
Nanoscale

COMMUNICATION

Cite this: Nanoscale, 2018, 10, 13913

Received 28th May 2018,
Accepted 4th July 2018

DOI: 10.1039/c8nr04314k

rsc.li/nanoscale

Topologically protected interface phonons in
two-dimensional nanomaterials: hexagonal
boron nitride and silicon carbide

Jin-Wu Jiang, *a Bing-Shen Wangb and Harold S. Park*c

We perform both lattice dynamics analysis and molecular

dynamics simulations to demonstrate the existence of topologi-

cally protected phonon modes in two-dimensional, monolayer

hexagonal boron nitride and silicon carbide sheets. The topo-

logical phonon modes are found to be localized at an in-plane

interface that divides these systems into two regions of distinct

valley Chern numbers. The dispersion of this topological phonon

mode crosses over the frequency gap, which is opened through

analogy with the quantum valley Hall effect by breaking the inver-

sion symmetry of the primitive unit cells. Consequently, vibrational

energy with frequency within this gap is topologically protected,

resulting in wave propagation that exhibits minimal backscattering,

is robust with regard to structural defects such as sharp corners,

and exhibits excellent temporal stability. Our findings open up the

possibility of actuating and detecting topological phonons in two-

dimensional nanomaterials.

I. Introduction

Over the past decade, there has been significant interest in a
new state of matter, called topological insulators (TIs), whose
behavior depends on its topology, rather than its geometry.
The distinguishing feature of TIs is that the conducting edge
or surface states are topologically protected,1–3 where the TI is
an insulator in the bulk while simultaneously allowing wave
propagation along its boundary. While the study of TIs
originated in quantum electronic systems,2,4–7 the concept of
topological protection has been extended to analyze other
physical properties using classical principles. For instance,
topologically protected edge states in photonic crystals can be

discussed in analogy with the quantum Hall edge states,8–10

and the interaction between photons and phonons can
produce a Chern insulator of different topological phases.11

Recently, researchers have found that the topological nature
of mechanical systems can also be investigated using analogs
from electronic TIs. Efforts to control and guide phononic
wave energy have led to various studies on phononic TIs based
on the quantum Hall effect,12–20 quantum spin Hall effect,21–32

and quantum valley Hall effect.31,33–35 Other researchers have
focused on investigating the topological aspects of phonon
modes.36–39 Topologically protected elastic waves have also
been observed in metamaterials or designed lattice
models.20,21,40–43 The topological concept was used to analyze
zero-energy edge modes (‘floppy modes’) in lattice models,44–46

dynamic edge modes in biological or mechanical systems,47–49

topological modes localized at dislocations in mechanical
metamaterials,50,51 and the selective buckling via the states of
self-stress analogous to topological quantum states in the two-
and three-dimensional metamaterials built out of stacked
kagome lattice models.52 Mechanical lattice models can also
display topologically protected zero-energy phonon modes,
which are analogs of massless fermion states of topological
Weyl or nodal semimetals.53–55

However, much of the above research on topological
phonons and phononic TIs has focused on either discrete
lattice models or macroscale structures, while very few studies
have considered topological phonons in nanomaterials. This is
in contrast to various studies that have investigated topologi-
cally protected electronic and spin conduction in nano-
materials, such as the valley-contrasting topological transport
in graphene,56 the spontaneous quantum Hall states in chi-
rally stacked few-layer graphene systems,57 and the electronic
edge modes and the topological transitions in bilayer
graphene.58

In this paper, we demonstrate topologically protected
phonon transport in two-dimensional nanomaterials, mono-
layer hexagonal boron nitride (h-BN) and silicon carbide (SiC).
We study, using lattice dynamics analysis and classical mole-
cular dynamics (MD) simulations, a specific set of phonon
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modes in h-BN and SiC, i.e., the topological phonon modes,
which can be localized at an in-plane interface connecting topo-
logically trivial and non-trivial structures. By utilizing concepts
from the quantum valley Hall effect, we demonstrate the for-
mation of a frequency gap [1123, 1278] cm−1 in the phonon
spectrum of h-BN and [126.7, 348.6] cm−1 in the phonon spec-
trum of SiC, due to the broken inversion symmetry of their
primitive unit cells. We observe a topological phonon branch at
the interface that divides h-BN and SiC into regions of trivial
and non-trivial topologies. This topological phonon branch
crosses over the frequency gap [1123, 1278] cm−1 for h-BN or
[126.7, 348.6] cm−1 for SiC in the phonon spectrum, so
vibrational energy within this frequency gap can only be trans-
ported by the topological phonon modes. This energy transfer
is topologically protected, and we demonstrate through various
examples that it is both spatially and temporally robust.

