this topic have stimulated
ever-broader research activities in science and engineering devoted to their development and their
applications.

With the confluence of interest in nanotechnology, availability of experimental tools to synthesize and
characterize systems in the nanometer scale, and computational tools widely accessible to model microscale
systems by coupled continuum/molecular/quantum mechanics, we are poised to unravel the traditional gap
between the atomic and the macroscopic world in mechanics and materials. This in turn opens up new
opportunities in education and research. Over the past three decades, we have acquired new tools and tech-
niques to synthesize nanoscale objects and to learn their many incredible properties. Today�s high-resolu-
tion electron microscopes can routinely see individual atoms. Scanning probe techniques allow us to
manipulate atoms one at a time. Advanced materials synthesis provides the technology to tailordesign sys-
tems from as small as molecules to structures as large as the fuselage of a plane. We now have the technol-
ogy to detect single molecules, bacteria or virus particles. We can make protective coatings more wear-
resistant than diamond and fabricate alloys and composites stronger than ever before.

In most of these applications, nanoscale materials will be used in conjunction with other components
that are larger, and have different response times, thus operating at different time and length scales. Single
scale methods such as ab initio quantum mechanical methods or molecular dynamics (MD) will have dif-
ficulty in analyzing such hybrid structures due to the limitations in terms of the time and length scales that
each method is confined to. Because of the availability of accurate interatomic potentials for a range of
materials, classical MD simulations have become prominent as a tool for elucidating complex physical phe-
nomena. However, the length and time scales that can be probed using MD are still fairly limited. For the
study of nanoscale mechanics and materials, we must model up to a scale of several microns, consisting of
billions of atoms, which is too large for MD simulations to-date. Hence, we need to develop multi-scale
approaches for this class of problems.

One possible approach that can be applied to many problems is to use MD only in localized regions in
which the atomic-scale dynamics are important, and a continuum simulation method, such as the finite ele-
ment (FE) [1,2] or meshfree methods [3–5] everywhere else. This general approach has been taken by several
different groups using methods that have had varying degrees of success. In particular, these methods do
not satisfactorily address the issue of disparate time scales in the two regions, and provide a simplified treat-
ment of the interface between the atomistic and continuum regimes. For a more complete review of avail-
able multiple scale methods, see Liu et al. [6], or Curtin and Miller [7].

Among Professor T.J.R. Hughes� many important contributions to the field of solid mechanics was his
work on the variational multi-scale method. In that pioneering work [8], the displacement field was decom-
posed into coarse and fine scale components. The fine scale component was used to resolve a local field of
interest using an element level enrichment. This work has motivated an alternative multi-scale approach,
the bridging scale, which was developed in a seminal work by Wagner and Liu [9] using a similar
coarse/fine decomposition of the displacement field. In the bridging scale, the continuum representation ex-
ists everywhere in the domain, including those areas in which MD is present. By using a projection operator
to decompose the displacement field into orthogonal coarse and fine scales, they were able to derive a cou-
pled set of equations of motion describing the evolution of the MD and FE systems.

These coupled but separate equations of motion have three major benefits. The first is that the FE and
MD equations of motion are not required to be integrated using the same timestep. The second benefit is
that it allows the elimination of unwanted MD degrees of freedom by accounting for them in the form of an
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impedance force which augments the standard MD equations of motion. Because those unwanted MD de-
grees of freedom are accounted for in a mathematically consistent manner, high frequency waves which
cannot be represented by the continuum mesh are dissipated naturally out of the MD region. Lastly, the
bridging scale is valid for finite-temperature dynamic problems.

The purpose of this paper is to introduce the bridging scale method, then demonstrate applications of the
method, as well as present new research developments. We will highlight two recent advances; the first con-
cerns the development of a method by Karpov et al. [10] which allows the finite temperature modeling of
the atomistic domain in coupled atomistic/continuum simulations. The second major development is the
work of Qian and Liu [11,12], which couples a quantum mechanical method, the tight-binding (TB)
method, to a continuum representation for the quasistatic analysis of nanomaterials.

