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We utilize classical molecular dynamics to study flexural, or transverse wave propagation in

monolayer graphene sheets and compare the resulting dispersion relationships to those expected

from continuum thin plate theory. In doing so, we determine that regardless of the chirality for

monolayer graphene, transverse waves exhibit a dispersion relationship that corresponds to the

lowest order antisymmetric (A0) mode of wave propagation in a thin plate with plate thickness of

h ¼ 0:104 nm. Finally, we find that the achievable wave speeds in monolayer graphene are found

to exceed those reported previously for single walled carbon nanotubes, while the frequency of

wave propagation in the graphene monolayer is found to reach the terahertz range, similar to that

of carbon nanotubes. VC 2011 American Institute of Physics. [doi:10.1063/1.3633230]

I. INTRODUCTION

Graphene has recently been discovered as the simplest

two-dimensional crystal structure.1,2 Since then, graphene

has been intensely studied for its high electronic quality,3,4

for its potential in nanocomposites,5 for its remarkable me-

chanical strength,6 for its excellent thermal transport proper-

ties,7,8 and also for its potential as the basic building block of

future nanoelectromechanical systems (NEMS).9–15

As a basic building block for NEMS, graphene shows

particular promise for ultrasensitive detection of masses,

forces, and pressure due to its combination of extremely low

mass and extremely high mechanical stiffness.6,9,12 In all of

these sensing applications, graphene will be used as the sens-

ing element, and therefore will undergo transverse oscilla-

tions at extremely high frequencies. Because of this,

understanding the nature of transverse elastic wave propaga-

tion in monolayer graphene is of fundamental interest. Fur-

thermore, this also demonstrates the need to determine

whether well-established continuum mechanics relationships

for thin plates16,17 are able to describe the dispersion rela-

tionships for monolayer graphene.

There has previously been extensive theoretical and

computational effort to study elastic wave propagation in

both single and multi-walled carbon nanotubes using both

continuum beam and shell theories18–23 as well as discrete

atomistic calculations.24–26 In general, the continuum theo-

ries have been found to adequately describe the dispersion

relationships of carbon nanotubes (CNTs) at low wave num-

bers, while modifications to the continuum theories, for

example, using non-local enhancements,18,19,22,25 have been

found to be necessary at higher wave numbers to account for

atomic-scale or microstructural effects. However, the litera-

ture on wave propagation in graphene monolayers is consid-

erably less developed.27,28

Therefore, the major purpose of this work is to utilize

classical molecular dynamics (MD) simulations, study flex-

ural (transverse) wave propagation in monolayer graphene

sheets, and compare the resulting dispersion relationships to

those obtained using classical continuum thin plate theo-

ries.16,29 We determine the effective plate thickness using

dispersion relationships and find that regardless of the chiral-

ity of monolayer graphene, transverse waves exhibit a dis-

persion relationship that corresponds to the lowest order

antisymmetric (A0) mode of wave propagation in a thin plate

with plate thickness of h ¼ 0:104 nm.

II. SIMULATION METHODOLOGY

For monolayer graphene, the MD simulations were per-

formed on a rectangular monolayer of graphene with dimen-

sions 147.6 nm � 1.70 nm, which consisted of 9600 carbon

atoms. Periodic boundary conditions were utilized in the y
(1.70 nm) direction to mimic an infinite graphene monolayer,

while transverse waves propagated along the x (147.6 nm)

direction.

We utilized the second generation Brenner potential

(REBO-II) (Ref. 30) for all intralayer carbon-carbon interac-

tions; the REBO-II potential takes the form18,30

E ¼
X

i

X
j 6¼i

ERðrijÞ � bijEAðrijÞ
� �

; (1)

where rij is the distance between atoms i and j, bij is the bond

order function, which accounts for the effects of neighboring

atoms on the bond strength, and EA and ER are attractive and

repulsive functions, which take the form

ERðrijÞ ¼ fcðrijÞ 1þ Q

rij

� �
A expð�arijÞ; (2)

EA ¼ fcðrijÞ
X3

n¼1

Bn expð�bnrijÞ; (3)
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where fc is a cut-off function, and the parameters Q, A, a, B,

and b are parameters for the potential that are given by Bren-

ner et al.30 We note that this potential has been shown to

accurately reproduce binding energies, force constants, and

elastic properties of graphene and has been utilized in prior

studies of wave propagation in CNTs.18,20

The MD simulations were performed where the system

was initially at 0 K, i.e., no initial random velocities corre-

sponding to a specific temperature was applied to the atoms.

