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Abstract
We derive, from an empirical interaction potential, an analytic formula for the elastic bending
modulus of single-layer MoS2 (SLMoS2). By using this approach, we do not need to define or
estimate a thickness value for SLMoS2, which is important due to the substantial controversy
in defining this value for two-dimensional or ultrathin nanostructures such as graphene and
nanotubes. The obtained elastic bending modulus of 9.61 eV in SLMoS2 is significantly
higher than the bending modulus of 1.4 eV in graphene, and is found to be within the range of
values that are obtained using thin shell theory with experimentally obtained values for the
elastic constants of SLMoS2. This increase in bending modulus as compared to monolayer
graphene is attributed, through our analytic expression, to the finite thickness of SLMoS2.
Specifically, while each monolayer of S atoms contributes 1.75 eV to the bending modulus,
which is similar to the 1.4 eV bending modulus of monolayer graphene, the additional
pairwise and angular interactions between out of plane Mo and S atoms contribute 5.84 eV to
the bending modulus of SLMoS2.

(Some figures may appear in colour only in the online journal)

Molybdenum disulfide (MoS2) is a semiconductor with a bulk
bandgap above 1.2 eV [1], which can be further manipulated
by reducing its thickness to monolayer [2], (or through
application of mechanical strain [3, 4]). This finite bandgap
is a key reason for the excitement surrounding MoS2 as
compared to another two-dimensional material, graphene,
as graphene is well-known to be gapless [5]. Because of
its direct bandgap and also its well-known properties as a
lubricant, MoS2 has attracted considerable attention in recent
years [6, 7]. For example, Radisavljevic et al [8] demonstrated
the application of single-layered MoS2 (SLMoS2) as a
transistor. Several recent works have addressed the thermal
transport properties of SLMoS2 in both the ballistic and
diffusive transport regimes [9–12], while the mechanical
behavior of the SLMoS2 has also recently been investigated

experimentally [13–16]. We have also recently performed
theoretical investigations considering edge effects on the
Young’s modulus of SLMoS2 nanoribbons based on a recently
developed Stillinger–Weber (SW) potential [12].

Besides the Young’s modulus, the bending modulus
is another fundamental mechanical property. For two-
dimensional materials such as graphene or MoS2, the bending
modulus is important because it has been shown that the
electronic properties of graphene can be strongly impacted
by introducing curvature to its topology [17], which points
to the important coupling between the mechanical and
electrical properties in these two-dimensional materials [18].
The bending modulus also has strong implications for
potential future flexible, or stretchable electronics applications
involving SLMoS2.
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For graphene, it has been shown that the bending modulus
can be analytically calculated directly from an empirical po-
tential. Ou-Yang et al obtained the value for the elastic bend-
ing modulus of graphene from a geometric approach [19, 20].
In another analytic work, the exponential Cauchy–Born
rule [21] was applied to extract the elastic bending modulus
for graphene from the Brenner empirical potential [22, 23].
The bending modulus value from both analytic studies shows
good agreement with the experimental data.

Another important benefit of deriving the bending
modulus D directly from the interatomic potential, as done by
Arroyo and Belytschko [22] and Lu et al [23] is that in doing
so, the need to define an effective thickness h of SLMoS2,
as is required from shell theory through the well-known
relationship D = E2Dh2/(12(1− ν2)), where E2D

= Eh is the
two-dimensional stiffness and ν is Poisson’s ratio, is removed.
This is important because the precise definition of the
thickness of a monolayer-thick nanostructure, dating back to
nanotubes and more recently for two-dimensional graphene,
has been an ongoing source of controversy [20, 22, 24–31].
In the present work, by adopting the finite crystal elasticity
approach of Arroyo and Belytschko [22], the bending
modulus of SLMoS2 is inherently thickness-independent
because it is derived from a surface, and not volume energy
density.

Therefore, the objective of this work is to derive an
analytic formula for the elastic bending modulus of SLMoS2
based on our recently developed SW potential [12]. The
elastic bending modulus obtained for SLMoS2 is 9.61 eV,
which is larger than the elastic bending modulus of graphene
by a factor of 7. We will demonstrate the importance of the
finite thickness of SLMoS2 in being the key factor leading to
this substantial enhancement in bending modulus as compared
to monolayer graphene.