The outline of this paper is as follows. We first review the bridging scale, giving special detail to the cou-
pled coarse and fine scale equations of motion, as well as the mathematical elimination of unwanted fine
scale degrees of freedom. We then demonstrate the performance of the method on such nonlinear problems
as quasistatic nanotube bending, dynamic atomistic crack propagation and dynamic shear banding. We
conclude this article by summarizing the current state of the bridging scale, and commenting on directions
of future research.
2. Bridging scale fundamentals

The bridging scale was recently developed by Wagner and Liu [9] to concurrently couple atomistic and
continuum simulations. By concurrent coupling, we imply that both simulations run simultaneously while
dynamically exchanging relevant information. Because much of the following has already been derived in
detail (see Wagner and Liu [9] and Park and Liu [13]), we refer the interested reader to those works for
further details. The fundamental idea is to decompose the total displacement field u(x) into coarse and fine
scales
uðxÞ ¼ �uðxÞ þ u0ðxÞ. ð1Þ
This decomposition has been used before in solid mechanics, for example by Hughes et al. [8] in the var-
iational multi-scale method. The coarse scale �u is that part of the solution which can be represented by
a set of basis functions, i.e. finite element or meshfree shape functions. The fine scale u 0 is defined as the
part of the total solution whose projection onto the coarse scale is zero.

In order to describe the bridging scale, we imagine a body in any dimension which is described by Na

atoms. The total displacement of an atom a is written as ua. The coarse scale displacement is a function
of the initial positions Xa of the atoms, which implies a Lagrangian description of the domain. It should
be noted that the coarse scale would at first glance be thought of as a continuous field, since it can be inter-
polated between atoms using finite element shape functions. However, because the fine scale is defined only
at atomic positions, the total displacement and thus the coarse scale are discrete functions that are defined
only at atomic positions. For consistency, Greek indices (a,b, . . .) will define atoms for the remainder of this
paper, and uppercase Roman indices (I,J, . . .) will define coarse scale nodes.

The coarse scale is defined to be
�uðXaÞ ¼
X
I

N a
I dI . ð2Þ
Here, N a
I ¼ NIðXaÞ is the shape function of node I evaluated at point Xa, and dI is the FE nodal displace-

ment associated with node I.
The fine scale is defined to be the projection of the coarse scale subtracted from the total solution ua. In

other words, the fine scale represents that part of the total solution that the coarse scale cannot represent.
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For our purposes, we shall obtain the fine scale information from displacements q obtained from a molec-
ular dynamics (MD) simulation. We will select this projection operator to minimize the mass-weighted
square of the fine scale, which can be written as
J ¼
X
a

ma qa �
X
I

N a
IwI

 !2

; ð3Þ
where ma is the atomic mass of an atom a and wI are temporary coarse scale degrees of freedom. It should
be emphasized that (3) is only one of many possible ways to define an error metric. The error J is minimized
and the resulting fine scale is recombined with the coarse scale to obtain the total displacement as
u ¼ Ndþ q� Pq; ð4Þ
where
P ¼ NM�1NTMA ð5Þ

defines a projection matrix, MA is a diagonal atomic mass matrix and M is the consistent finite element
mass matrix. The final term in (4) is called the bridging scale. It is the part of the solution that must be
removed from the total displacement so that a complete separation of scales is achieved, i.e. the coarse
and fine scales are orthogonal, or linearly independent of each other.

2.1. Multi-scale equations of motion

The next step in the multi-scale process is to derive the coupled MD and FE equations of motion. This is
done by first constructing a Lagrangian L, which is defined to be the kinetic energy minus the potential
energy
Lðu; _uÞ ¼ Kð _uÞ � V ðuÞ. ð6Þ

Substituting the time derivative of (4) into the Lagrangian (6) gives
Lðd; _d; q; _qÞ ¼ 1

2
_d
T
M _dþ 1

2
_qTM _q� Uðd; qÞ; ð7Þ
where the fine scale mass matrix M is defined to be M ¼ QTMA, with Q � I � P. One elegant feature of (7)
that results due to the choice of error metric (3) is that the total kinetic energy has been decomposed into
the sum of the coarse scale kinetic energy plus the fine scale kinetic energy.

The multi-scale equations of motion are obtained from the Lagrangian by following the relations
d

dt
oL

o _d

� �
� oL

od
¼ 0; ð8Þ

d

dt
oL

o _q

� �
� oL

oq
¼ 0. ð9Þ
Substituting the Lagrangian (7) into (8) and (9) gives the coupled multi-scale equations of motion:
MA€q ¼ fðuÞ; ð10Þ
M€d ¼ NTfðuÞ. ð11Þ
Eqs. (10) and (11) define the coupled multi-scale equations of motion. As can be seen, (10) is simply the MD
equation of motion. Therefore, a standard MD solver can be used to obtain the MD displacements q, while
the MD forces f can be found using any relevant potential energy function. Furthermore, we can use stan-
dard finite element methods to find the solution to (11). One important note is that the finite element mass
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matrix M is defined to be a consistent mass matrix. It is also crucial to note that while the MD equation of
motion is only solved in the MD region, the FE equation of motion is solved everywhere.

