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1.  Introduction

Heterostructures are a sequential stacking of two dif-
ferent two-dimensional (2D) layered materials [1], which 
are coupled together via interlayer van der Waals interac-
tions. Characterization of the interlayer coupling in the  
heterostructures can be done using a lattice dynamical anal-
ysis. Specifically, the interlayer breathing (B) mode and shear 
(C) mode directly represent the interlayer coupling proper-
ties in the layered materials. The frequency for the B mode 
is depending on the number of layers, so this mode can be 
used to determine the number of layers of the heterostructure, 
while the C mode gives insight into the friction between two 
neighboring 2D layers.

The C mode in few-layer graphene was examined exper
imentally by Tan et  al in 2012 [2]. The frequency for the 

highest-frequency C mode depends on the layer number (N ) 
as ( / )π+ N1 cos , which was explained by the chain model, 
and is around 30 cm−1 in few-layer graphene. Due to its low 
frequency, the C mode can be excited easily, so it is sensitive 
to the near-Dirac point quasi-particles [2]. In particular, the C 
mode is easily excited during cross-plane thermal transport 
in the layered materials, due to its low frequency. The scat-
tering between the C mode and the acoustic modes may play 
an important role for the cross-plane thermal transport in the 
layered materials. More recently, two experiments found that 
the signal of the C mode can be enhanced by folding the gra-
phene layers [3, 4]. The B mode in few-layer graphene has 
also been studied by several groups [5, 6].

As another important 2D layered material, few-layer MoS2 
has also attracted significant attention for its interlayer modes. 
Several experiments have measured the N dependence for 
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the frequency of the interlayer B mode and C mode in few-
layer MoS2 [7–10]. The frequency of the interlayer B mode 
decreases with increasing layer number, while the C mode 
exhibits the opposite behavior.

Few-layer black phosphorus (FLBP) is another emerging 
2D layered material with that shows an N-dependent band gap 
[11, 12]. However, few works have been performed for the 
phonon modes in black phosphorus. The phonon dispersion 
for bulk black phosphorus was measured [13, 14] in 1980s. 
The experiment was explained by Kaneta et  al using the 
valence force field model (VFFM) [15, 16] or the adiabatic 
bond charge model [17]. While the layer number dependence 
for symmetry analysis of the interlayer B mode and C mode in 
the FLBP was studied by Ribeiro-Soares et al [18], there have 
not been any studies on the layer number dependence for the 
frequency of the interlayer B and C modes in FLBP, in which 
an important and interesting effect to quantity is that of the 
intrinsically puckered BP geometry on the interlayer modes. 
We thus analyze the lattice dynamics properties for the inter-
layer B mode and C mode in the FLBP.

In this paper, we study the symmetry and the lattice 
dynamical properties for the interlayer B mode and C mode in 
FLBP. The symmetry groups for the FLBP with even or odd 
layer numbers are compared. Using these symmetry groups, 
we analyze the symmetry for the interlayer B and C modes, 
including their irreducible representations and their infrared 
(IR) and Raman activity. The VFFM is utilized to compute the 
eigenvectors and frequencies for the interlayer B and C modes, 
while the calculated results are explained by the linear chain 
model. As a result of the intrinsic geometric anisotropy in the 
puckered configuration of BP, the two interlayer C modes have 
very different frequencies. Furthermore, we present a set of 
collective interlayer modes in FLBP with layer number N  =  3i 
with integer i. The frequencies for these collective modes are 
independent of the layer number and these modes are optically 
active, so they should be experimentally measurable.

2.  Symmetry analysis for BP structure

2.1.  Bulk BP

There are eight atoms in the orthorhombic cell for bulk BP. 
The bases for the orthorhombic cell are as follows,

ˆ=
→
A ae ,x1� (1)

ˆ=
→
A be ,y2� (2)

ˆ=
→
A ce ,z3� (3)

where êx, êy, and êz are unit vectors in the three cartesian direc-
tions. The lattice constants a  =  4.1766 Å and b  =  3.2197 Å 
are computed from the Stillinger–Weber potential [19]. The 
VFFM used for the interlayer interaction is linear, so it cannot 
be used to optimize the interlayer structure. We thus take the 
value of the lattice constant c  =  10.587 Å from [12].

The primitive unit cell for the bulk BP contains four atoms 
[20]. The bases for the primitive unit cell are,

=→ →
a A ,1 1� (4)

( )= −→ → →
a A A

1

2
,2 2 3� (5)

( )= +→ → →
a A A

1

2
.3 2 3� (6)

Each unit cell can be labelled by a lattice vector 
→ → → →= + +R l a l a l al l l 1 1 2 2 3 31 2 3 , with l1, l2, and l3 as three integers. 
The lattice vector corresponds to a translation symmetry oper-
ation, T̂l l l1 2 3, which translates the bulk BP by a lattice vector 
→
Rl l l1 2 3.