The present paper is organized as follows. In section II, we
present some details of the phonon analysis and MD simu-
lation. Section III is devoted to the phonon analysis for h-BN
and SiC, while topological discussions are presented in section
IV. MD simulation results are presented in section V. The
paper ends with a brief summary in section VI.

II. Computational details

We investigate the phonon dispersion of three different 2D
materials: graphene, h-BN, and SiC. Graphene is considered to
illustrate the phonon dispersion when inversion symmetry
exists in a 2D material with a hexagonal lattice structure. The
carbon–carbon interactions in graphene were described by the
Brenner potential.59 The interatomic interactions in h-BN are
described by the Tersoff potential,60 while the interatomic
interactions in SiC are also described by the Tersoff
potential.61

The phonon dispersion and eigenvectors were computed
using the GULP package,62 in which the dynamical matrix is
calculated to compute the phonon dispersion,

Dsα;s′ βð~kÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
msms′

p
XN1

l1¼1

XN2

l2¼1

K00sα;l1l2s′ βe
i~k�~Rl1 l2 ; ð1Þ

where ~Rl1l2 is the lattice vector, and ms is the mass for the atom
s in the unit cell. Usually, the summation over lattice sites
(l1, l2) can be truncated to the summation over neighboring
atoms in case of short-range interactions. The force constant

matrix is Kl1l2sα;l′1l′2s′ β ¼
@2V

@uαl1 l2s@u
β
l′1l′2s′

with V as the atomic

interaction. For the phonon mode τ at the wave vector ~k, the

phonon dispersion ωðτÞ2ð~kÞ and eigenvectors ~ξðτ′Þ were com-
puted from the eigenvalue solution of the dynamical matrix,

X
s′ β

Dsα;s′ βð~kÞξðτ′Þβ ð~kj00s′ Þ ¼ ωðτÞ2ð~kÞξðτ′Þα ð~kj00sÞ: ð2Þ

For MD simulations, the standard Newton equations of
motion are integrated in time using the velocity

Verlet algorithm with a time step of 1 fs. Simulations are per-
formed using the publicly available simulation code
LAMMPS,63 while the OVITO package is used for
visualization.64

III. Phonon dispersion analysis
A. Phonon dispersion for h-BN

Graphene has a honeycomb lattice structure of D6h symmetry
as shown in Fig. 1(a). The primitive unit cell is denoted by two

basis vectors ~a1 ¼ aêx and ~a2 ¼ a
1
2
êx þ

ffiffiffi
3

p

2
êy

� �
, with a =

1.42 Å as the lattice constant. The x-axis is in the horizontal
direction, while the y-axis is in the vertical direction. The two
(carbon) atoms in the primitive unit cell are the same, so inver-
sion symmetry exists in this structure. Fig. 1(b) shows the reci-
procal space, which is also a hexagonal lattice structure, with

two basis vectors ~b1 ¼ b

ffiffiffi
3

p

2
êx � 1

2
êy

� �
and ~b2 ¼ bêy and

b ¼ 4πffiffiffi
3

p
a
.

Fig. 1(d) shows the hexagonal lattice structure of h-BN.
Different from graphene, the two atoms (B and N) in the primi-
tive unit cell are different, so the inversion symmetry is broken
for h-BN. The inverted structure for h-BN shown in Fig. 1(e) is
different from its original structure in Fig. 1(d).

