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SUMMARY

We present a novel approach to numerical modelling of the crystalline solid as a heat bath. The approach
allows bringing together a small and a large crystalline domain, and model accurately the resultant
interface, using harmonic assumptions for the larger domain, which is excluded from the explicit model
and viewed only as a hypothetic heat bath. Such an interface is non-reflective for the elastic waves, as
well as providing thermostatting conditions for the small domain. The small domain can be modelled
with a standard molecular dynamics approach, and its interior may accommodate arbitrary non-linearities.
The formulation involves a normal decomposition for the random thermal motion term R(t) in the
generalized Langevin equation for solid–solid interfaces. Heat bath temperature serves as a parameter
for the distribution of the normal mode amplitudes found from the Gibbs canonical distribution for the
phonon gas. Spectral properties of the normal modes (polarization vectors and normal frequencies) are
derived from the interatomic potential. Approach results in a physically motivated random force term R(t)
derived consistently to represent the correlated thermal motion of lattice atoms. We describe the method
in detail, and demonstrate applications to one- and two-dimensional lattice structures. Copyright q 2006
John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the past decades, there has been a concerted effort in using classical molecular dynamics
(MD) simulations for the study of atomic scale phenomena. However, modern atomistic simulations
are restricted to very small systems consisting of several million atoms or less and timescales
on the order of picoseconds. One possibility to increase the effective size of the system for a
reasonable computational cost consists of removing atomic degrees of freedom associated with a
bulk ‘heat bath’ region in favour of an effective thermostat, which surrounds a localized region
under investigation and maintains heat exchange between the small simulated domain and peripheral
media.

A large effort has been made to properly model the mechanism of heat exchange, including the
thermostatting approach of Berendsen et al. [1]. The basic idea behind the thermostatting approach
is to modify the MD equations of motion with a non-conservative friction force, which represents
coupling to an external heat bath and scales the atomic velocities on the course of a numerical
simulation to add or remove energy from the system as desired. Other approaches applicable for
gaseous and liquid domains are the stochastic collisions method of Andersen [2], and the extended
systems method originated by Nosé [3] and Hoover [4], which incorporates the external heat bath
as an integral part of the system. They accomplished this by assigning the reservoir an additional
degree of freedom, and including it in the system Hamiltonian.

The long-term issues associated with the application of heat bath approaches to crystalline solids
and polymers, i.e. strongly coupled lattice structures, are the following: (1) energy dissipation
is modelled with the viscous friction model, where the frictional force is proportional to the
instantaneous atomic velocities; however, energy dissipation in lattice structures is determined by
a time history of the atomic motion [5–9]; (2) initial conditions are sampled as independent random
quantities, though there is a statistical correlation in the motion of adjacent lattice atoms.

The time-history-dependent energy dissipation can be described by means of the generalized
Langevin equation (GLE) as follows. Assume that the entire structure under investigation consists
of three spatial domains: �P, �I and �Q, see Figure 1. These are the principal domains where a
detailed MD solution is sought, the interfacial, and the peripheral (heat bath) domains, respectively.
The shape of the interfacial domain �I is determined by the range of an interatomic potential,
structural geometry, and a possible atomistic-to-continuum coupling scheme. A common form of
the GLE written for atoms in the interfacial region gives [6]

mẍ In = −�U (xP, x I, xQ = 0)

�x In
+∑

n′

∫ t

0
�nn′(t − �)ẋ In′(�) d� +∑

n′
�nn′(t)x In′(0) + RI

n(t) (1)

where the P–I and I–I interactions are assumed harmonic, and x is a component of displacement
for an atom associated with the periodic cell of n in the lattice structure. The bold notation n
stands for a set of integer indices, such as (n), (n,m) or (n,m, l) used to identify lattice repetitive
cells along the interface; examples of this nomenclature are shown in Figure 3. The lattice indices
are viewed in the range n = n0, . . . , n0 + N , m =m0, . . . ,m0 + M , l = l0, . . . , l0 + L , where n0,
m0, l0 are some starting values, and values N , M and L refer to the physical dimensions of the
lattice along the corresponding directions. Value R is a stochastic function of time that represents
the effect of random thermal vibrations. Standard MD equations of motion over the principal
domain �P are solved simultaneously with (1). The function U is the system potential energy
with the atoms in �Q fixed at their equilibrium positions. � is a component of a large time-history
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(Heat bath)Q

P

I

Figure 1. Principal domain of interest �P in thermal contact with a peripheral region
�Q. �I is an interfacial region.

kernel (THK) matrix, whose dimension is determined by the number of degrees of freedom in �I.
This matrix adequately describes the response of the outer domain �Q due to disturbances in the
interfacial domain �I in terms of the I–I correlation.

One important consequence of such a formulation is that propagation of outward progressive
waves across the interface in numerical simulations takes place with virtually no artificial reflection.
The waves are absorbed by the interface exactly in the same manner, as if the hypothetical
domain �Q was actually present [6–8]. This feature of the GLE formulation is also valuable for
the purpose of multiscale atomistic/continuum simulation using the bridging scale methodology
[8, 10–14]. Other approaches incorporating a finite temperature formulation in the multiscale
context include the works by Dupuy et al. [15], E et al. [16], Qu et al. [17], Strachan and Holian
[18], Curtarolo and Ceder [19], Xiao and Belytschko [20], and Park et al. [21].

For a planar interface corresponding to a specific crystallographic direction in the lattice,
Equation (1) can be simplified to a form with a compact THK, which is symmetric with respect
to translations along the interface. It is also convenient to rewrite the convolution integral in
terms of displacement values and separate the I–Q correlation as follows [7–9]:

mẍ In = −�U (xP, x I, xQ)

�x In
(2a)

xQn =∑
n′

∫ t

0
�n−n′(t − �)x In′(�) d� + RQ

n (t) (2b)

Here, the convolution integral and the random term R in (2b) yield displacement components rather
than forces, in contrast with Equation (1). The summation is accomplished along neighbouring
lattice cells at the interface only. � is the compact THK, whose dimension is determined only by the
number of degrees of freedom in one repetitive lattice cell; the subscript n−n′ indicates � is spatially
invariant along the interface, and depends only on the distance between the current and neighbouring
cells. Displacements (2b) can be treated as dynamic boundary conditions for the standard MD
equation of motion (2a). Such a treatment is convenient for the practical implementation of the
GLE methodology into readily available MD codes. In case that the interface �I represents a
convex polyhedron, rather than a plane, the treatment (2) is applied separately to all faces of the
polyhedron [7, 9].
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E and Huang [22] recently proposed a dynamic matching conditions for the coupled atomistic-
continuum simulation of solids. The authors introduce a measure of phonon reflection at the
interface as a functional over the atomic boundary displacements sought, and find the match-
ing conditions by minimizing the phonon reflection. The present method provides an alternative
methodology, which allows also inward flow of thermal energy in its current form, and is based on
the time-history integral and lattice Green’s function ideas dating back to the works by Adelman
and Doll [5, 23].

One important issue that remains open in the GLE formulation (1) or (2) is an appropriate form of
the random thermal term R. This term represents time evolution of the atomic force or displacement
within the harmonic model given the initial conditions only. Earlier in the literature [5, 23], and also
below in this paper (Section 2), an exact expression for R is shown to incorporate atomistic degrees
of freedom in the entire heat bath domain; this is intractable in terms of numerical modelling.
Furthermore, the random function R cannot be sampled as an independent Gaussian variable at
all times, because there is a correlation of the thermal noise in lattices in both time and space (see
Appendix A.4). This correlation arises due to the coupled nature of crystal lattices, as contrasted
to liquids and gases, where the thermal noise is completely uncorrelated. Finally, the term R must
represent the canonical ensemble.