The simulations were performed using a time step of 0.5

femtoseconds (fs), where the MD equations of motion were

integrated using a standard velocity Verlet time integrator,

and where no external reservoir was utilized to control the

temperature or pressure of the system. Because we did not

explicitly control the system temperature during the simula-

tion, the temperature of the system did increase slightly due

to the addition of minute amounts of energy through the

applied sinusoidal transverse displacements, as described

below, to excite the flexural wave propagation. However, it

was verified that temperature increases of less than 5 K were

observed for all simulations, thus ensuring that the simula-

tions were performed at effectively 0 K. While low-

temperature quantum mechanical effects are not captured by

classical MD, the key factor to ensure accuracy of the disper-

sion calculations is the elastic stiffness of graphene, which is

well-captured by the REBO-II potential, and which is known

to show little deviation from 0 K to room temperature.

In order to obtain the dispersion relationships, we follow

the methodology described by Wang and Hu25 and Hu et al.18

To do so, we applied sinusoidal transverse displacements with

different periods of oscillation T at one end of the graphene

sheet, while atoms at the other end of the sheet were fixed; the

amplitude of the input sinusoidal wave was 0.02 Å to ensure

linear wave propagation. Upon propagating a transverse wave

through the graphene monolayer, standing waves are formed

by the superposition of the outgoing and reflected waves.

From the formation of the standing waves, the propagation

duration Dt of the wave from a point x1 to a point x2 along the

monolayer can be written as

Dt ¼ ðt32 � t31Þ þ ðt42 � t41Þ þ :::þ ðtn2 � tn1Þ
n� 2

; (4)

where t32 is the time of the third peak of oscillation measured

at x2, t31 is the time for the third peak of oscillation to reach

x1, and n is the total number of oscillation peaks considered,

which is typically about 10.

In the present numerical examples, x1 corresponds to a

point that is 3.94 nm from the end of the graphene sheet where

the sinusoidal wave is input, while x2 corresponds to a point

that is 7.87 nm from the end of the graphene sheet where the

sinusoidal wave is input. We show in Fig. 1 the displacement

time history at points x ¼ 0; 3:94, and 7.87 nm for an input

transverse wave of period T ¼ 300 fs; the time for different

peaks of oscillation (t31, t32, etc.) that are needed to evaluate

the propagation duration Dt are labeled for clarity.

Once the propagation duration Dt is known, the phase

velocity c, and the wave number k, which are required to cal-

culate the dispersion relationship, can be found as

c ¼ x2 � x1

Dt
; (5)

and

k ¼ 2p
k
¼ xT

k
¼ x

c
; (6)

where the angular frequency x is related to the period T by

the relationship

x ¼ 2p
T
: (7)

III. CONTINUUM THIN PLATE THEORY

We also discuss the results from the MD simulations

within the context of dispersion relationships obtained for

continuum thin plate theory by Lamb.16 This comparison is

made because the situation we have considered in our MD

simulations, in which the graphene monolayer is infinite

through usage of periodic boundary conditions in the direc-

tion transverse to the wave propagation, is similar to that of a

Lamb wave propagating along an infinite thin plate.16 We

consider graphene to be a plate, rather than a membrane,

because a membrane is defined as a thin structure that has a

negligible bending modulus. However, unlike membranes, a

plate can sustain bending deformation because its bending

strength is comparable to its tensile and compressive

strength. In the case of graphene, recent experimental31 and

theoretical studies32 have clearly shown that its bending ri-

gidity is not negligible compared to the Young’s modulus.

We note that recent theoretical work has examined the valid-

ity of the thin plate approximation for the bending deforma-

tion of graphene monolayers.17

The dispersion relationship for thin plates is given by

Losin29 and is written as

tan ga
tan gb

þ ð1� b2Þ2

4ab

 !61

¼ 0; (8)

where a ¼ ððv=vlÞ2 � 1Þ1=2
and b ¼ ððv=vsÞ2 � 1Þ1=2

; vl is

the longitudinal wave speed, vs is the shear wave speed, v is

the phase velocity, g ¼ kh=2, where k is the wave number

and h is the thickness of the plate, and where the positive

power refers to the symmetric mode while the negative

power refers to the antisymmetric mode of wave propaga-

tion. For the Brenner (REBO-II) potential that we have uti-

lized in the present work,30 the wave speeds were previously

calculated by Arroyo and Belytschko32 and found to be

vl ¼ 19:47 km=s, vs ¼ 10:69 km=s.