The coupling between the two equations is through the coarse scale internal force NTf(u), which is a di-
rect function of the MD internal force f. In the region in which MD exists, the coarse scale force is calcu-
lated by extrapolating the MD force. The MD forces can therefore be thought of as defining the
constitutive relation for the finite element internal force. In the region in which MD has been eliminated,
the coarse scale force can be calculated in multiple ways. Details are provided in Wagner and Liu [9], Park
and Liu [13] and Qian et al. [14].

Because the coarse scale is defined to be the projection of the fine scale upon the coarse scale (FE) basis
functions, the FE equation of motion (11) is simply the projection of the MD equation of motion (10) on
the FE basis functions. To see that this is so, when the FE mesh is graded down such that a one-to-one
correspondence exists between atoms and nodes, the FE equation of motion (11) exactly converges to
the MD equation of motion (10). In the coarse scale limit, where the FE nodal spacing is much larger than
the atomic spacing, the FE equation of motion represents an approximation to the MD equation of motion
by way of the FE shape functions.

We note that the FE equation of motion is redundant for the case in which the MD and FE regions both
exist everywhere in the domain, because the FE equation of motion is simply an approximation to the MD
equation of motion. We shall remove this redundancy in the next section, when we create coupled MD/FE
equations of motion for systems where the MD region is confined to a small portion of the domain.

2.2. Elimination of unwanted fine scale degrees of freedom

In order to eliminate the unwanted fine scale degrees of freedom, we decompose (10) into coarse and fine
components, and rewrite the fine scale equation in component form as
€u0l;m;nðtÞ ¼
X
l0 ;m0;n0

M�1
A Kl�l0;m�m0 ;n�n0u

0
l0;m0;n0 ðtÞ þM�1

A fextl;m;nðtÞ; ð12Þ
where fextl;m;nðtÞ is the external force acting upon unit cell (l,m,n), the constant stiffness matrices K relate the
displacements in cell (�l 0,�m 0,�n 0) to the forces in cell (l,m,n) and the size of the summation represents the
range of the forces in the m and n coordinate directions. If longer ranged interactions are desired, this
approximation can be relaxed simply by increasing the interaction range of the K matrices, as shown in
Park et al. [15].

Using the standard techniques of Laplace and Fourier transforms as described in Wagner et al. [16],
Park et al. [17] and Karpov et al. [18], the unwanted fine scale degrees of freedom are eliminated while keep-
ing the effects of the unwanted fine scale degrees of freedom on the remaining lattice. The elimination of the
unwanted MD degrees of freedom is made possible due to the repetitive and periodic nature of regular crys-
tal lattices. By utilizing the periodicity of the lattice structure, the final form for the coupled MD and FE
equations of motion can be written as
MA€qðtÞ ¼ fðtÞ þ f imp
0;m;nðtÞ þ Rf

0;m;nðtÞ; ð13Þ
M€d ¼ NTfðuÞ; ð14Þ
where
f imp
0;m;nðtÞ ¼

X
m0;n0

Z t

0

hm�m0 ;n�n0 ðt � sÞ q0;m0;n0 ðsÞ � �u0;m0 ;n0 ðsÞ � Rd
0;m0 ;n0 ðsÞ

� �
ds. ð15Þ
Eqs. (13)–(15) represent the major results of this section. With these key equations having been derived,
several remarks are in order:
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• The first equation (13) defines the standard MD equation of motion, with key modifications. These mod-
ifications will be described in detail in the following exposition. It should be noted that the interatomic
forces f(t) can be derived from any anharmonic potential energy function.