These issues can be resolved by the approach proposed in this paper, where the random thermal
noise R possesses all the adequate statistical properties imposed by the canonical distribution,
including the time/space correlations. The main idea of this approach is in the following. For
harmonic lattices, the Hamiltonian can be decoupled in the normal co-ordinates, and the set of
lattice normal modes can be viewed formally as a gas of non-interactive quasiparticles, or phonons.
Statistical distributions of the random amplitudes and phases of the individual normal modes can
be then derived from the Gibbs canonical distribution for the phonon gas at a given temperature T .
A linear combination of the normal modes with the random amplitudes and phases provides finally
the random displacement term R.

We will focus on the displacement variant of the GLE formulation, and derive systematically an
equation similar to (2), though more detailed in terms of practical implementation. Next, we derive
semi-analytical expressions for the memory kernel � and the random displacement function R for
a general lattice, using the assumption that the peripheral domain �Q has a uniform temperature
field. This implies that �Q is regarded as a heat bath or heat sink, whose temperature and internal
energy are not greatly affected by the P–Q heat exchange.

The remainder of the paper is arranged as follows: Sections 2–4 detail with the theoretical
aspects of the method. Section 5 provides applications to one- (1D) and two-dimensional (2D)
lattice models, and Section 6 concludes the paper.

2. MD BOUNDARY CONDITIONS

In this section, we rewrite boundary conditions (2b) for the generalized Langevin formulation
(2) in a form convenient for practical implementation in MD simulations. In the course of our
discussion we obtain formal semi-analytical expressions for the THK and a general form of the
random displacement term in (2b).

As mentioned in Section 1, the THK describes response of the outer domain �Q due to distur-
bances originating in the principal domain �P and passing across the interfacial domain �I. An
assumption required for a straightforward characterization of the response in the outer domain is
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that the interface �I can be comprised by a group of plane- or slab-like interfaces. Each of these
interfaces is to be treated according to the formulation presented below in this paper. Such an
assumption, in principle, imposes limitations on allowed shapes of the principal domain, which is
expected in the form of a convex polyhedron, though not necessarily regular. See the schematic
drawing in Figure 1. Since the principal region is only a computational domain, which does not
necessarily represent an element of intrinsic physical structure of the solid, this assumption is
considered as acceptable. We also require that the outer domain behaves only as a thermostat or
heat sink so that progressive waves entering �Q are not reflected back by peripheral boundaries
of this domain.

A straight line or plane-like boundary can be defined by fixing one of the lattice site indices in
the triplet n= (n,m, l). Due to translational symmetry, we can employ any specific value of this
index; the final results will be identical. For example, let l = 0. This problem statement corresponds
to dividing the entire structure under investigation into the principal, interfacial and bulk peripheral
regions in accordance with the following:

�P : l<0, �I : l = 0, �Q : l�1 (3)

We will be looking for the bulk domain response only in the immediate vicinity of the interface,
i.e. only for atoms (n,m, 1). In other words, our task is to express the displacements vectors
un,m,1 in terms of un,m,0. We note that the unit (repetitive) cell, denoted by the triplet n= n,m, l,
should be chosen large enough, so that atoms in the slab l = 0 interact only with atoms in the slab
l = 1; this requirement is convenient for the purpose of below discussion. Such a unit cell may
be represented by the elementary Wigner–Seitz cell, or be comprised of several elementary cells,
depending on the range of the lattice potential.

For atoms in the interfacial and peripheral regions, it is convenient to write the linearized
equation of motion in the form [10]:

Mün(t) −∑
n′

Kn−n′ un′(t) = 0, n= (n,m, l�0) (4)

where un is a vector of displacements of atoms about their equilibrium positions in the unit
cell n. K are the lattice stiffness matrices, or ‘K-matrices’, which represent linear elastic properties
of the lattice structure. These matrices are comprised of the atomic force constants

Kn−n′ =− �2U (u)

�un�un′

∣∣∣∣∣
u=0

(5)

where U is the lattice potential written in terms of the atomic displacements. Due to symmetry of
the second-order derivative in (5), K-matrices have the following general property:

Kn =KT−n (6)

We seek a solution to the boundary value problem governed by (4), where the interfacial displace-
ments un,m,0 are enforced and known, and the displacements un,m,1 are to be determined.

An important detail regarding the solution of this problem consists in realizing that the motion
of the boundary atoms can be caused either by the displacements of the atoms to be kept, or by
an external force acting upon the interfacial atoms in a hypothetical large lattice that extends also
for l<0. Therefore, we assume that the motion of the boundary atoms is due to unknown external
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forces, which act at l = 0. Thus,

Mün(t) −∑
n′

Kn−n′ un′(t) = �l0 fn,m,0 (7)

where � is the Kronecker delta (A10).
Formal application of the Laplace (A4) and discrete Fourier transforms (DFTs) (A11) to

Equation (7) gives

Û(p, �) = Ĝ(p, �)F̂0(p, �) + R̂(p, �) (8)

Ĝ(p, �) = (�2M − K̂(p))−1 (9)

R̂(p, �) =MĜ(p, �)(�û(p, 0) + ˆ̇u(p, 0)) (10)

where the transformed force, F̂0(p, �) ≡ F̂0(p, q, �). Substitution of this force into (8) and further
application of the inverse DFT over r → l lead to

Ũl(p, q, �) − R̃l(p, q, �) = G̃l(p, q, �)F̂0(p, q, �) (11)

Here, the tilde notation stands for the mixed (transform/real space) quantities that depend on l
and the transform variables p, q and �. The force vector F̂0 can be eliminated by writing two
equations (11), for l = 0 and 1, and substituting F̂0 from the first of these equations into the second:

Ũ1(p, q, �) − R̃1(p, q, �) = H̃(p, q, �)(Ũ0(p, q, �) − R̃0(p, q, �)) (12)

H̃(p, q, �) = G̃1(p, q, �)G̃−1
0 (p, q, �) (13)

Finally, application of the inverse DFT transform (A14) over p→ n and q →m, and the inverse
Laplace transform onto (12) result in a solution of the form

un,m,1(t) = ∑
n′,m′

∫ t

0
d� hn−n′,m−m′(t − �)(un′,m′,0(�) − Rn′,m′,0(�)) + Rn,m,1(t) (14)

In this expression

hn,m(t) =L−1
�→tF

−1
p→nF

−1
q→m{G̃1(p, q, �)G̃−1

0 (p, q, �)} (15a)

G̃l(p, q, �) =F−1
r→l{Ĝ(p, �)}, p≡ (p, q, r) (15b)

where the symbols F−1 and L−1 stand for the inverse DFT and Laplace transform, respectively.
The vector R depends on the initial conditions (the capital letter R is used for both Laplace and
time domain functions)

Rn(t) =M
∑
n′

(gn−n′(t)u̇n′(0) + ġn−n′(t)un′(0)) (16a)

gn(t) =L−1
�→tF

−1
p→nF

−1
q→mF

−1
r→l{Ĝ(p, �)} (16b)
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The time-dependent matrix function g is known as the lattice dynamics Greens function [7, 10].
This function describes response of a large, non-constrained lattice to localized unit excitations,
or localized perturbations of initial conditions.

Solution (14) can serve as a boundary condition to the MD equation of motion (2a), provided
that the atoms in a given plane or slab of constant l interact only with each other and with atoms
in the adjacent slabs l − 1 and l + 1. For longer ranged forces, the size of the unit cell must be
increased so that this requirement is satisfied. At the same time, range of the interaction along the
directions n and m can be arbitrary. Boundary conditions of the type (15)–(16) were also discussed
in [7, 9] with the assumptions that the interface is initially at rest, and temperature of the external
region is zero at all times; within these settings, Rn(t) = 0.