1. Geometrical constraints

Before presenting the analytic derivation of the bending
modulus, we first introduce the lattice structure for SLMoS2,
and some geometric preliminaries. First, the crystal structure
for SLMoS2 is shown in figure 1(a), which shows that each
plane of atoms takes a hexagonal structure, with two planes of
S atoms and a plane of Mo atoms sandwiched in between. This
crystal structure results in three major geometric parameters
as illustrated in figures 1(a) and (b). The distance between
two first-nearest-neighbor (FNN) Mo and S atoms is [12, 32]
b0 = 2.380 Å. The space between the two S atomic layers is
2d0. In our previous MD study [12], we found that three types
of bond angles 6 S1Mo1S5, 6 S5Mo1S6, and 6 Mo1S5Mo2 have
the same value and the same strength. These bond angles
thus have the same bending potential energy, and the same
chemical properties. Furthermore, these angles have the same
value of 2φ0 in the undeformed SLMoS2 configuration. (It
should be noted that this homogeneous assumption will
induce some error if a finite mechanical strain is applied to
the SLMoS2. This is because the bonds along the axially and
laterally strained directions become different by a factor of
about (1 + ν)ε = 1.29ε, where ν = 0.29 is the Poisson’s

Figure 1. The atomic configuration of SLMoS2. (a) and (b) are the
atomic structure of Mo and S atoms. All Mo atoms are on the same
plane. Atoms S1,S3, and S5 are on the same atomic layer. The other
three S atoms are on the other atomic layer. The Mo atomic layer is
sandwiched by the two S atomic layers. (c) A geometrical
configuration for two points A and B on a cylindrical surface. B′ is
the projection of B in the xy plane. θq is the angle between two arcs
AB and AB′ on the cylindrical surface. (The SLMoS2 in (a) is rolled
up and forms the surface of the cylinder in (c), and the radius of the
cylinder OB′ becomes the bending curvature of the SLMoS2.)
(d) The cross-sectional view of (c).

ratio [14] and ε is the strain. Hence, from this estimation, we
get an error of 6.5% for our analytic formula in the presence
of a mechanical strain of 5%.)

From the atomic geometry in figure 1(a), there are the
following two constraints on the variables (b0, d0, φ0):

d0 = b0 sinφ0; 2d0 =
√

3b0 cosφ0. (1)

As a result, we have tanφ0 =
√

3
2 and d0 = b0 sinφ0 =

√
3
7 b0,

so we get the bond angle 2φ0 = 81.787◦ and the Mo–S
interplane spacing d0 = 1.558 Å. We denote S atoms sitting
in the two planes as S±.

To investigate the bending properties of SLMoS2, similar
to graphene [22, 23] we homogeneously bend it into a
cylindrical surface with radius R = 1/κ , where κ is the
only nonzero principal curvature. Due to the homogeneous
bending, the Mo atomic layer is ideally bent. However, the
outer S+ atomic layer is stretched upon bending, while the
inner S− atomic layer is compressed. The radii of the cylinder
for S± atoms are R± = R(1 ± κd0). As a result, the tensile
or compressive strain for these two S atomic layers is ε± =
±κd0.

2. Empirical energy density

We have recently parameterized a SW potential for
SLMoS2 [12]. The two-body interaction takes form

V2 = εA(Bσ pr−p
ij − σ

qr−q
ij )e

[σ(rij−aσ)−1
], (2)
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where the exponential function ensures a smooth decay of the
potential to zero at the cut-off, which is key to conserving
energy in MD simulations.

The three-body interaction is

V3 = ελe[γ σ(rij−aσ)−1
+γ σ(rjk−aσ)−1

](cosφjik − cos 2φ0)
2,

(3)

where 2φ0 is the angle in the undeformed configuration.
There are five types of interactions in SLMoS2 as denoted by
red springs (for two-body) and blue springs (for three-body)
in figure 1(b). All SW potential parameters can be found
in [12]. This potential was found to give good agreement to
an experimentally obtained phonon spectrum [12], while also
yielding results for the Young’s modulus of SLMoS2 of about
229 GPa, which is within the recent experimental value of
270 ± 100 GPa [13] or 210 ± 52.5 GPa [14], which serves as
validation of the potential’s ability to accurately capture the
mechanical behavior and properties, particularly within the
elastic regime, of SLMoS2.