• The second term on the right-hand side of (13), f imp
0;m;nðtÞ, contains the time history kernel h(t � s), and acts

to dissipate fine scale energy from the MD simulation into the surrounding continuum. We call this
external force the impedance force, which acts on the reduced MD system due to the eliminated fine scale
degrees of freedom. The numerical result is a non-reflecting boundary between the MD and FE regions,
as the time history kernel allows short wavelengths that cannot be represented by the surrounding con-
tinuum to leave the MD region. It is this term that plays the main role in distinguishing the bridging scale
from previous concurrent multi-scale approaches, as the ability of the method to dissipate high fre-
quency information which cannot be captured by the coarse scale can be demonstrated to be clearly
and unequivocably tied to the proper implementation of this term [9,13,17]. This second term acts only
on the MD boundary atoms; away from the MD boundary, this term is zero and the standard MD equa-
tions of motion result.

• It is important to note that all assumptions of linearity are completely contained within the time history
kernel h(t). The assumption of linearity arises due to the fact that a repetitive lattice structure is assumed
to exist; upon elimination of the unwanted fine scale degrees of freedom which are assumed to interact
linearly, one obtains the time history kernel representation h(t). Within the MD region, the interatomic
forces are nonlinear, and can be derived from any relevant potential energy function.

• We note that the time history kernel h(t) is a matrix whose size corresponds to the minimum number of
degrees of freedom in each unit cell; in three-dimensions, h(t) is a 3 · 3 matrix. The compact size of h(t)
distinguishes this approach from other methods, and results from the elimination of periodically repet-
itive fine scale degrees of freedom. The small size of h(t) enables us to achieve large computational sav-
ings by mathematically eliminating large portions of the lattice where an explicit atomistic representation
is not desired. Specifically, even as the number of eliminated fine scale degrees of freedom grows, the size
of h(t) remains constant.

• The final term on the right-hand side of (13), Rf
0;m;nðtÞ, is termed the random force, and represents the

thermal forces which act on the reduced fine scale degrees of freedom due to the eliminated fine scale
degrees of freedom. The random force acts to balance heat dissipated out of the MD region by the
impedance force (15), and thus behaves as a heat bath term acting on the reduced MD region. The
derivation and implementation of this term with regards to the bridging scale is found in the work of
Karpov et al. [10], and will be discussed later in this paper.

• Due to the elimination of the fine scale degrees of freedom for the l > 0 cells, the FE equation of motion
(14) is not redundant. The coarse scale thus has two major responsibilities. The first is to capture the long
wavelength nonlinear response of the system, while the impedance force described in a previous remark
accounts for the high frequency waves that cannot be captured by the coarse scale. The second major
role of the coarse scale relates to the coupling of the revised MD equation of motion (13) such that it
depends upon the coarse scale solution �u. It could be argued that the bridging scale is unnecessary
for problems in which all of the information originates in the MD region and propagates away, because
of the MD boundary conditions that were derived by Wagner et al. [16] and Karpov et al. [18]. However,
because of the dependence on the coarse scale solution, information can now propagate in the reverse
manner, i.e. starting in the continuum and ending up in the atomistic region. The coarse scale depen-
dence in (13) then serves as a boundary condition on the MD simulation. The coarse scale also effects
the MD simulation by controlling the motion of the ghost atoms, which exist such that the boundary
atoms have a full complement of atomic neighbors. The displacements for the ghost atoms are calculated
by interpolating the FE displacements of the element in which they lie. In this manner, a true two-way
coupling between the coarse and fine scales is achieved.



Fig. 1. Schematic illustration of bridging scale. Reprinted from [21], Copyright (2005), with permission from Elsevier.
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• A schematic for the bridging scale method is shown in Fig. 1. As can be seen, the fine scale has been
reduced to being active in a small portion of the domain, while the impedance force acting upon the fine
scale boundaries (13) accounts for the effects of the eliminated fine scale degrees of freedom.
3. Numerical examples

3.1. Finite temperature modeling of multi-scale systems

As was discussed in the previous section, one crucial extension to the bridging scale method is in imple-
menting the thermal forces Rf

0;m;nðtÞ in (13) such that a finite temperature atomistic region can be consid-
ered. This will be possible through the recent work of Karpov et al. [10]. In that work, the random
terms are modelled by utilizing the Gibbs distribution for a phonon gas along with a normal mode decom-
position. The Gibbs distribution can be written as
W ¼ 1

Z
exp � H

kBT

� �
; ð16Þ
where Z is the thermodynamic partition function, kB is the Boltzmann constant, and H is the lattice Ham-
iltonian. The random component of the displacements Rd