Below we rewrite the boundary condition (14) in the sample extended forms corresponding to
1D, 2D and 3D lattices, respectively:

u1(t) =
∫ t

0
h(t − �)(u0(�) − R0(�)) d� + R1(t), �I : n = 0 (17a)

un,1(t) =
n+nc∑

n′=n−nc

∫ t

0
d� hn−n′(t−�)(un′,0(�)−Rn′,0(�))+Rn,1(t), �I :m = 0 (17b)

un,m,1(t) =
n+nc∑

n′=n−nc

m+mc∑
m′=m−mc

∫ t

0
d� hn−n′,m−m′(t − �)

×(un′,m′,0(�) − Rn′,m′,0(�)) + Rn,m,1(t), �I : l = 0 (17c)

For most potentials, it is proper to truncate the convolution sums at nc,mc = 4 . . . 6; such a
truncation can significantly reduce computational cost of these boundary condition [7].

The boundary conditions in one of the forms (17) are convenient for practical implementation,
because the THK (15) has a compact size of S × S, where S is the number of degrees of freedom in
one unit cell only. Furthermore, matrix h is a fundamental structural characteristic of the periodic
lattice; it is unique for a given lattice model and a specific crystallographic plane. This plane is
coplanar with the interface �I. The THK relates the displacement solution in �Q with the localized
boundary perturbations. The physical meaning of the kernel h is explained in Figure 2. Numerical
evaluation of the time history kernel (15) is straightforward by utilizing the numerical methods
for Laplace and DFT inversion, which are reviewed in the Appendix.

3. NORMAL MODE REPRESENTATION OF THE RANDOM NOISE

There are three important observations regarding the original structure of random displacement
term R, Equation (16), in the boundary conditions (17). First, it requires expensive evaluation of
the lattice Green’s function g over the entire structure including the hypothetical heat bath region.
Second, it requires knowledge of initial conditions for all atoms, such that the lattice is found in
thermodynamic equilibrium at a given heat bath temperature T . Both of these requirements make
direct usage of the formulation impractical.

Meantime, the third observation is crucial in the sense that it allows resolving the first two
issues in a numerically tractable manner: in fact, the random vector (16) satisfies the homogeneous
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I

Figure 2. The sth column of kernel matrix h shows the vector of displacements for the current
cell (n, 1), due to the sth unit component of a boundary displacement vectors at (n′, 0), with

the rest of boundary being fixed.

equation of motion (4). Indeed, for a zero external force vector F̂ in the right-hand side of Equation
(8), one obtains

Û(p, �) = R̂(p, �) (18)

The above observation is important for the following reasons. Assume that the heat bath �Q is
in thermal equilibrium at t = 0. Then the initial conditions in (16a), and therefore the vector R, can
be associated with the equilibrium thermal motion only. Indeed, all non-equilibrium, non-random
effects in �Q are described by the kernel matrix h in (14) or (17). The equilibrium oscillations,
imposing no energy transfer across the interface, can be most naturally represented by the normal
mode solutions to Equation (8), i.e. by a superposition of free-standing waves in the lattice structure.
These solutions has been well studied in literature, e.g. [10, 24, 25]. With the present notations,
the normal mode representation gives [10]

Rn(t) =u+
n (t) + u−

n (t) (19)

where u± are the real-valued vectors

u+
n (t) =∑

p,s
a+
p,s cos(�p,s t + �+

p,s)(cos(p̃ · n)Redp,s − sin(p̃ · n) Imdp,s) (20a)

and

u−
n (t) =∑

p,s
a−
p,s cos(�p,s t + �−

p,s)(sin(p̃ · n)Redp,s + cos(p̃ · n) Imdp,s) (20b)

where p̃= 2�(p/N , q/M, r/L), and p= (p, q, r) is a vector of integer wave numbers. The
operators Re and Im give the real and imaginary parts of the polarization vectors d determined by
the parametric eigenvalue problem

−M−1K̂(p)dp,s = �2
p,sdp,s (21)

with a symmetry with respect to the complex conjugation

d∗
p,s =d−p,s (22)
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The index s numbers different dispersion branches, i.e. various solutions of the characteristic
equation

det(�2M + K̂(p))= 0 (23)

There are in total S dispersion branches, where S is the number of degrees of freedom in the
lattice unit cell.

The normal amplitudes and phases can be different in (20a) and (20b) for the same pair p and s,
however, they should satisfy

a+−p,s = a+
p,s, a−−p,s =−a−

p,s, �±−p,s = �±
p,s (24)

Due to symmetries (22) and (24), any pair of terms in (20a) or (20b) corresponding to −p and p
are identical. Thus, solutions (20) are comprised in total by SNc, Nc =NML, linearly independent
real-valued normal modes. Note that the value SNc is equal to the total number of vibrational and
translational degrees of freedom in the lattice structure. Obviously, any linear combination of (20a)
and (20b) will also satisfy the governing equation (4).

We note that before the disturbance from the MD domain �P reaches the interface, the interface
is at thermal equilibrium, and we may assume that u0 =R0. Then the boundary conditions (17)
yield u1 =R1, which agrees with the physical arguments behind formula (19).

Usage of the random displacement vector in the form (19) is much more effective
computationally, as compared to (16). Relationships (19) and (20) represent a key element of
the proposed methodology. Further practical issues, including truncation of the sums in (20) are
discussed in Section 4.

3.1. Normal amplitudes and phases: statistical properties

Free parameters of the normal mode solution (20), the normal amplitudes and phases, can be chosen
arbitrary, so that the lattice motion satisfies initial conditions, or meets specific thermodynamic
characteristics. One such characteristic can be the equilibrium temperature T .

There are in total 2SNc free parameters: SNc normal amplitudes a and SNc phases �; S is the
number of degrees of freedom per lattice unit cell, and Nc is the total number of unit cells. We
can derive these amplitudes and phases in a probabilistic manner only from the knowledge of the
lattice temperature T and lattice spectral properties, i.e. the normal frequencies and polarization
vectors. For this purpose we utilize the Gibbs canonical distribution

W = 1

Z
exp

(
− H

kBT

)
(25)

which encapsulates statistical properties of a classical multiparticle system in thermodynamic
equilibrium at constant temperature T and constant number of particles [10, 26–28]. Here, H is
the system Hamiltonian, Z a normalization factor, and kB the Boltzmann constant. The linearized
Hamiltonian of a periodic lattice structures reads as

H = 1

2

∑
n
u̇Tn Mu̇n − 1

2

∑
n,n′

uTn Kn−n′ un′ (26)
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Substituting displacements (20) into this relationship and further averaging in time yields

H = Nc

2

∑
p,s

a2p,s�p,s = Nc

2

∑
p,s

a2p,s�
2
p,s	p,s (27)

Here, we introduced the characteristic mass and stiffness of the normal mode

	p,s =d†p,s Mdp,s, �p,s = −d†p,s K̂(p)dp,s (28)

which are related to the normal frequency as

�2
p,s = �p,s/	p,s (29)

The dagger symbol in (28) stands for a complex conjugate and transposed vector. Thus, complex
lattice vibrations in the space of wave numbers can be regarded as a result of the oscillatory motion
of SNc quasiparticles, characterized by the mass 	 and stiffness � in accordance with (28). These
quasiparticles are called the lattice phonons, and a complete set of phonons for a given lattice
domain comprise a formal system known as the phonon gas.