The phonon dispersion for monolayer graphene is shown
in Fig. 1(c) along the high symmetry ΓMKΓ lines in the first
Brillouin zone. There are six phonon branches corresponding
to the two atoms in the primitive unit cell, i.e., the z-direc-
tional acoustic (ZA), the transverse acoustic (TA), the longitudi-
nal acoustic (LA), the z-directional optical (ZO), the transverse
optical (TO), and the longitudinal optical (LO) branches. There
are two Dirac-like dispersions (depicted by red and blue
circles) at the K point, which are both gapless. In other words,
the phonon modes at these two frequencies are degenerate,
resulting from the inversion symmetry of the two carbon
atoms in the primitive unit cell for graphene.

Fig. 1(f ) shows the phonon dispersion for monolayer h-BN.
Compared with the phonon dispersion of graphene, a distinct
feature is the opening of the frequency gaps for the two Dirac-
like dispersions, as a result of the broken inversion symmetry
for the primitive unit cell of h-BN. The higher frequency gap
[1123, 1278] cm−1 is of particular importance, because there is
no other phonon branch falling within this frequency gap.
Hence, vibrational energy with frequency in this gap cannot be
transported in h-BN. However, if an interface phonon branch
crossing over the frequency gap can be generated, then these
interface modes will be topologically protected against
different backscattering mechanisms.

B. Phonon dispersion for SiC

SiC has a honeycomb lattice structure of D3h symmetry as
shown in Fig. 2(a), which is similar to the structure of h-BN.
The lattice constant is a = 3.121 Å from the Tersoff potential.
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Fig. 2(c) shows the phonon dispersion for monolayer SiC.
Similar to h-BN, a distinct feature in the phonon dispersion is
the opening of the frequency gaps for the two Dirac-like dis-
persions at the K point, as a result of the broken inversion

symmetry for the primitive unit cell of SiC. The higher fre-
quency gap locates at [986.2, 1217.8] cm−1, which corresponds
to the in-plane vibrations. The lower frequency gap is at [126.7,
348.6] cm−1, which corresponds to the out-of-plane vibrations.
The value of the frequency gap is 231.6 cm−1 and 221.9 cm−1

for these two frequency gaps, both of which are larger than the
frequency gap in h-BN. This is because the frequency gap is
proportional to the mass difference of the two atoms in the
primitive unit cell, and the mass difference between the Si and
C atoms in SiC is much larger than that between the B and N
atoms in h-BN.

IV. Topological analysis
A. Topological analysis for h-BN

We further show in Fig. 3 the Berry curvature of the phonon
modes at the lower boundary of the frequency gap. The Berry
curvature for the phonon mode indexed by τ at the wave vector
~k is calculated by65

Bτð~kÞ ¼ �2Im
X
τ′=τ

τ
@D
@kx

����
����τ′

� �
τ′

@D
@ky

����
����τ

� �

ðωτ
2 � ωτ′

2Þ2 ; ð3Þ

where D is the dynamical matrix. ωτ and |τ〉 are the frequency
and the polarization vector of the phonon mode τ, respectively.
Fig. 3(a) is the Berry curvature for the lower boundary phonons
of the frequency gap in the h-BN sheet, which is localized at
the K and K′ points in the first Brillouin zone. Fig. 3(b) is the
Berry curvature for the lower boundary phonons of the fre-
quency gap in h-NB (i.e., B and N atoms are exchanged as com-
pared with h-BN), which has an opposite sign as compared
with h-BN in Fig. 3(a). The valley Chern number is computed

Fig. 1 Phonon dispersion for monolayer graphene and monolayer h-BN. (a) Hexagonal lattice structure of graphene of D6h symmetry, including the
inversion center. (b) The hexagonal reciprocal lattice. Γ, M, and K are high symmetry points in the first Brillouin zone. (c) Phonon dispersion for gra-
phene. The red and blue circles highlight two instances of Dirac-like dispersion at the K point. (d) and (e) Lattice structure of h-BN of D3h symmetry.
The inversion symmetry, which switches the B and N atoms, is broken. (f ) Phonon dispersion for h-BN. The red and blue circles highlight the gap
opening at the Dirac-like point.