0;m;nðsÞ in (15) are determined by assuming a nor-
mal mode decomposition for the displacement vector. For a lattice in thermal equilibrium, it can be given as
a superposition of the standing waves
unðtÞ ¼
X
p;s

ap;s cos xp;st þ /p;s

� �
dp;se

ip�n; ð17Þ
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Fig. 2. Normalized kinetic energy of MD system for a target temperature of 600 K. Values closer to one indicate a more accurate
solution. Reprinted from [21], Copyright (2005), with permission from Elsevier.
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where s = 1,2, . . . ,S, and the vector p is comprised of the wave numbers pi ¼ 0;�2p=Ni; . . . ;
�ðNi � 2Þp=Ni; p. The oscillatory quantities ap;s cosðxp;st þ /p;sÞ are the normal coordinates. The values
ap;s and xp;s are the normal amplitudes and normal frequencies of the lattice; /p,s are initial phases. The
vectors dp,s determine the direction of polarization of normal vibrations. The thermal forces Rf

0;m;nðtÞ can
be found by multiplying the normal displacements (17) with the lattice stiffnesses K, as in (12).

Numerical examples demonstrate the ability of the method to perform even at high temperatures, for a
single scale, atomistics-only, one-dimensional chain of atoms interacting via a nearest neighbor Morse po-
tential. As can be seen in Fig. 2, the thermal terms R(t) balance the energy dissipated out of the system by
the time history kernel h(t), leaving the MD system in thermal equilibrium. The example shown is for a
target system temperature of 600 K, which is nearly half the melt temperature for this potential, demon-
strating the ability of the method to perform at high temperature and thus nonlinear oscillations of the lat-
tice. Examples utilizing this approach along with previous finite temperature bridging scale developments
[19] will be shown in future work.

3.2. Bending of carbon nanotubes

The bridging scale method has been successfully used in modeling buckling of multi-walled carbon nano-
tubes. The following two sections summarize work performed by Qian et al. [14]. The slight difference in
governing equations as compared to the dynamic case as well as all relevant details of the quasistatic bridg-
ing scale are given in that work, which introduces a virtual atom cluster (VAC) model for the continuum
modeling of carbon nanotubes.

In these simulations, a 15-walled carbon nanotube (CNT) is considered with the outermost shell being a
(150,150) nanotube, and all inner shells of the (n,n) type; from the outer most shell, n reduces by 5 every
layer. The length of the tube is 110 nm and the original MD system contains more than 3 million atoms.
This is replaced with a system of 27,450 particles. In addition to the particles, two sections along the tube
are enriched with the molecular structure of multi-walled nanotubes. The position of the enrichment region
is determined by a multi-resolution analysis of the coarse scale simulation. Therefore, the scheme is adap-
tive. The length of each enrichment region is 3.7 nm. Each section contains 42,000 atoms, which adds
246,000 more atomistic degrees of freedom.



Fig. 3. Multiscale analysis of a 15-walled CNT by the bridging scale. (a) The multi-scale simulation consists of 10 rings of carbon
atoms (with 42,000 atoms each) and a meshfree continuum approximation of the 15-walled CNT by 27,450 finite element nodes. (b)
The global buckling pattern is captured by the meshfree method whereas the detailed local buckling of the 10 rings of atoms are
captured by the molecular dynamics simulation. Reprinted from [6], Copyright (2004), with permission from Elsevier.
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A bending angle with an increment of 0.25�/step is imposed on both ends of the tube for a total of 100
steps. The multi-scale configuration is illustrated in Fig. 3a. Fig. 3b shows the buckling pattern approxi-
mated by the meshfree approximation at the final stage of loading, followed by the energy density contour
plot for each layer of the CNT. Two distinctive buckling patterns can be seen from the meshfree approx-
imation, while the contour plot clearly shows the strain energy concentration at the buckling point. A un-
ique advantage of using the multi-scale method is that the details of the molecular structure at the kinks are
able to be resolved; these cannot be resolved by the coarse scale representation alone. The atomic structure
of the buckling region for each layer of multi-walled CNT is plotted on the right-hand side of Fig. 3b.

3.3. VAC coupling with tight binding

Since the VAC model allows for the direct passage of information between first principles quantum
mechanical approaches and FEM, a fully coupled multi-physics approach can be developed to further ex-
tend the capabilities of the present FEM/meshfree-based simulation tools. Due to the fact that the VAC
model is a local representation, the resulting formulation is more computationally efficient than the full-
scale first principle method and therefore the length scale limit can be further extended. The details of this
extension can be found in [11].