For a harmonic lattice the phonon gas is non-interactive, as a result, the Hamiltonian (27)
is additive, where the total energy is given as a sum of the energies of the individual normal
nodes. For an additive Hamiltonian, the Gibbs distribution is factorized, and we can find statistical
distributions of the normal amplitude and phase of the individual normal modes. For this purpose,
we note that each pair of the random quantities (ap,s, �p,s) determines polar co-ordinates of a
point in the formal configuration space associated with the normal mode (p, s). In order to obtain
statistical distributions for a and �, we substitute expression (27) into (25) and multiply the result
by the elementary volume ap,s dap,s d�p,s

dW = 1

Z

∏
p,s

ap,s exp
−Nca2p,s�

2
p,s	p,s

2kBT
dap,s d�p,s (30)

This equation represents an infinitesimal probability in the (a,�)-space. It indicates that the normal
amplitudes and phases are independent random variables distributed according to

w(ap,s) = Ncap,s�2
p,s	p,s

kBT
exp

−Nca2p,s�
2
p,s	p,s

2kBT
(31a)

w(�p,s) = 1

2�
(31b)

The phases are distributed uniformly in the interval (0, 2�). As follows from (31a), the mean
square amplitude is

〈a2p,s〉 =
∫ ∞

0
a2p,s w(ap,s) dap,s = 2kBT

Nc�2
p,s	p,s

(32)

On the basis of (27) and (32), we may also obtain the mean energy of an individual mode

〈
p,s〉= Nc

2
〈a2p,s〉�2

p,s	p,s = kBT (33)
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where T is the equilibrium heat bath temperature. Remarkably, this energy is invariant for all normal
modes, and for all types of harmonic lattices. This result is in agreement with the equipartition
theorem of statistical mechanics [26–28], proving distributions (31) to be consistent from the
energetic point of view.

4. SUMMARY OF THE METHOD

The purpose of this section is to provide a brief summary of those elements that are important in
terms of practical usage for the proposed method.

The most important practical result of this method are the boundary conditions (17), where the
random displacement vector is chosen in the form of a normal mode decomposition, Equations (19)
and (20). These boundary conditions are applied along planar interfaces of a simulation domain,
incorporating the regions �P and �I, see Figure 1 or 2. The free parameters of decomposition (20),
the normal amplitudes and phases, are sampled from the statistical distributions (31) once only—at
the initial time step of the simulation. At the successive time steps, the random displacement
vector R is evaluated using the normal mode decomposition (20), where a relevant value of the
time variable is utilized; meantime, the random phases and amplitudes are kept invariant at all
time steps. The distribution of normal amplitudes (31a) utilizes knowledge of the lattice spectral
properties encapsulated by the normal frequencies (23), polarization vectors (21) and characteristic
masses (28). The temperature T involved in this distribution is regarded as the heat bath, or target
system, temperature.

Provided that there is no input or release of energy inside �P or �I, temperature in these
domains will be approaching the value T utilized for the amplitudes (32). At the same time,
the convolution integral in the boundary conditions (17) will be damping all the non-equilibrium
oscillations, represented by the difference (u0− R0), and the displacements u1 will be approaching
R1 in a stochastic manner. In thermal equilibrium, statistical properties of the displacement vector
on the interface will be identical with the statistical properties of the vector R that corresponds to a
canonical ensemble by the definition. In general, the mechanism of heat exchange will be identical
as in a hypothetical simulation incorporating atomistic resolution over the entire peripheral domain
�Q. Furthermore, since the interfacial atoms behave as if they were a part of the large hypothetic
domain �Q in equilibrium at a given temperature, the principal domain �P will correspond to a
canonical ensemble, if found in thermodynamic equilibrium with �Q.

In terms of dissipation of elastic (shock) waves and heat, the domain �Q is infinite, in principle.
Propagation of long elastic waves in a peripheral domain with a specific finite geometry, can be
incorporated via joint usage of this method with a hybrid MD/FEM methodology [10, 29], in
particular, with the bridging scale method [10, 12–14, 30, 31]. Within the bridging scale approach,
the temperature-dependent boundary conditions of the type (17) can be applied to the fine scale
displacement field at an interface between the atomistic and continuum regions.

Equilibrium MD initial conditions for �I and a periodic part of �P can be obtained
simply as

un(0) =Rn(0), u̇n(0)= Ṙn(0) (34)

These initial conditions automatically account for the statistical correlation between the positions
and velocities of neighbouring atoms within a strongly coupled system, such as the crystal lattice
(see Appendix A.4). As a result, the random phase space vector provided by (34) is compliant
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Table I. Summary of the method.

Geometry and Spectral and MD boundary
elastic properties statistical properties conditions

(23)→�p,s (15)→ hn,m(t)
(5)→Kn (21)→dp,s (17)→ un,m,1(t)

(31)→ ap,s ,�p,s (19)→Rn(t)

with the Gibbs canonical distribution (25), and provides a physically adequate ‘snapshot’ of the
lattice in thermodynamic equilibrium with the heat bath. In other words, conditions (34) represent
a typical microscopic state of a periodic lattice at temperature T .

In order to save computational effort in practical applications, the total number of modes used
for decompositions (20) can be chosen less than SNc. For example, the low-frequency part of
the spectrum may require truncation, when the period of vibration for the corresponding modes
become comparable with the total time of the MD simulation. A further decrease in the number
of modes can be achieved by increasing the sampling interval for the wavenumbers in (20); for
example, the wavenumbers can be sampled from ±�/2 to ±� with a constant step �/z, where z is
integer. In all cases, the parameter Nc in (31a) and (32) must be replaced with the total number of
distinct wavenumber triplets p= (p, q, r) employed. Since any decrease in the number of modes
will abate the initial entropy of the system, it is desirable in numerical simulations to keep a large
yet reasonable number of normal modes.

In order to achieve an accurate target temperature in the case of a limited number of modes
(less than 103), one may compute the normal amplitudes for (20) simply as square roots of the
mean values (32), rather than sampling them from the original distribution (31a) in a probabilistic
manner. The phases of the normal modes in decomposition (20) must be randomly sampled in
all instances, as values uniformly distributed over [0, 2�]. Recall that the normal amplitudes and
phases are pre-evaluated once only for an entire simulation run. Then, formulas (19) and (20) are
used to evaluate the vector R for any arbitrary physical time (time step) of the simulation.

We can summarize that implementation of the present formulation is comprised of three
successive steps, see Table I: (1) analysis of lattice geometry and evaluation of elastic properties
in the form of K -matrices, (2) evaluation of spectral properties of the lattice, and (3) construction
of the boundary conditions. These steps are programmed in a preliminary block of a MD code, or
resolved analytically when possible. Specific examples and some useful numerical strategies are
discussed in Section 5.

5. ANALYTICAL AND NUMERICAL EXAMPLES

In this section, we demonstrate practical aspects of the method in application to a 1D monoatomic
chain and 2D hexagonal lattice, both with the nearest neighbour interaction. The corresponding
associate substructures are shown in Figure 3. The associate substructure fully represents the
mechanical properties of a periodic lattice, including the spectral and response characteristics; it is
comprised of an arbitrary (current) unit cell, (n) or (n,m) in Figure 3, and all neighbouring cells
interacting directly with the current cell.

The chain lattice is unique in terms of the possibility to evaluate all spectral and response
properties, along with the THK, in closed-form. The hexagonal lattice allows closed-form
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Figure 3. Associate substructures of chain-like (left) and hexagonal (right) lattices with
the nearest neighbour interactions.

evaluation of only the spectral properties and the K -matrices. For more complex structures, all
lattice characteristics are evaluated numerically on the basis of an interatomic potential. The spec-
tral characteristics are found from (23), (21) and (28) for each specific wave vector p and branch
number s of interest. The THK is evaluated numerically on the basis of (15).

Note that the K -matrices (5) serve as input for the THK evaluation, and they can be computed
numerically as well. Numerical computation of the K -matrices is particularly reasonable for
complex interatomic potentials, when the second-order derivatives of the lattice potential U in (5)
are analytically cumbersome (even though U is written for the associate substructure only). Various
methods for numerical computation of second-order derivatives of complex functions can be found
elsewhere in literature; special techniques accounting for the specifics of the lattice structure
application are discussed in [32].