Fig. 2 Phonon dispersion for monolayer SiC. (a) Hexagonal lattice
structure of SiC of D3h symmetry. The inversion symmetry, which
switches the Si and C atoms, is broken. (b) The hexagonal reciprocal
lattice. Γ, M, and K are high symmetry points in the first Brillouin zone.
(c) Phonon dispersion for SiC. The arrows highlight the gap opening at
the K point.
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by integrating the Berry curvature over a small region near the
K and K′ points as,

Cτ
ν ¼

1
2π

ð
ν

Bτð~kÞd~k; ð4Þ

where ν = K, K′ is the valley index. The Chern number is a
topological invariant that characterizes the nature of the topo-
logical interface. As discussed in previous studies,31 the Chern
numbers should have opposite signs for the upper and
lower bands of the lattices along the interface in order for
bulk–boundary correspondence to guarantee the presence of
topologically protected localized modes along the interface.

For the h-BN lattice, the obtained Chern numbers are 0.28
and −0.28 for the K and K′ valleys, respectively. For the h-NB
lattice, the Chern numbers are −0.28 and 0.28 for the K and K′
valleys, respectively. Consequently, topologically protected loca-
lized phonon modes exist at the interface of the h-BN and h-NB
lattices with different valley Chern numbers, which is in analogy
with the quantum valley Hall effect.56,66 It should be noted that
the Chern numbers deviate from the ideal value of ±0.5, which

corresponds to the highly localized Berry curvature around the K
and K′ points. It is because the extension of the Berry curvature
in the reciprocal space as shown in Fig. 3 will lead to the
reduction of the integral for the Chern number in eqn (4).67

We now demonstrate the generation of the topological
phonon branch that crosses over the frequency gap [1123,
1278] cm−1 for h-BN. Fig. 4(a) shows a monolayer h-BN sheet
denoted by n1~a1 � n2~a2. The structure shown in the figure has
the size 32~a1 � 32~a2. The left and right ends are fixed for the
phonon calculation, while periodic boundary conditions are
applied along the ~a2 direction. The big unit cell enclosed by
the black box is used for the phonon calculation. There is an
interface along the ~a2 direction in the middle of the structure,
which divides the structure into the left and right regions with
different topologies (see the left top and right bottom insets).
This type of interface will be referred to as the topological
interface. The B–B or N–N bonds at the interface in h-BN are
homoelemental bonds, which were predicted to exist in some
defective h-BN sheets. The stability of the B–B or N–N inter-
faces has been investigated by previous first-principles calcu-
lations.68 Fig. 4(b) displays the phonon dispersion for the topo-
logical interface shown in Fig. 4(a). There are 192 branches
corresponding to the 64 atoms in the big unit cell. The edge
modes localized nearby the two fixed ends are denoted by the
blue lines. The red lines depict the phonon modes localized at
the interface. There is a particular interface phonon branch
crossing over the frequency gap [1123, 1278] cm−1.

The h-BN lattice structure shown in Fig. 4(c) has the same
size of that in Fig. 4(a). The width of the interface is just one
column of atoms thicker than the topological interface shown
in Fig. 4(a). As a result of this difference, the left and right
areas around the interface have the same topology (see the left
top and right bottom insets). We will thus refer to this inter-
face as the trivial interface. There is no phonon branch cross-
ing over the frequency gap [1123, 1278] cm−1 in the phonon
dispersion for this trivial interface shown in Fig. 4(d).

B. Topological analysis for SiC

We now discuss the topological properties of the phonon
modes in SiC. Fig. 5 shows the Berry curvature of the ZA and
TO branches in SiC. Fig. 5(a) is the Berry curvature for the
lower boundary phonons of the low-frequency gap in the SiC
sheet, which is localized at the K and K′ points in the first
Brillouin zone. Fig. 5(b) is the Berry curvature for the lower
boundary phonons of the low-frequency gap in the CSi (i.e., Si
and C atoms are exchanged as compared with SiC), which has
an opposite sign as compared with SiC in Fig. 5(a). For the SiC
lattice, the obtained Chern numbers from eqn (4) are 0.21 and
−0.21 for the K and K′ valleys, respectively. For the CSi lattice,
the Chern numbers are −0.21 and 0.21 for the K and K′ valleys,
respectively. These values are smaller than the Chern numbers
(±0.28) for h-BN, because the interface in CSi is more distorted
than that of h-BN. In other words, the frequency gap opened at
the K point for SiC is larger than that of h-BN. Topologically
protected localized phonon modes shall exist at the interface
of the SiC and CSi lattices with different valley Chern

Fig. 3 Berry curvature for the lower boundary phonons of the fre-
quency gap (i.e., the fourth branch) for (a) h-BN and (b) h-NB. The Berry
curvature is localized at the K and K’ points, and is opposite in h-BN and
h-NB.
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numbers, which is in analogy with the quantum valley Hall
effect.56,66 Fig. 5(c) and (d) show a similar phenomenon for the
top boundary phonon of the high-frequency gap.