In the following we will show a preliminary example in which the VAC model is fully coupled with a
semi-empirical quantum mechanical approach called tight-binding method. The system being considered is
a (9,0) single-walled carbon nanotube with 360 atoms (for an overview of the mechanics of carbon nano-
tubes, see Qian et al. [20]). As shown in Fig. 4, the system is discretized with 60 particles using a meshfree
interpolation [5]. An incremental twisting angle of 0.25�/step is imposed on both ends for 20 steps. For the
purpose of verifying the proposed VAC model, a benchmark simulation using a full-scale tight-binding
method is also performed. A comparison of the average energy of the system is shown in Fig. 5. As
can be seen, the results from the VAC model closely match those from the tight-binding method. How-
ever, the VAC model is much more computationally efficient compared to a full-scale tight-binding
simulation.



Fig. 4. Meshfree discretization of a (9,0) single-walled carbon nanotube.

Fig. 5. Comparison of the average twisting energy between VAC model and tight-binding model.
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3.4. Two- and three-dimensional examples of dynamic fracture

The verification of the dynamic bridging scale is done by considering dynamic fracture examples in mul-
tiple dimensions. In the first, two-dimensional benchmark problem, an atomistic pre-crack is generated in a
hexagonal lattice by preventing the interaction of two neighboring rows of atoms. Thus, when the tensile
waves generated by the boundary conditions applied to the continuum propagate into the atomistic region
via the two-scale coupling in (13), the crack opens naturally in tension. The atoms interact via a Lennard-
Jones 6–12 potential with nearest neighbor interactions, and model parameters r = � = 1 to simulate a
model brittle solid.

A full MD simulation was also run in which the entire domain was comprised of atoms. The bridging
scale simulation consisted of 91,051 atoms and 1800 finite elements, of which 900 were in the coupled
MD/FE region. Correspondingly, the full MD simulation consisted of 181,201 atoms. The results for



Fig. 6. (a) Initiation of atomistic crack. (b) Propagation of atomistic crack. (c) Potential energy contours ahead of atomistic crack just
before complete fracture of specimen occurs. Reprinted from [6], Copyright (2004), with permission from Elsevier.

Fig. 7. Three-dimensional out of plane crack branching for (left) full MD simulation and (right) bridging scale simulation.
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the bridging scale simulation are shown in Fig. 6. As can be seen, due to the two-way coupling in (13), the
information originating in the continuum eventually propagates into the atomistic region, and initiates the
propagation of the crack. A full atomistic simulation was performed for comparison; as shown in Park
et al. [17], the bridging scale matched extremely well in terms of crack initiation time and propagation
speed, all at fractions of the computational expense.
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Similar calculations have been performed in a three-dimensional FCC lattice interacting via a nearest
neighbors Lennard-Jones 6–12 potential, also by Park et al. [21]. The problem description is similar to
that of the two-dimensional example; the FE mesh exists everywhere, the MD region only in a small por-
tion of the domain, and a pre-crack within the center of the MD region. As can be seen in Fig. 7, the
bridging scale method again compares very well to the benchmark full MD simulation. Importantly, cru-
cial physics of material failure such as crack branching are faithfully captured by the bridging scale
simulation.

3.5. Dynamic shear banding in a micropolar continuum

While the bridging scale examples shown here describe the coupling of atomistic and continuum sim-
ulations, other applications of the bridging scale have successfully combined two finite element simula-
tions or varying resolution, as in Kadowaki and Liu [22]. In that work, a fine finite element mesh is
used to capture a localized region of interest, such as strain localization. Because it is extremely expensive
to maintain such a fine mesh in the entire domain, the bridging scale is used to eliminate the high fre-
quency waves emitted from the fine finite element region while coupling the coarse and fine finite element
meshes.

A two-dimensional shear failure problem is solved with a micropolar continuum and the proposed bridg-
ing multi-scale method. A bar of the size of 0.4 m · 0.04 m is compressed in the longitudinal direction by a
prescribed velocity at both ends. The entire domain is discretized by 80 · 8 coarse-scale finite elements,
while the central portion of 0.155 m is discretized by the fine-scale finite elements. The fine-scale mesh is
aligned to the coarse-scale mesh near the interfaces, while it is rotated 45� in the middle of the bar in order
to lie in the direction of the resultant shear bands. When the mesh was not aligned to the shear band, defor-
mation did not localize sharply.