5.1. 1D lattice in thermal equilibrium

Consider application of the proposed heat bath approach to the monoatomic lattice chain,
Figure 3(a), comprised of Na = 1001 atoms with one longitudinal degree of freedom. Obviously,
the number of atoms Na and the number of unit cells Nc are identical for this lattice. The lattice
is governed by the pairwise Morse potential with the Au (gold) parameters [33]

V (r) = 
(e2�(�−r) − 2e�(�−r)), 
= 0.560 eV, � = 1.637 Å−1, � = 2.922 Å (35)

and a cut-off radius of 1.5�. Thus, each lattice atom interacts with two nearest neighbours only,
and the value � gives the equilibrium interatomic distance. In our numerical computations we
utilize 1 eV, 1 ps and 1 Å as the units of energy, time and length. Then, the mass unit is given
by 1 eV× 1 ps2 × 1 Å−2 = 1.602× 10−23 kg. In these units, the mass of one Au atom and the
Boltzmann constant are

m = 0.02042, kB = 8.6183× 10−5 (36)

Temperature is still expressed in Kelvin (K).
Below, we show all successive steps for the derivation of the random vector R, and the THK h

for the boundary condition (17a). As mentioned, all these steps are possible for the chain lattice
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in closed form, involving only the physical parameters from (35) and (36), and the heat bath
temperature T .

1. Equilibrium positions and co-ordinates of lattice atoms along the x-axis:

en = �n, rn(t) = en + un(t) = �n + un(t) (37)

Here, un is the displacement of the atom n; this is a one-component vector (scalar) for the
monoatomic unit cell with a single degree of freedom per atom.

2. Potential energy of the lattice written for one associate cell, Figure 3(a), in terms of the
atomic displacements:

U (u) ≡U (un−1,un,un+1) = V (rn − rn−1) + V (rn+1 − rn)

= V (un − un−1 + �) + V (un+1 − un + �) (38)

Here, V is the Morse potential (35).
3. K-matrices (5):

K0 = − �2U (u)

�2un

∣∣∣∣∣
u=0

=−4
�2, K−1 =K1 =− �2U (u)

�un�un+1

∣∣∣∣∣
u=0

= 2
�2 (39)

where 
 and � are the Morse parameters (35). The notation u= 0 means that we employ
un−1 = un =un+1 = 0 after the second-order derivatives are obtained. Notice that Kn = 0 at
|n|>1. Also note that for the nearest neighbour interaction model, the value 2
�2 represents
the linear stiffness constant of the interaction between two adjacent atoms

k = 2
�2 = 3.0013 eV/Å2 (40)

4. DFT (A11) of the K-matrices:

K̂(p) =∑
n
Kne

−ipn =K−1e
ip + K0 + K1e

−ip = k(eip − 2 + e−ip) = 2k(cos p − 1) (41)

5. Normal frequencies (23):

(�2m+K̂(p))= 0→ �p = � sin
p

2
, � = 2

√
k/m (42)

6. Polarization vectors (21):

−m−1K̂(p)dp =�2
pdp → �2

pdp = �2
pdp →dp = 1 (43)

The one-component vector dp is a constant independent of p. In general, the polarization
vectors must be normalized, therefore we utilize dp = 1.

7. Characteristic masses (28):

	p =m (44)

8. Normal amplitudes (32):

ap =
√

2kBT

Nc�2
pm

= 1

sin p/2

√
kBT

2kNc
(45)
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9. Random displacements, Equations (19) and (20):

Rn(t) =∑
p
a+
p cos(�pt + �+

p ) cos pn +∑
p
a−
p cos(�pt + �−

p ) sin pn (46)

Here, the random phases �+ and �− are sampled independently of each other. For the values
a±
p , we utilize the ensemble average amplitudes (45), rather than sampling them randomly

from the original distribution (31a).
10. Transform Green’s function (9):

Ĝ(p, �) = 1

�2m + 2k(1 − cos p)
(47)

11. DFT inversion (15b) for (47) at n = 0 and 1, accomplished by solving the integral (A12):

G̃0(�) = 1

�
√
m(4k + �2m)

, G̃1(�) = 2k + �2m − �
√
m(4k + �2m)

2k�
√
m(4k + �2m)

(48)

12. THK (15a) in Laplace domain:

H(�) = G̃1(�)

G̃0(�)
=
(√

�2 + 4k/m − �
)2

4k/m
(49)

13. THK in time domain:

h(t) = 2

t
J2
(
2t
√
k/m

)
(50)

where J2 is the second-order Bessel function. Here, the Laplace transform inversion is
accomplished simply by identifying function (50) in the standard tables of Laplace transform
[10, 34]. In general, inversion of the Laplace and DFTs can be accomplished numerically
by utilizing algorithms (A9) and (A14).

Having obtained the random displacement vector (46) and THK (50), we proceed to the numerical
simulation.

We sample the wave numbers p for (46) equidistantly from the interval [−�, −�/2], [�/2, �]
with a step �/32. Thus, there are in total Nc = 32 distinct wave numbers, and this number is
used to evaluate the normal amplitudes (45). The phases �p are sampled uniformly at (0, 2�).
The corresponding normal frequencies are given by (42). A time step of �t = 0.005 was used for
20 000 steps. The atoms are given initial displacements and velocities using relationships (34) for
a target temperature T. For two boundary atoms at the left and right ends of the chain lattice, the
boundary conditions of type (17a) are applied. This means that displacements of these atoms, u1
and u1001, are enforced using a time-history of displacements of the pre-boundary atoms, u2 and
u1000, respectively. Note that u2 and u1000 are computed within a standard MD solver, utilizing
u1 and u1001 as dynamic boundary conditions at each time step of the simulation.

The simulation results for two target system temperatures, T= 300 and 600 K are shown in
Figure 4. The MD system temperature oscillates about the target temperature exactly for the
T = 300 K case. For the T = 600 K case, it oscillates about a value slightly higher than the target
system temperature. Nonetheless, the non-linearity results in correspondingly small errors in the
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Figure 4. Temperature of a 1D lattice as a function of time within the phonon heat bath approach. Target
system temperatures T0 are: (a) 300 K; and (b) 600 K. The unit of time is

√
m/k.

target system temperature, where no diverging or non-controlled behaviour is observed. For the
600 K simulation, the average vibrational amplitude was 4% of the interatomic spacing, with
a maximum around 20–25%; thus, the method appears accurate also in the case of moderate
non-linearities.

Another important feature of these results is that no equilibration period is required for the system
temperature. The system temperature starts fluctuating about the correct target value immediately.
Over the course of time, the decaying amplitude of fluctuations corresponds to the free energy
equilibration process; though a deeper insight into this behaviour is outside the scope of the
present paper. We only note that this effect can be explained by the gradual redistribution of the
kinetic energy and potential energy between all normal modes of the system due to the non-
linear correlation effects. As given by Equation (33), internal energy of a harmonic lattice in
thermodynamic equilibrium is comprised by the kBT increments that are identical for all normal
modes.

The use of a larger number of normal modes in (20) should result in a faster minimization of
the fluctuations. Indeed, Figure 5 shows the reduction in temperature fluctuations at short times in
the case of utilizing 128, instead of 32, modes. These modes are sampled for the wavenumbers
in the interval [−�,−�/2], [�/2, �] with a step �/128. Thus, for a sufficiently rich normal mode
sampling, the system is close to a thermodynamic equilibrium with the heat bath, even at initial
times.

5.2. Hexagonal lattice in contact with a heat source

The hexagonal lattice, as shown in Figures 2 and 3(b), is observed for the (1 1 1) crystallographic
plane of a face-centred cubic (fcc) lattice. This geometry is often used in the 2D modelling of fcc
metals.