The bending energy density within each unit cell is W:

W × S0 = 1
∑
σ=±

3∑
q=FNN

V2(r
qσ
Mo1)+

1
2

6∑
q∈SNN

V2(rMo1−Moq)

+
1
2

∑
σ=±

6∑
q∈SNN

V2(r
qσ
S )+ 1

∑
σ=±

3∑
q=1

V3(θ
qσσ
Mo1)

+ 1
′∑

σ,σ ′=±

3∑
q=1

V3(θ
qσσ ′

Mo1 )+ 1
∑
σ=±

3∑
q=1

V3(θ
q
Sσ ), (4)

where S0 =
3
√

3
2 c2

0 = 8.423 Å
2

is the area of the unit cell
containing one Mo and two S atoms. For convenience, we
have introduced c0 = b0 cosφ0 as the ‘bond length’ of the
honeycomb lattice of the SLMoS2. The honeycomb lattice is
formed by Mo atoms and the projection of S atoms into the
Mo atomic layer. σ = ± corresponds to the two S atomic
layers, rqσ

Mo1 is the bond length between atom Mo1 and its
FNN S atom, which sits in the layer denoted by σ . rMo1−Moq

is the distance between two second-nearest-neighbor (SNN)

Mo atoms, θqσσ ′

Mo1 represents bond angles like 6 S1Mo1S5 for
σ ′ = σ , and 6 S5Mo1S6 for σ ′ 6= σ . The prime in

∑
′

σσ ′=±

restricts σ ′ 6= σ . An important point to emphasize in the
bending energy density in equation (4) is that it is area,
and not volume normalized, which implies that a heuristic
definition of the thickness of SLMoS2 is not required in this
work.

The factor of 1/2 in the second and the third terms is due
to the fact that the two-body energy is shared between two
SNN Mo or S atoms. We note that the bond S5S6 does not
change during homogeneous bending, so the two-body energy
association with this bond does not contribute to the bending
energy density. We find that

∑
σ=± = 2 in all relevant terms,

because as shown above the top and bottom S atomic layers
are stretched or compressed for the same amount of strain
upon bending.

From the SLMoS2 configuration, we find the following
constraint due to the equilibrium of the Mo and S atoms:

∂W

∂rq

∣∣∣∣
κ=0
= 0, (5)

where rq is the deformed bond length. Owing to the particular
form of the SW three-body potential, we also have:

∂W

∂θ

∣∣∣∣
κ=0
= 0;

∂2W

∂θ∂rq

∣∣∣∣
κ=0
= 0. (6)

Therefore, the SW potential predicts a zero bending
modulus for graphene, because as explained in Arroyo and
Belytschko [22], the SW potential cannot describe the bending
properties of planar, one-atom-thick structures. In particular,
the flexural modes, which are related to the bending modulus
in graphene, will have zero energy from the SW potential [33].
However, the SW potential is able to describe the bending
of SLMoS2, which has finite thickness and non-planar
covalent bonds. This point will be clearly demonstrated in the
following analytic derivation of the bending modulus from the
energy density W in equation (4).

3. Analytic derivation of bending modulus

Following Arroyo and Belytschko [22], the bending modulus
can be calculated by

D =
∂2W

∂κ2 . (7)

Recalling equations (5) and (6), the bending energy can also
be written as

D =
∑

q

∂2W

∂r2
q

(
∂rq

∂κ

)2

+

∑
q

∂2W

∂θ2
q

(
∂θq

∂κ

)2

. (8)

This formula is substantially different from the bending
modulus formula in graphene [22]. Specifically, the first
derivative here for rq and θqk with respect to κ is nonzero
owing to the finite thickness of SLMoS2.

To calculate the bending modulus using equation (8),
two quantities ∂rq

∂κ
and

∂θqk
∂κ

are required. In the following,
we will calculate these two quantities for all six terms in
the energy density W in equation (4). Finally, while SLMoS2
is a multi-lattice which requires an internal, or shift degree
of freedom between the Mo and S planes, we have verified
that, similar to monolayer graphene [22, 23], the shift degree
of freedom does not contribute to the bending modulus of
SLMoS2.