We examine the configuration details for the C–C interface
in Fig. 6. The C–C interface is in the middle of the lattice and
along the ~a2 direction in Fig. 6(a). The structure is denoted by

Fig. 4 Phonon dispersion for the topological and trivial interfaces (blue areas) in the monolayer h-BN ribbon. (a) The configuration of a topological
interface in the middle of the structure along the~a2 direction. The left and right regions that intersect at the interface are of different topologies. (b)
Phonon dispersion for the topological interface. Edge (interface) branches are depicted by the blue (red) thick lines. Note the topological interface
phonon branch crossing over the frequency gap [1123, 1278] cm−1. (c) The structure of a topologically trivial interface along the~a2 direction. The left
and right regions that intersect at the interface are of the same topology. (d) Phonon dispersion for the trivial interface. There is no phonon branch
crossing over the frequency gap [1123, 1278] cm−1.

Fig. 5 Berry curvature for the ZA branch of (a) SiC and (b) CSi, and TO branch of (c) SiC and (d) CSi. The Berry curvature is localized at the K and K’
points, and is opposite in SiC and CSi.
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n1~a1 � n2~a2. The structure shown in the figure has the size
16~a1 � 16~a2. The carbon atom is much smaller than the
silicon atom, so the C–C bond length is considerably shorter
than the Si–C bond length. Fig. 6(b) shows the distribution of
the bond length along the x-direction, where the C–C bond
length is about 1.462 Å. Furthermore, due to the large differ-
ence between the C–C and Si–C bonds, there are obvious dis-
tortions for the Si–C bond length close to the interface. First-
principles calculations have predicted a stable planar structure
for SiC in the two-dimensional configuration,69 and the stabi-
lity of the two-dimensional SixC1−x monolayers (including
various interfaces) with 0 ≤ x ≤ 1 has been investigated by
first-principles calculations.70

We now demonstrate the generation of the topological
phonon branch that crosses over the frequency gaps for SiC.
Fig. 7(a) displays the phonon dispersion for the SiC ribbon
with the C–C interface shown in Fig. 6(a). The left and right
ends are fixed for the phonon calculation, while periodic
boundary conditions are applied along the ~a2 direction. The
big unit cell enclosed by the black box is used for the phonon
calculation. There are 96 branches corresponding to the 32
atoms in the big unit cell. There is a particular interface
phonon branch (indicated by the blue arrow) crossing over the

lower-frequency gap [126.7, 348.6] cm−1. There is no interface
phonon crossing over the higher-frequency gap [986.2, 1217.8]
cm−1, which is probably because of the large difference
between the strength of the C–C and Si–C bonds. As discussed
above, the C–C bond is much shorter than the Si–C bond,
which indicates that the C–C bond is much stronger than the
Si–C bond. The vibration of the interface phonon mainly
involves the vibration of the C–C bond, so its frequency is
much higher than the vibration of the Si–C bond; i.e., the
interface phonon branch with in-plane vibrations is out of the
high-frequency range of SiC. However, the C–C and Si–C bonds
have similar chemical properties in the out-of-plane direction,
due to the constraint of the honeycomb lattice structure. As a
result, the interface phonon with out-of-plane vibrations can
cross over the lower-frequency gap.

Fig. 7(b) illustrates the eigenvector for the interface phonon
with frequency ω = 325.8 cm−1 at k2 = 0 point. Only atoms at
the interface are involved in this eigenvector, so the interface
phonon is a kind of localized mode. Fig. 7(c) clearly displays
the exponential decay of the vibrational component away from
the interface, which is a characteristic property of the localized
mode. It should be noted that the localization here is with
respective to the x-direction (or ~a1 direction). The interface
phonon has nonzero group velocity as can be seen from
Fig. 7(a), so the interface phonon can travel along the interface
(~a2 direction).