Consider an orthogonal numbering of unit cells in the hexagonal lattice as displayed in
Figure 3(b). Then the unit cell is represented by a single lattice atom, and the vector un shows
in-plane displacements of this atom with reference to x and y Cartesian axes: un ≡un,m =

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:351–378
DOI: 10.1002/nme



PHONON HEAT BATH APPROACH 367

0 10 20 30 40 50 60 70 80
0.4

0.6

0.8

1

1.2

1.4

1.6

Normalized Time

2E
k 

/ (
N

a 
k B

 T
)

Figure 5. Phonon model at T0 = 600 K; the number of normal modes is increased from 32 to 128.

(uxn,m, uy
n,m)T. The atomic interactions are governed by the Au Morse potential (35). Within

the nearest neighbour assumption, the associate cell is formed by a symmetric group of seven
lattice atoms as depicted in Figure 3.

Similar to the previous example, the potential energy of one associate cell in the hexagonal
lattice can be expressed through uxn,m , u

y
n,m and �. Further use of definition (5) provides seven

non-zero K -matrices. We now provide a complete log of analytical results for the hexagonal lattice
governed by the nearest neighbour Morse potential:

1. Equilibrium positions and co-ordinates of lattice atoms:

en,m = �

2

[
n

m
√
3

]
, rn,m(t) = en,m + un,m(t) (51)

2. Potential energy of one associate cell, Figure 3(b):

U = V (|rn+1,m+1 − rn,m |) + V (|rn+2,m − rn,m |) + V (|rn+1,m−1 − rn,m |)
+ V (|rn−1,m−1 − rn,m |) + V (|rn−2,m − rn,m |) + V (|rn−1,m+1 − rn,m |) (52)

where V is the Morse potential (35).
3. K-matrices (5), and the mass matrix:

K1,1 =K−1,−1 = k

4

[
1

√
3

√
3 3

]
, K1,−1 =K−1,1 = k

4

[
1 −√

3

−√
3 3

]

K2,0 =K−2,0 = k

[
1 0

0 0

]
, K0,0 = −3k

[
1 0

0 1

]
; M=

[
m 0

0 m

] (53)
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Here, the constant k is such as in (40). All other combinations of the subscript indices, such
as (1, 0), (2, 1), etc., give a zero matrix.

4. DFT (A11) of the K-matrices:

K̂(p, q) = k

[
2 cos 2p + cos p cos q − 3 −√

3 sin p sin q

−√
3 sin p sin q 3 cos p cos q − 3

]
(54)

5. Normal frequencies (23). There are in total two acoustic branches (s = 1, 2) for this lattice.
Normal frequencies of each branch are determined by two wavenumbers, p and q:

m

k
�2

p,q,s =3− cos 2p−2 cos p cos q+(−1)s
√

(cos 2p− cos p cos q)2+3 sin2 p sin2 q (55)

6. Polarization vectors (21) before normalization:

dp,q,s =
[
3k(cos p cos q − 1) + m�2

p,q,s√
3k sin p sin q

]
(56)

7. Characteristic masses (28):

	p,q,s = dTp,q,sMdp,q,s

|dp,q,s |2 =m (57)

Obviously, this simple result is valid for any monoatomic lattice with a mass matrix of the
type M=mI, where m is the atomic mass, and I is a unity matrix.

8. Normal amplitudes. Analytical expression for the mean amplitudes is obvious from (32),
(55) and (57), and we do not show it here for compactness.

9. Random displacements (19). Since the polarization vectors (56) are real valued for all p, q
and s, we can write

Rn,m(t) = ∑
p,q,s

a+
p,q,sdp,q,s cos(�p,q,s t + �+

p,q,s) cos(pn + qm)

+ ∑
p,q,s

a−
p,q,sdp,q,s cos(�p,q,s t + �−

p,q,s) sin(pn + qm) (58)

10. Transformed Green’s function. An analytical expression can be made available by inverting
the 2× 2 matrix (9), where M and K̂ are substituted from (53) and (54), in closed form.
Meantime, such an expression is cumbersome.

The final steps (15) of the THK evaluation, in case of the hexagonal lattice, require
numerical methods for the DFT and Laplace transform inversions. These methods are reviewed
in the Appendix. The individual components of the resultant time-dependent function hn(t) was
discussed and shown for different n in an earlier publication [13].

We utilize the available random displacement vector and THK for the boundary condition (17b)
in application to the 2D computational problem depicted in Figure 6. This problem statement is
inspired by the great potential of nanowire applications, including the Au nanowires [35], which
will be used as interconnects in circuits of new generation supercomputers and NEMS devices.
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Nanowire

Figure 6. Left: critical region of a joint between the Au nanowire and a contact pad; right: Morse
monolayer model (the actual geometry).

Critical parts of these devices are often associated with contact, joint or cross-section points that
may serve also a source of heat induced by higher density of electric current in the contact area.
Outside the contact area, nanowire body serves mostly as a bulk absorbent of this heat. Application
of the present methodology to this type of problems is very natural. It allows reducing size of the
computational domain to a small region in the vicinity of the contact, where spurious heating and
probably melting of the nanowire may occur. The Au nanowire is represented by the hexagonal
lattice, such as in Figures 2 and 3(b). The mechanism of heat exchange with the peripheral heat
sink can be modelled by GLE boundary conditions (17b) method.

The lattice structure shown in Figure 6 (right) represents the computational domain of 1836
atoms to be studied. The principal domain �P spans from the first bottom to the third top horizontal
layer of atoms. The interface �I is represented by the second top layer of 50 atoms corresponding
to m = 0. The first top row of atoms, at m = 1, represents the hypothetical heat bath �Q at room
temperature T = 293 K imposed by statistical properties of the random displacement term (58).
Total displacements of the atoms m = 1 are governed by (17b), and they serve as dynamic boundary
conditions for the simulation over �P and �I. In the following discussion, the temperature will
always be reported as spatially averaged over the principal region �P only. Traction-free boundary
conditions are applied to the left and right edges of the structure. Atomic displacements at the bottom
layer, representing the contact area, are enforced in accordance with ux = 0 and uy = 0.22 sin 5t
in order to model a friction-induced heat source.

Initial conditions are imposed in accordance with (17b) and (19) at the room temperature. For
the normal mode sampling we utilize only the first (s = 1) branch in (55)–(56), and choose p and
q from the interval [�/4, 3�/4] with a step �/40 resulting in Nc = 1600 linear-independent normal
modes. Heat generated at the bottom of the structure first lead to a rising system temperature,
until a dynamic equilibrium, made possible due to the boundary condition (17b), is established
between the principal domain and the heat bath. The equilibrium situation is reached at 8 fs after
the simulation is initiated at the room temperature, Figure 7(a). The average system temperature
in �P at successive times is 663 K.