(1) The first term in the energy density W in equation (4)
is of the form V2(r

qσ
Mo1), which captures the pair FNN

interactions between Mo and S atoms. For the first energy
term, we have ∂2W

∂θ2
q
= 0. Hence we only need to calculate

∂rq
∂κ

. (To derive this quantity, the two-dimensional SLMoS2
plane is rolled up onto the cylindrical surface in figure 1(c)),
where point A represents atom Mo1 and point B represents the
projection of two S atoms (e.g. S5 and S6) onto the Mo atomic

3
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layer. We consider the inner S− atom layer. From figure 1(d),
one can find the lattice vector to be:

Erq =
−−→
AS− =

(R− d0) cos κw2

(R− d0) sin κw2

w1

−
R

0

0



=


−
κw2

2

2
Q2
(κw2

2

)
− d0 cos (κw2)

w2Q
(κw2

2

)
− d0 sin (κw2)

w1

 . (9)

The two variables (w2,w1) = c0(cos θq, sin θq), where θq is
the angle between the two arcs AB and AB′ on the cylindrical
surface in figure 1(c). Equation (9) gives the lattice vector in
the SLMoS2 during bending. For d0 = 0, this formula turns
out to be the result of graphene, which can be obtained by
the geometric approach [19], or the exponential Cauchy–Born
rule [22]. Equation (9) is actually the generalization of the
geometric approach results or the exponential Cauchy–Born
rule to a curved surface of finite thickness.

Using equation (9) the first derivative of the lattice
vector is

∂Erq

∂κ

∣∣∣∣
κ=0
=

−
1
2

w2
2

−d0w2

0

 . (10)

The first derivative of the bond length is

∂rq

∂κ
=

1
rq
Erq ·

∂Erq

∂κ
= −

1
2

d0

b0
w2

2 = −
2
√

3

7
√

7
b2

0 cos2θq. (11)

This is different from the situation in monolayer graphene.
We obtain a nonzero value for the first derivative of the
bond length because Erq ·

∂Erq
∂κ
6= 0. This term is related to

the inter-layer spacing d0, which implies that this nonzero
value is the result of the finite thickness of SLMoS2. For S+

atoms on the outer cylindrical surface, the only difference is
to substitute d0 by −d0.

(2) The second term in the energy density W in
equation (4) is of the form V2(rMo1−Moq), which captures
the pair SNN interactions between Mo atoms. For the second
term, we have ∂2W

∂θ2
q
= 0. It can also be shown that ∂rq

∂κ
= 0. For

this derivation, in figure 1(c), point A represents atom Mo1

while point B represents one of its SNN atoms (e.g. Mo2). All
Mo atoms are on the same cylindrical surface, so we get the
lattice vector in the cylinder:

Erq =
−→
AB =


−
κw2

2

2
Q2
(κw2

2

)
w2Q

(κw2

2

)
w1

 , (12)

where the two variables (w2,w1) = bMo(cos θq, sin θq).
bMo =

√
3c0 is the distance between two neighboring Mo

atoms in SLMoS2. Using this formula, we find that

∂Erq

∂κ

∣∣∣∣
κ=0
=

−
1
2

w2
2

0

0

 . (13)

As a result, Erq ·
∂Erq
∂κ
= 0, leading to ∂rq

∂κ
= 0, and thus the

SNN Mo atom interactions do not contribute to the bending
modulus of SLMoS2.

(3) The third term in the energy density W in equation (4)
is of the form V2(r

qσ
S ), which captures the pair SNN

interactions between S atoms that lie in the same plane. For
the third energy term, we have ∂2W

∂θ2
q
= 0. We consider the

S− atom on the inner cylindrical surface. For S+ atoms, the
derivation is analogous. For this derivation, in figure 1(c),
points A and B represent two neighboring S− atoms (e.g. S1
and S3) on the inner atomic cylindrical surface. The lattice
vector is:

Erq =
−→
AB =


−
κ̃w̃2

2

2
Q2
(
κ̃w̃2

2

)
w̃2Q(κ̃w̃2)

w1

 , (14)

where due to the compression within the S− layer, we have
two important relationships:

w̃2 = (1− κd)w2; κ̃ =
1

R− d
= κ(1+ κd). (15)

Here, (w2,w1) = bS(cos θq, sin θq). bS =
√

3c0 is the distance
between two neighboring S atoms in SLMoS2.

The first derivative of the lattice vector is:

∂Erq

∂κ
=

−
1
2

w2
2

−d0w2

0

 . (16)

As a result, we get a nonzero value for the first derivative of the
bond length ∂rq

∂κ
= −

d0
bS

w2
2. For S+, an analogous derivation

gives ∂rq
∂κ
=

d0
bS

w2
2.