We note that while there has been extensive interest in

recent years in determining the effective continuum plate

thickness h due to the similarity of carbon nanotubes and

graphene sheets to thin plates or shells,32–39 none of these

studies has determined the effective plate thickness from

wave propagation via thin plate dispersion relationships. We

now discuss the dispersion relationships for graphene
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monolayers and their relationships to those expected from

continuum thin plate theory from the solution of Eq. (8).

IV. DISPERSION RESULTS FOR FLEXURAL WAVE
PROPAGATION IN MONOLAYER GRAPHENE

The dispersion relationships for transverse wave propa-

gation in a graphene monolayer are shown in Fig. 2; the

results include those obtained from the MD simulations, and

those obtained through solution of the continuum thin plate

Eq. (8) assuming that monolayer graphene has an equivalent

plate thickness of h¼ 0.07, 0.104 and 0.34 nm. While excel-

lent agreement is observed for the h¼ 0.104 nm thickness

case, the relevance and meaning of all thicknesses will be

discussed later.

Figure 2 demonstrates clearly that for transverse wave

propagation in a graphene monolayer, significant dispersion,

or dependence of the phase velocity upon the wave number,

is observed at all wave numbers. In comparison to previously

obtained results for carbon nanotubes, we find that graphene

can support wave propagation at higher wave numbers than

can nanotubes. This is not surprising as previous studies of

flexural wave propagation in CNTs (Ref. 25) considered the

transverse deflection or bending of CNTs. However, the

equivalent mode of deformation for CNTs that corresponds

to that excited in graphene in the present work would be a

breathing mode of deformation, which can support shorter

FIG. 1. (Color online) Time histories of

the transverse deflection at different

positions along the graphene monolayer.

(a) The sinusoidal wave of period

T¼ 300 fs input at x ¼ 0. (b) The deflec-

tion x ¼ 3:94 nm. (c) The deflection at

x ¼ 7:87 nm.
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wavelengths than can the transverse bending mode of CNTs.

For example, as reported by Wang and Hu,25 the phase ve-

locity begins to decrease for nanotubes at a wave number of

about 6� 109 m�1 for (5,5) armchair nanotubes, and at a

wave number of about 2� 109 m�1 for (10,10) armchair

nanotubes. In contrast, graphene is observed in Fig. 2 to be

able to support propagating transverse waves with wave

numbers up to about 15� 109 m�1, above which wave prop-

agation is unable to occur.

The dispersion that occurs during transverse wave prop-

agation in graphene is illustrated in Fig. 3. There, we show

snapshots of the transverse wave propagation for input waves

with a period ranging from 80 to 1000 fs. As is clearly

observed in Fig. 3, severe dispersion is observed; higher fre-

quency waves propagate with higher velocities than do lower

frequency waves. While we note again that graphene can

support transverse waves with higher wave numbers than

can carbon nanotubes, the general shape of the dispersion

relationship for monolayer graphene in Fig. 2 is quite similar

to that reported for single walled carbon nanotubes.25

FIG. 2. (Color online) Comparison of dispersion relationships obtained using

MD simulations and thin plate theory in Eq. (8) for both longitudinal and

transverse wave propagation. The plate thickness for the continuum thin plate

dispersion relationship in Eq. (8) is set as h ¼ 0.07, 0.104, and 0.34 nm.