These results have been verified by a benchmark simulation by adding 160 additional atomic
layers on top of the domain shown in Figure 6 (right), and imposing the standard zero displacement
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Figure 7. Spatially average temperature in the principal domain �P for the lattice structure shown in
Figure 6: (a) present method; and (b) benchmark solution with an explicit heat bath.

boundary conditions at the peripheral top edge of the structure. The additional layers serve as a
physical thermostat for the original (smaller) system, while the benchmark model itself is not
thermostatted. System temperature is still measured only in the principal region �P of the same
size as in the first simulation, and only for a period of time, within which the excitations imposed by
the heat source do not reach the peripheral boundary of the added structure. The results are shown
in Figure 7(b). This benchmark simulation shows that the dynamic equilibrium is achieved in �P
after 8 ps at a spatially average temperature of 657 K, which is close to the 663 K result obtained
with the present method. Due to the probabilistic nature of the method, results of the computation
vary slightly for different simulation runs; the results shown in Figure 7(a) and (b) represent a
typical situation. As compliant with the general physics, the final (equilibrium) system temperature
depends on the heat bath temperature chosen in this method. Lower heat bath temperatures, for
instance, including the 0K case (Rn,m = 0), would have resulted in lower system temperatures due
to smaller amplitudes of the constitutive normal components of the random displacement term (58),
and thus smaller (or none at 0 K) input of energy to the system from the heat bath. Remarkably,
the system temperature obtained exhibit similar trends, as in the work by E and Huang [22], who
studied a similar 2D lattice problem with frictionally generated heat at a bottom surface, absorbing
boundary conditions at the top. This fact points out on a similar physical nature of E and Huang’s
matching operator conditions and the present THK operator, even though these two operators adopt
various mathematical forms.

5.3. Numerical strategies

Analytical results have been shown in Sections 5.1 and 5.2 for illustrative purposes only. In realistic
application to complex lattice structures, a readily available quantitative form is only required
for the K-matrices. All successive steps in the evaluation of the lattice spectral characteristics and
THK for (19) should be accomplished numerically. A general approach to this consists of the
following.
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Random displacements. Create a 3D array comprised of all specific values of the wavenumbers
p, q and r , which will be required later for decomposition (20) of the random vector (19);
assume there are Nc elements in this array. Next, compute numerically Nc matrices K̂(p, q, r)
corresponding to all elements of the array of wavenumbers. Using these matrices, compute SNc
normal frequencies (23), polarization vectors (21), and characteristic masses (28). Then evaluate
SNc amplitudes (32), and sample independently 2SNc random phases �±. Create a subroutine for
computing the summations in (20), using the lattice site indices n, m and l and physical time t as
input parameters.

THK. Create a 4D array comprised of all specific values of the wavenumbers p, q , r and Laplace
parameter �, which will be required later for the purpose of numerical transform inversions for
(15). For example, the inverse DFT procedure (A14) requires N wavenumbers p= 2� p̃/N , where
p̃=−N/2,−N/2+1, . . . , N/2−1. For each element of this array, compute numerically a matrix
Ĝ(p, q, r, �), Equation (9). Next, compute the inverse r → l DFT of this matrix at l = 0 and 1, and
evaluate the matrices H̃(p, q, �) (13) for all triplets (p, q, �). Consider these matrices as values
of the time-history kernel in the transform domain, and use the computational algorithms from the
Appendix for the DFT and Laplace transform inversions. The DFT inversions are only required at
|n|�nc and |m|�mc, as follows from Equation (17c).

6. CONCLUSIONS

We have discussed a novel method to calculate the random thermal motion term R(t) in the
GLE [7, 9] for the atomistic solid–solid interfaces based on a normal mode decomposition. The
free parameters of this decomposition have been derived consistently from the lattice stiffness
parameters, with respect to temperature of the system, and characterized in a probabilistic manner
on the basis of Gibbs canonical distribution. The resultant GLE, in principle, provides dynamic
boundary conditions that can be utilized within a standard MD solver. These boundary conditions
provide an accurate mechanism of heat exchange between the simulated domain and the outer heat
bath, because the random term in the proposed form accounts automatically for the time/space
correlations of the thermal noise in the periodic lattice. As a result, the phonon heat bath captures
the correct interfacial behaviour of the simulated structure.

Ultimately, the method allows bringing together a small and a large crystalline domain, and
model accurately the resultant interface within the harmonic assumption for the larger (effectively
infinite) domain, which is excluded from the explicit numerical model. Such an interface is non-
reflective for the elastic waves, as well as providing a thermostatting for the small domain, whose
interior may incorporate arbitrary non-linearities. Example simulations with Au lattice models show
that the method preserves stability and correctness for moderate non-linearities at the interface.

We note the THK and the normal mode decomposition utilized within the phonon heat bath
approach are unique structural characteristics. Once obtained for a given lattice structure, they
can be used in solving many specific problems involving the same type of lattice. This fact
comprises an advantage in terms of convenience and computational effectiveness of the present
method.

The present method is also interesting within the frameworks of modern numerical methods
that couple classical particle dynamics and continuum simulations, in particular, the bridging scale
method [11–14, 30, 31]. Note, the ‘one-scale’ equations (2) and (17) assume that the �Q region
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degrees of freedom affect the �P region via the random thermal term R only. Accounting for the
larger scale �Q-to-�P elastic waves in a computationally efficient manner can be accomplished
using the bridging scale approach. The latter separates the scales with a projector operator technique,
and incorporates the random term R as a natural part of the fine scale field. Such a multiscale
approach will allow for the two-way passage of long elastic waves across the interface, as well
as the effect of the peripheral (continuum) boundary conditions onto the atomistic region of
interest.

One interesting possibility for the future is to utilize the fact that the present approach has a
capacity to control the heat bath temperature in the course of a numerical simulation. This can
be performed by the varying normal amplitudes in accordance with relationship (32), where T
is viewed as the current (time-dependent) heat bath temperature. This feature can be particularly
useful in a future multiscale approach allowing heat transfer over the continuum domain with a
dynamic temperature field.

Another topic left open for the future is a rigorous criterion for the reduced normal mode
sampling and resultant truncation of the wave number summations in Equation (20). This criterion
should utilize general physical arguments, such as the lattice free energy or the autocorrelation
properties of the thermal noise.

APPENDIX A

A.1. Fourier transform

The Fourier transform is used to transform a time-dependent function into the frequency space

X (�) =Ft→�{x(t)}=
∫ ∞

−∞
x(t) e−i�t dt (A1)

Fourier transforms obey the time-derivative theorem

Ft→�

{(
�
�t

)n

f (t)

}
= (i�)n F(�) (A2)

The inverse Fourier transform is defined as

x(t) =F−1
�→t {X (�)}= 1

2�

∫ ∞

−∞
X (�) ei�t d� (A3)

A.2. Laplace transform

The Laplace transform of a continuous function in time gives

X (�) =Lt→�{x(t)}=
∫ ∞

0
e−�t x(t) dt (A4)

where � is known as the complex frequency. The Laplace transform has the following valuable
properties: the convolution theorem

Lt→�

{∫ t

0
x(t − �)y(�) d�

}
= X (�)Y (�) (A5)
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and the time-derivative rules

Lt→�{ẋ(t)} = �X (�) − x(0−) (A6)

Lt→�{ẍ(t)} = �2X (�) − �x(0−) − ẋ(0−) (A7)

Here, the notation ‘0−’ stands for a value of the argument t ‘right before’ the zero point.
Mathematically, x(0−) and ẋ(0−) are limits of the functions x(t) and ẋ(t), as t approaches
zero from negative values.

The convolution theorem implies that the transform of a convolution integral of two functions
is equal to the product of the transforms of the individual functions. The time derivative rules
imply that the transform of a time derivative is equivalent to multiplication of a function by �.
This property allows reducing differential equations to simple algebraic equations in the transform
domain, therefore, it is useful in finding analytical solutions to the classical equations of motion;
see the example below in this section.

The inverse Laplace transform is defined as

x(t)=L−1
�→t {X (�)}= lim

b→∞
1

2�i

∫ a+ib

a−ib
e�t X (�) ds, a, b∈R (A8)

However, this general mathematical definition is rarely used in practical applications. In some
cases, the inverse Laplace transform for X (�), i.e. the function x(t), can be found in the standard
tables, such as [34].