The fine-scale mesh has 17,920 elements and 8 · 8 fine-scale elements occupy the same area as one
coarse-scale element near the interface. All the boundaries are moment free, and the top and the bottom
boundaries are stress free. Fig. 8 shows the accumulated effective plastic shear strain distribution for the
regularized by the micropolar continuum. Fig. 9 shows the total shear-strain profile inside the domain
of interest just after the waves created by the dynamic failure have passed away from this region. The pro-
posed dynamic interface prevents most of the reflection of high frequency waves, while one can clearly see
some reflections when the continuity of displacement is enforced at the interfaces.
Fig. 8. Regularized solution with the micropolar continuum. Reprinted from [22], Copyright (2004), with permission from Elsevier.



Fig. 9. Top: reflected high frequency waves when continuity of displacement is enforced at interfaces. Bottom: dramatically reduced
high frequency wave reflection using correct dynamic interface condition. Reprinted from [22], Copyright (2004), with permission from
Elsevier.
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4. Conclusions

We have presented in this work a new approach termed the bridging scale for solving coupled contin-
uum/atomistic problems. This approach offers the following distinct advantages over previously proposed
methods. Firstly, there is no need to mesh the finite element region down to the atomic scale at the MD/FE
border. High frequency waves which are emitted from the atomistic region are exactly accounted for in
terms of a lattice impedance force which acts upon the reduced fine scale region. Finally, the method is valid
not only for quasistatic analyses, but finite temperature dynamic problems.

We have validated the method on three nonlinear benchmark problems, those of quasistatic nanotube
bending and buckling, dynamic fracture in hexagonal and FCC lattices, and dynamic strain localization
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in a micropolar continuum. In these problems, the fine scale is present only in a small region of the domain,
in which it is crucial to capture either highly nonlinear atomistic or fine scale behavior, or to capture defects
that are generated in the lattice. Despite the reduction in the size of the atomistic domains, the bridging
scale simulations can be shown to faithfully reproduce the essential physics seen in a full atomistic simula-
tion at fractions of the computational expense. The only assumption of linearity utilized in deriving the ap-
proach is contained within the time history kernel h(t), which represents the behavior of the eliminated fine
scale degrees of freedom. Inside the MD region, the interatomic forces are nonlinear, and can be obtained
from any relevant potential energy function.

There are many future directions for research in this emerging area. One necessary extension is to allow
non-nearest neighbor interactions in deriving the time history kernel h(t), which represents the mathemat-
ically eliminated fine scale degrees of freedom. In this manner, realistic metallic interatomic potentials such
as EAM can be incorporated into the bridging scale. Research in this direction has indeed been performed
[15,23], and will be incorporated into future bridging scale work.

Another crucial extension lies in the time scales that are available to the MD simulation. While we have
eliminated the need to waste unnecessary time steps in updating the continuum simulation, the fact remains
that the MD simulation is the bottleneck in terms of computational expense. Work is already being per-
formed in this area by other researchers, such as in Voter et al. [24]. At some point in the future, it may
be possible to combine those approaches with the bridging scale to truly extend the time scales available
for the atomistic side of the simulation.

The coupling of the continuum to high accuracy atomistic, or quantum mechanical methods is work that
is currently being developed by Qian and Liu [11,12]; preliminary results in this direction have been shown
in this paper. This coupling of continua to quantum mechanical approaches is significant, as it extends the
length scales for which the bridging scale coupling is currently valid. Research along these lines for dynamic
coupling is also a future goal; in these cases, extensions of the non-reflecting MD boundary conditions
developed in [16,18,15] will be necessary to ensure a seamless coupling between quantum mechanics and
continua.

A final, but major thrust should be to extend the method to allow finite temperature MD simulations.
Because of the fact that the continuum exists everywhere, no special treatment is needed in the coupled
MD/FE region to accomodate a finite temperature MD simulation. The recently developed technique of
Karpov et al. [10] can be used to regulate the temperature within the MD region. However, there is cur-
rently no established manner in which the internal energy generated within the MD region is passed or rep-
resented accurately in the continuum region. Further research is needed to develop a heat conduction
equation for the coarse scale which can accurately represent the energy dissipated from the MD region
due to the impedance force.
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