(4) The fourth term in the energy density W in
equation (4) is of the form V3(θ

qσσ
Mo1), which captures the

three-body (angular) interactions between Mo and two S
atoms in the same plane. For the fourth energy term, ∂

2W
∂r2

q
= 0.

We consider S− atoms. From the definition cosφ = n̂i · n̂j,
where n̂i and n̂j are two unit vectors for the two bonds forming
the angle φ, we get

∂

∂κ
cosφ =

3
14

d0c2
0

b2
0

(5− 6 cos 2θq). (17)

(5) The fifth term in the energy density W in equation (4)

is of the form V3(θ
qσσ ′

Mo1 ), which captures the three-body
(angular) interactions between Mo and S atoms in different
layers. For the fifth energy term, ∂2W

∂r2
q
= 0. We also have

4
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∂
∂κ

cosφ = 0, because homogeneously bending SLMoS2
results in the distance between two S atomic layers being
unchanged, i.e. the bond length S5S6 is unchanged. Thus, the
angular three-body interactions between an Mo atom and two
S atoms in different planes does not contribute to the bending
modulus of SLMoS2.

(6) The sixth term in the energy density W in equation (4)
is of the form V3(θ

q
Sσ ), which captures the three-body

(angular) interactions between S atoms in the same plane. For
the sixth energy term, ∂

2W
∂r2

q
= 0. We consider the S− atom on

the inner cylindrical surface. For this derivation, in figure 1(c),
point A represents the projection of two S atoms (e.g. S5
and S6), and point B represents the Mo atom (e.g. Mo1). The
lattice vector and its derivatives are:

Erq = ES−B =


κw2

2

2
Q2
(κw2

2

)
+ d0

w2Q(κw2)

w1


∂Erq

∂κ
=

−
1
2

w2
2

0

0

 ; ∂rq

∂κ
= −

1
2

d0

b0
w2

2,

(18)

where (w2,w1) = c0(cos θq, sin θq). The derivative of the
angle is:

∂

∂κ
cosφ = −

3
7
×

d0

b2
0

c2
0

(
1−

1
2

cos 2θq

)
. (19)

We have established above that there are two terms (terms
2 and 5) in the energy density W in equation (4) that do
not contribute to the bending modulus of SLMoS2. We now
evaluate the relative contributions of the other four terms using
equation (8) to obtain the bending modulus of SLMoS2:

Dterm1 =
2
S0

[
27

49× 14
b4

0V ′′2 (b0)

]
= 3.09 (20)

Dterm3 =
2
S0

[
9
8

d2
0b2

SV ′′2 (bS−S)

]
= 3.49

Dterm4 =
2
S0

[
12× 27× 43
7× 49× 49

b2
0V ′′3 (cos θ)

]
= 2.75

Dterm6 =
2
S0

[
27× 54

7× 49× 49
b2

0V ′′3 (cos θ)
]
= 0.29

D = Dterm1 + Dterm3 + Dterm4 + Dterm6 = 9.61 eV (21)

where the second derivatives are V2 (r0)
′′
=

∂2V2(r)
∂r2 |r=r0 and

V ′′3 =
∂2V3(cosφ)
∂(cosφ)2

|φ=2φ0 .

For the cycle summation
∑

q, we have used some
trigonometric summation identities. If θq = θ1 + (q −
1) 2π

3 , we have
∑3

q=1 cos θq = 0,
∑3

q=1cos2θq =
3
2 , and∑3

q=1cos4θq =
9
8 . If θq = θ1 + (q − 1)π3 , we have following

trigonometric identities:
∑6

q=1 cos θq = 0,
∑6

q=1cos2θq = 3,

and
∑6

q=1cos4θq =
9
4 .

From the final results in equation (21), we find the
bending modulus of SLMoS2 to be 9.61 eV, which is about

Figure 2. Strain energy density versus the bending curvature in
SLMoS2 from molecular mechanics method for zigzag (triangles,
blue online) and armchair (circles, red online) directions. The
analytic result, W = Dκ2/2, is shown by the dashed line. Deviations
between molecular mechanics and analytic results are due to
nonlinearity at large bending curvature.