More generally, the inverse Laplace transform can be computed numerically. One effective
numerical algorithm applicable to a wide range of functions was proposed by Weeks [36]. This
algorithm can be summarized as follows:

x(t) = ect−t/2T
A∑

�=0
b�L�(t/T )

b� = 2 − ��0

2T (A + 1)

A∑

=0

(
Re X (�
) − cot

z

2
Im X (�
)

)
cos(�z
)

z
 = �(2
 + 1)

2(A + 1)
, �
 = c + i

2T
cot

z

2

, T = tmax

A
, c= 1

tmax

(A9)

Here, L� are Laguerre polynomials, i is the imaginary unit, X is the Laplace transform of x ; tmax
is a maximum required value of the argument for the function x , and � is the Kronecker delta,

�i j =
{
1, i = j

0, i 
= j
(A10)

The value A controls the accuracy of the result, and its choice depends on tmax and the behaviour
of f (t) at t ∈ [0, tmax]. For the kernel functions considered in this and following sections of this
book, a sufficient value for A is of the order 100. Weeks’s method has been found by Davies
and Martin [37] to give excellent accuracy for the inversion of a wide range of functions. Other
numerical inversion algorithms are discussed in [37, 38].
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A.3. Discrete Fourier transform

In lattice mechanics, the DFT is used to transform functional sequences, such as the displacement
vector un or matrix Kn from real space to wavenumber space.

A key issue in solving the lattice equation of motion (4) or (7) is the deconvolution of the
internal force term. This is accomplished naturally with the DFT

x̂(p) =Fn→p{xn} =∑
n
xn e

−ipn, p ∈ [−�, �] (A11)

xn =F−1
p→n{x̂(p)} = 1

2�

∫ �

−�
x̂(p) eipn dp (A12)

which obeys the convolution theorem

Fn→p

{∑
n′

xn−n′ yn′

}
= x̂(p)ŷ(p) (A13)

Here, the calligraphic symbol F denotes the Fourier transform operator, and the hatted notation
used for the Fourier domain function.

The inverse DFT can be computed numerically by applying a trapezoidal or midpoint scheme
to the integral (A12):

xn =F−1
p→n{x̂(p)} = 1

N

N/2−1∑
p̃=−N/2

x̂(2� p̃/N ) ei2� p̃n/N (A14)

Here, N is the total number of integration steps, which represents an effective size of the real space
domain: N = nmax−nmin+1, where nmin and nmax are the minimal maximal values of the index n
utilized for (A11). In application to periodic lattices, N gives the physical size of the lattice in unit
cells along the corresponding translation vector. The value p̃ in (A14) is an integer wavenumber
index, varying from −N/2 to N/2 − 1.

The nature of Fourier integrals is such that discretization procedures of the type (A14) are exact.
Indeed,

1

N

N/2−1∑
p̃=−N/2

x̂

(
2� p̃

N

)
ei2� p̃n/N = 1

N

N/2−1∑
p̃=−N/2

(∑
n′

xn′ e−i2� p̃n′/N
)
ei2� p̃n/N

= 1

N

∑
n′

xn′
N/2−1∑
p̃=−N/2

e−i2� p̃n′/N ei2� p̃n/N

=∑
n′

xn′�nn′ = xn (A15)

Provided that the function x̂ is simple enough, the integral (A12) can be used for analytical
inversion of the DFT. Meanwhile, solutions involving a standard summation (A14) are referred to
as semi-analytical.
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A final valuable property of the DFT is the shift theorem,

F{xn+h} = x̂(p) eihp, h ∈Z (A16)

A.4. Statistical properties of the thermal noise

Vector (16a) represents a random process viewed as a combination of S random functions of
time (components of this vector). This process is characterized by a vector of mean values (first
statistical moment) and an autocorrelation matrix (second statistical moment). Since vector R
equilibrium oscillations, a snapshot of this vector at t = 0 provides a set of thermodynamically
equilibrium initial conditions, and Equation (16a) can be rewritten as

Rn(t) =M
∑
n′

(gn−n′(t)Ṙn′(0) + ġn−n′(t)Rn′(0)) (A17)

The statistical moments can be conveniently written for the time derivative of the random displace-
ments, i.e. for the vector Ṙ. The ergodic hypothesis of statistical mechanics assumes equivalence
of the time and ensemble averages, so that the first moment of Ṙ can be written as the ensemble
averages at some fixed time t :

〈Ṙn(t)〉 =M
∑
n′

(ġn−n′(t)〈Ṙn′(0)〉 + g̈n−n′(t)〈Rn′(0)〉) (A18)

Mean values of the initial displacements and velocities are zeroes for a regular harmonic lattice,
therefore,

〈Ṙn(t)〉= 0 (A19)

For the autocorrelation matrix function, we have

〈Ṙn(t)ṘT
n′′(0)〉=M

∑
n′

(ġn−n′(t)〈Ṙn′(0)ṘT
n′′(0)〉 + g̈n−n′(t)〈Rn′(0)ṘT

n′′(0)〉) (A20)

where we can use (e.g. [5, 23])
〈Ṙn′(0)ṘT

n′′(0)〉=M−1�n′,n′′kBT, 〈Rn′(0)ṘT
n′′(0)〉= 0 (A21)

For a monoatomic lattice, where M=mI, m is the atomic mass and I is a unity matrix, we obtain

〈Ṙn(t)ṘT
n′′(0)〉= kBT

∑
n′

ġn−n′(t)�n′,n′′ = kBT ġn−n′′(t) (A22)

More generally,

〈Ṙn(t + �)ṘT
n′(�)〉= kBT ġn−n′(t) (A23)

A similar result was also shown by Adelman and Doll Reference [5].
Next, we can show in closed form that the normal mode decomposition (46) for the 1D

collinear lattice with the nearest neighbour interaction, Figure 3, yields the same autocorrela-
tion moment (A23) obtained for the original vector (16a). Here, time derivative of the dynamic
Green’s function can be derived by multiplying (47) with �, followed by the Fourier and Laplace
inversion. This gives [10]

ġn(t) = 1

m
J2n(�t), �= 2

√
k/m (A24)
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Employ a normal mode decomposition of Ṙ for this lattice in the form

Ṙn(t) =∑
p
ap�p cos(�pt − p̃n + �p) (A25)

where the unity polarization vector (21) was utilized. Here, the standing waves similar to (20) are
formed by pairs of the normal modes with the opposite wave numbers and equal amplitudes.

Correlation of two arbitrary normal modes from this decomposition is given by the time average

Ap,p′(t) = apap′�p�p′ lim
tm→∞

1

tm

∫ tm

0
cos(�p(� + t) − p̃n + �p) cos(�p′� − p̃′n′ + �p′) d�

= 1

2
apap′�p�p′ cos(�p� − p̃n + p̃′n′ + �p − �p′)�p,p′ (A26)

Autocorrelation of the thermal noise (A25) is then a summation over all such terms (vector R
becomes a scalar for the present lattice model)

Ṙn(t + �)Ṙn′(�) = ∑
p,p′

Ap,p′(t) = 1

2

∑
p
a2p�

2
p cos(�p� − p̃(n − n′)) (A27)

Next, use the equivalence of the ensemble and time averages, which follows from the ergodic
hypothesis of statistical mechanics, utilize amplitudes (45) and frequencies (42), replace the sum
over p by an integral, and make the change variable p̄= �p/N , or equivalently, p̄= p̃/2. This
gives a result, which is in agreement with the autocorrelation property (A23) of the original random
term

〈Ṙn(t + �)Ṙn′(�)〉 = kBT

m

1

�

∫ �

0
cos(�t sin p̄ − 2 p̄(n − n′)) d p̄

= kBT

m
J2(n−n′)(�t) = kBT ġn−n′(t) (A28)

Here, we used an integral definition of the Bessel function

Jn(x)= 1

�

∫ �

0
cos(x sin y − ny) dy, x, y ∈ �, n = 0, 1, . . . (A29)
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