V. Molecular dynamics simulations

In macroscopic systems, elastic waves are generated and
detected along the topological interface. In contrast, for nano-
materials, the vibration energy transport can be simulated by
molecular dynamics (MD) simulations. We thus perform MD
simulations in this section to theoretically illustrate some
transport properties for the topological phonons. In practice,
there are several available approaches to actuate the topologi-
cal phonons at a specific frequency, like optical methods or
neutron scattering approaches. The optical approach is suit-
able for phonons at the Γ point with a zero wave vector for the
topological phonon branch. The topological phonons are loca-
lized interface modes with low symmetry, so they are both
Raman and infra-red active modes. Hence, the topological
phonons can be readily excited by the optical approaches. The
neutron scattering method is able to excite phonons of high
frequency and at an arbitrary wave vector in the Brillouin zone.
The topological phonons may be investigated experimentally
by these approaches.

A. MD simulations for h-BN

From the above, we have observed the topological phonon
branch crossing over the frequency gap [1123, 1278] cm−1 for
the topological interface in monolayer h-BN. Therefore, this
topological phonon mode will be protected by the frequency
gap due to the energy conservation law. As a result, vibrational
energy carried by the topological phonon mode will be highly

Fig. 6 Structure of the C–C interface. (a) The C–C interface (blue area)
is in the middle of the crystal and along the~a2 direction. The rectangular
box denotes the translational cell along the ~a2 direction. (b) The distri-
bution of the bond length along the x-direction (horizontal).
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stable and localized at the interface. To verify the stability and
localization properties of the interface phonon mode, we per-
formed MD simulations to study the energy transfer along the
topologically trivial and non-trivial interfaces shown in Fig. 4
for monolayer h-BN.

We first simulate the energy transfer along the zigzag
shaped topological interface shown in Fig. 8, where h-BN is
divided into two areas of different topologies. As a result, the
zigzag interface corresponds to the topological interface
shown in Fig. 4(a). The atom in the center of the interface is
driven to oscillate along the interface direction at a given fre-
quency ω = 1250 cm−1 for 30 cycles, after which the system is
allowed to evolve within the NVE (i.e., the particle number N,
the volume V, and the energy E of the system are constant)
ensemble. In these MD simulations, the topological phonons
can be directly actuated at a chosen frequency. The resultant
distribution of the kinetic energy in h-BN is shown in Fig. 8(a).
Two energy pulses, traveling in opposite directions, are gener-
ated. Fig. 8(b) and (c) illustrate a stable transfer of the kinetic
energy along the interface. There is almost no energy loss
during the energy transfer, even at the sharp corners of the
zigzag interface, and about 99.8% of the kinetic energy propa-
gates around the sharp corner.

To further demonstrate the stability of the energy localized
at the topological interface, we simulate the kinetic energy
localized within a closed parallelogram shaped interface. In
Fig. 9(a), two energy pulses are created, which are moving in

opposite directions. Both energy pulses travel along the topolo-
gical interface and these two energy pulses will scatter after
about 4.7 ps. The scattering of these two energy pulses results
in an obvious signal in the kinetic energy as shown in
Fig. 9(c), which is the time history for the total kinetic energy
for the whole closed interface area. Fig. 9(c) shows four
obvious scatterings between the two moving energy pulses,
after which the pulses are divided into many smaller energy
pulses. There is almost no energy loss for the kinetic energy of
the interface, even after a long simulation time of 1000 ps.
Fig. 9(b) shows that the kinetic energy is still mainly localized
at the interface after 1000 ps.

In contrast to the topological interface, Fig. 10 shows that
there is almost no energy transfer along the zigzag shaped
trivial interface, where h-BN is divided into two areas of the
same topology. The middle atom at the interface is driven to
oscillate along the interface direction at a given frequency ω =
1250 cm−1 for 30 cycles, and Fig. 10(a) shows the resultant dis-
tribution of the kinetic energy, which clearly cannot be trans-
ferred along the trivial interface. The kinetic energy localized
around the driving region will be dissipated into the regions
surrounding the interface because this frequency is not topolo-
gically protected as shown in Fig. 10(b).