7 times larger than the value of 1.4 eV for monolayer
graphene [23]. Furthermore, we can clearly demonstrate that
this difference arises due to the finite thickness effect, or the
fact that SLMoS2 actually contains three planes of atoms.
Specifically, equation (21) shows that nearly 36% of the
bending modulus, or 3.49 eV, arises from the contribution of
the two-body SNN interactions between S atoms that lie on
the same plane. Because there are two planes of S atoms in
SLMoS2, we find that each plane of S atoms contributes about
1.75 eV to the bending modulus. This value is similar to the
1.4 eV value for monolayer graphene [23].

However, due to the three planes of atoms, SLMoS2
receives additional, out of plane contributions to its bending
modulus. Specifically, the FNN Mo–S interactions contribute
about 3.09 eV, or 32% of the total bending modulus, while
the three-body (angular) Mo–S interactions between Mo and
S atoms on the same plane, contributes 2.75 eV, or about
29% of the bending rigidity. Not surprisingly, the three-body
interactions between S atoms on different planes contributes
only 0.29 eV, or about 3% to the total bending modulus.
Overall, the two-body (pair) terms contribute about 6.58, or
68% of the total bending rigidity. This means that the angular
(three-body) contribution in SLMoS2 of about 29% is smaller
than the 41% contribution that the dihedral angles were found
to make to the bending modulus in monolayer graphene [23].

To validate the analytic results, we compute the bending
modulus of SLMoS2 using the same SW potential using
the molecular mechanics method. Figure 2 shows the strain
energy density for SLMoS2 nanotubes. The tubes are obtained
by rolling up the SLMoS2 into a cylindrical structure, with
the middle Mo atomic layer purely bent. Both armchair and
zigzag tubes are calculated. The energy is calculated for this
ideally rolled up tube structure without optimization (energy
minimization), because the optimization is not considered in
the above analytic derivation. As we have pointed out above,
the optimization of the shift degree of freedom between the
Mo and S planes of atoms does not contribute to the bending
modulus. However, the optimization of the whole unit cell
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(with one Mo and two S atoms) can slightly decrease the
total energy of the system, and represents a more accurate
value. Our analytic value of 9.61 eV is about 16% larger
than the value (8.03 eV) obtained from the MM method with
optimization and relaxation of all degrees of freedom. The
dashed line in figure 2 denotes the analytic result, W = Dκ2/2,
with D = 9.61 eV. Good agreement is observed between the
analytic result and the numerical data for curvature smaller
than 0.12. Some obvious discrepancy appears for curvature
larger than 0.12, which is due to the neglect of nonlinear terms
in the analytic derivation. It should be noted that for graphene,
the analytic result agrees with the molecular mechanics
calculation up to a curvature value around 0.25 [23], which
is much larger than the value of 0.12 reported here. This is
quite reasonable, considering the finite thickness and more
complicated tri-layer configuration in SLMoS2.

Finally, we compare our result with those that can be
obtained by taking recent experimental measurements for the
elastic properties of SLMoS2, and using them in the classical
bending modulus expression for thin elastic structures, D =
E2Dh2/(12(1−ν2)). To do so, we note that recently, Bertolazzi
et al [13] have found E2D

= 180 ± 60 N m−1 for SLMoS2,
while Copper et al [14] found E2D

= 130 N m−1 for SLMoS2.
Given those values, we consider E2D to range from 120 to
240 N m−1, while taking the Poisson’s ratio v = 0.29, (which
is obtained from first-principles calculations) [14], and the
thickness h = 2×1.558 = 3.116 Å. Taking these values gives
an experimental range for the bending modulus D from 6.62
to 13.24 eV. Our obtained value of D = 9.61 eV clearly fits
into this range.

4. Conclusion

In conclusion, we derived an analytic formula for the elastic
bending modulus of the SLMoS2, which does not require
the definition of a thickness for SLMoS2. The obtained
elastic bending modulus is 9.61 eV for SLMoS2, which
is significantly larger than the elastic bending modulus of
graphene, is found to be within the range of values that are
obtained using thin shell theory with experimentally obtained
values for the elastic constants of SLMoS2. It is found that the
finite thickness of the SLMoS2 plays a key role in determining
its bending properties. Specifically, while each monolayer of
S atoms has a bending rigidity (1.75 eV) similar to that of
monolayer graphene (1.4 eV), the additional pairwise and
angular interactions between Mo and S atoms contributes
5.84 eV to the bending modulus of SLMoS2.
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