FIG. 3. (Color online) Snapshots of transverse wave propagation in graphene monolayer with different input periods (T) of oscillation at time¼ 3 ps.
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A. Comparison of MD results with continuum thin
plate theory for monolayer graphene

As discussed earlier, Fig. 2 showed the dispersion rela-

tionships obtained both from MD simulations and also from

the solution of the continuum thin plate Eq. (8). As previ-

ously shown in Eq. (8), one of the key parameters in the con-

tinuum thin plate dispersion relationship is the variable

g ¼ kh=2, where k is the wave number and h is the plate

thickness. The continuum plate theory dispersion results

shown in Fig. 2 were obtained by setting the plate thickness

h ¼ 0:104 nm; for that value of plate thickness, the MD dis-

persion relationship exactly matches the continuum thin

plate dispersion relationship for transverse waves, or the

lowest order antisymmetric mode (A0) of wave propagation,

for all wave numbers for which wave propagation is sup-

ported by monolayer graphene. Furthermore, a similar agree-

ment is observed for wave propagation along both the

armchair and zigzag directions of monolayer graphene.

For comparison, we also show results obtained by

assuming different thicknesses of graphene as also seen in

Fig. 2. In particular, we choose two additional values of in-

terest. First, Fig. 2 also shows results assuming that the thick-

ness of a graphene monolayer is h ¼ 0:34 nm. This value has

been used extensively in continuum shell theory approxima-

tions of nanotubes and graphene39 and corresponds to the

interlayer thickness in multilayer graphene sheets or multi-

walled carbon nanotubes. If the dispersion relationships from

the MD simulations are scaled by this thickness, the trends

match those from Eq. (8) for transverse wave propagation.

However, the curves do not align, which clearly demon-

strates that setting the thickness of the monolayer graphene

sheet to be h ¼ 0:34 nm is incorrect.

We also show results in Fig. 2 assuming that the thick-

ness of the graphene monolayer is h ¼ 0:07 nm; this value

was chosen as it represents an average of the thickness range

of 0.05 to 0.09 nm that is typically used in continuum shell

theories for nanotubes and graphene.39 As seen in Fig. 2,

choosing the thickness to be 0.07 nm also leads to discrepan-

cies in comparison to the MD dispersion relationships, as the

transverse phase velocity is underpredicted. The results in

Fig. 2 thus indicate that for the presently utilized Brenner

potential,30 the correct plate thickness is about h ¼ 0:104 nm

for transverse wave propagation.

We also place the effective plate thickness of h ¼ 0:104

nm of graphene in the context of previous studies of carbon

nanotubes and graphene28,32–38; an extensive study and anal-

ysis of these approaches is given by Huang et al.39 By fitting

results obtained from atomistic simulations of either tension

or bending to continuum shell theory, an effective nanotube

thickness of about 0.05–0.09 nm has been reported;39 as

recently observed by Huang et al.,39 this thickness depends

both on the interatomic potential utilized, as well as the load-

ing methodology. The effective thickness reported here

(h ¼ 0:104 nm for transverse wave propagation) is close to

the range of values reported previously, while emphasizing

that, to the best of the authors’ knowledge, the effective con-

tinuum plate thickness for monolayer graphene has not been

determined previously from dispersion relationships.

There are additional points that should be noted in com-

paring the dispersion relationships obtained from MD and

from continuum thin plate theory. For example, in the high

wave number limit in continuum thin plate theory, the trans-

verse wave speeds approach the Rayleigh wave speed. How-

ever, due to the discrete, atomic nature of the graphene

monolayer, we find through the MD simulations that for

transverse wave propagation, waves with wavelength smaller

than about 3.88 Å are unable to propagate through the gra-

phene monolayer. Therefore, the Rayleigh wave speed is

unattainable in graphene monolayers; this explains why there

are no data points from the MD simulations at high wave

numbers in Fig. 2. However, because of the similarity

between the MD and continuum dispersion relationships, we

report that the Rayleigh speed in the graphene sheet, which

represents the limiting value of the phase velocity as the

wave number increases in Fig. 2, would be about 9.89 km=s.

V. CONCLUSIONS

In conclusion, we have utilized classical molecular dy-

namics to obtain the dispersion relationships for flexural or

transverse wave propagation in monolayer graphene sheets.

One key finding is that continuum thin plate theory well

approximates the dispersive behavior for flexural wave prop-

agation in monolayer graphene. Furthermore, for the pres-

ently utilized interatomic potential,30 we have found that

regardless of the chirality, if the graphene monolayer is

assumed to have a thickness of h ¼ 0:104 nm, the dispersion

relationships obtained from the molecular dynamics simula-

tions agree with those obtained from continuum thin plate

theory for transverse wave propagation.
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