B. MD simulations for SiC

From the above, we have observed the topological phonon
branch crossing over the frequency gap [126.7, 348.6] cm−1 for

Fig. 7 Phonon dispersion for the interface in the monolayer SiC ribbon. (a) Phonon dispersion for the SiC ribbon with C–C interface. The xy (z)
directional phonons are denoted by the black (red) lines. The interface mode (depicted by the blue arrow) crosses over the frequency gap of the
z-directional phonons. (b) The eigenvector of the interface mode at k2 = 0. The color bar represents the value of the eigenvector. (c) An exponential
decay (from the interface) for the amplitude of the eigenvector in (b).
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the C–C interface in monolayer SiC. As a result, vibrational
energy carried by the topological phonon mode will be highly
stable and localized at the interface. To verify the stability and
localization properties of the interface phonon mode, we per-
formed MD simulations to study the energy transfer along the
C–C interface.

We created a SiC sheet of size 200~a1 � 20~a2 as shown in
Fig. 11(a). The C–C interface is along the horizontal direction
in the middle of the SiC sheet. Waves with a specified fre-
quency were generated at the left end of the interface by
driving one atom to oscillate at the given frequency for 30
cycles, which is modulated by the Hanning window. The oscil-
lation of this atom is driven in the z-direction only, as we are
only interested in the interface phonon branch crossing over

the lower-frequency gap that corresponds to the z-directional
vibration.

Some MD snapshots are presented in Fig. 11 for the energy
transfer along the C–C interface of SiC. In Fig. 11(a), the
vibrational energy excited at frequency ω = 300 cm−1 (which is
within the interface branch crossing over the lower-frequency
gap) travels along the interface from left to right. Note that we
have combined two snapshots at different times in the figure.

Fig. 8 Kinetic energy transfer along the zigzag shaped topological
interface in monolayer h-BN at time (a) t = 0 ps, (b) t = 0.6 ps, and (c) t =
1.6 ps. Note that the energy can be transported along the topological
interface with minimal loss, even at the sharp corners of the zigzag. The
color bar shows the kinetic energy (in meV) of each atom. Fig. 9 Demonstration of long-time localization of the energy in a

closed parallelogram topological interface in monolayer h-BN. (a) Two
energy pulses are created at t = 0. (b) A large portion of the kinetic
energy is still localized at the interface after a long time (1000 ps). The
color bar represents the kinetic energy (in meV) for each atom. (c) The
time history of the total kinetic energy localized at the interface. The
high peaks in the initial 20 ps correspond to the scattering of two
moving energy pulses. The inset shows the time history at longer time
scales.
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The velocity of the wave packet from the MD simulation is
20.5 Å ps−1, which is almost the same as the group velocity of
21.5 Å ps−1 for the interface phonon with frequency ω =
300 cm−1. In Fig. 11(b), the vibrational energy excited at fre-
quency ω = 100 cm−1 is a normal phonon mode, which falls
outside of the interface phonon branch crossing over the
lower-frequency range. This normal mode is spatially extended
and can travel in the space. Fig. 11(c) shows that it is
rather difficult to inject energy into SiC by vibrating at
frequency ω = 700 cm−1, which is outside the eigenfrequency
range of the z-directional vibration in SiC.

VI. Conclusion

In conclusion, we have demonstrated the existence of topologi-
cally protected interfacial phonon modes in a monolayer, two-
dimensional h-BN and SiC sheets. The phonon dispersion of
the topological interface mode crosses over the frequency gap
corresponding to the in-plane vibration for h-BN, which is
opened by breaking the inversion symmetry of the primitive
unit cell for h-BN. In SiC, the topological interface mode exists
in the frequency gap corresponding to the out-of-plane
vibrations, but there is no topological phonon branch crossing
over the frequency for the in-plane vibrations, because of the
strong breaking of the inversion symmetry in SiC. The topolo-
gical interface mode is isolated from the other phonon modes
by the energy conservation law of the phonon scattering
mechanism, which leads to the energy associated with the
topological interface mode being highly localized at the inter-
face both spatially and temporally, while being insensitive to
defects such as sharp corners. These results demonstrate the
possibilities of novel physical phenomena that may emerge in
two-dimensional topological nanomechanics.
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