The point group for the bulk BP is D2h  =  {E, C2z, C2y,C2x, 
i, σxy, σyz, σzx}. C2z is the rotation for π around the z-axis, i is 
the inversion symmetry and σxy is the reflection with respect to 
the z  =  0 plane. Four of these eight symmetry operations, C2z, 
C2x, σxy, and σyz, are accompanied by the following nonprimi-
tive translations,

( )τ = +→ → →
A A

1

2
.B 1 3� (7)

The translational symmetry and the point group together con-
struct the space group (D h2

18 ) of bulk BP; i.e. ˆ= ⊗D T Dh l l l h2
18

21 2 3 .
The reciprocal vectors are determined by the bases for the 

primitive unit cell through the relation

πδ⋅ =
→ →b a 2 ,i j ij� (8)

which gives,

ˆπ=
→
b

a
e

2
,x1� (9)

ˆ ˆπ π
= −

→
b

b
e

c
e

2 2
,y z2� (10)

ˆ ˆπ π
= +

→
b

b
e

c
e

2 2
.y z3� (11)

→
b1 is in x-direction, while 

→
b2 and 

→
b3 lie in the yz plane. The first 

Brillouin zone for bulk BP is shown in figure 1.
The Z point in the first Brillouin zone plays an important 

role in the present work. The wave vector for the B mode and 
C mode in the bulk BP is located at the Z point of the first 
Brillouin zone, and not at the Γ point of the first Brillouin 
zone. This can be demonstrated as follows. The wave vector 
for the Z point is,

= − +k b b
1

2
.Z 2 3( )→ → →

� (12)

We shall treat the unit cell containing the four atoms (1, 2, 3, 4)  
in figure 2 as the (0, 0, 0) unit cell. The lattice vector for this 
unit cell is =

→
R 0000 . This unit cell (0, 0, 0) is in the same 

plane as the unit cell containing atoms (5, 6, 7, 8). The  
lattice vector for the latter unit cell is = = +

→ → → →R A a a011 2 2 3, 
so its phase factor in the Bloch theory is ⋅ =

→ →
k R 0Z 011 , which 

means that the phase factors for the unit cells in the same 
BP plane are the same. The lattice vector for the unit cell 
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containing atoms (9, 10, 11, 12) is =
→ →R a010 2, with the phase 

factor as π⋅ = −
→ →
k RZ 010 . This unit cell (0, 1, 0) is in a different 

layer from the (0, 0, 0) unit cell. It shows that the vibration for 
the two BP layers in bulk BP are out-of-phase at the Z point. 
We therefore have demonstrated that the phonon modes at the 
Z point correspond to the relative vibrations between the two 
BP layers in bulk BP. The B mode and C mode studied in 
the present work describe the relative breathing or shearing 
motion of the two BP layers, so the wave vectors for these 
modes are located at the Z point.

There are twelve phonon modes at the Γ point or Z point for 
bulk BP, corresponding to the four atoms in the primitive unit 
cell. The symmetry for these phonon modes can be analyzed 
according to the point group (D2h) of bulk BP. Table 1 lists the 
eight irreducible representations for the point group D2h. There 
are two symbols for each irreducible representation in the first 
column of table 1. The first symbol is for phonon modes at the 
Γ point, while the second symbol is for the phonon modes at 
the Z point in the first Brillouin zone.

Table 2 shows the symmetry analysis for phonon modes 
at the Γ point or the Z point in the first Brillouin zone. 
Γ = Γ ⊗Γvib a.s. vec is the vibrational representation, with Γa.s. 
as the permutation representation and Γvec as the vector repre-
sentation. The decomposition of the vibrational representation 
gives the irreducible representation for each phonon mode at 
the Z point in the first Brillouin zone. The vibrational repre-
sentation can be decomposed as follows, using the character 
table method,

Z Z Z Z
Z Z Z Z

2 2
2 2 .

vib
2 3 1 4

2 3 1 4

Γ = ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

+ + + +

− − − −�
(13)

The twelve phonon modes at the Z point in the first Brillouin 
zone belong to these 12 irreducible representations on the 
right-hand side of equation (13). From the eigenvector, it can 
be determined that the B mode in bulk BP belongs to the −Z4  
irreducible representation, the Cx mode belongs to the −Z3  
irreducible representation, and the Cy mode belongs to the 
−Z2  irreducible representation. These results are shown in the 

second line of table 3.
The IR activity for each phonon mode can be analyzed by 

decomposing the vector representation in the following,

Γ = ⊕ ⊕− − −Z Z Z .vec
1 3 4� (14)

The vector representation is three-dimensional, so there are 
three one-dimensional irreducible representations in the 
resulting decomposition. This result predicts that phonon 
modes corresponding to these three irreducible represen-
tations will be IR-active in the optical scattering process. 
According to this result, the B mode ( −Z4) and Cx mode ( −Z3 ) in 
bulk BP are IR-active, while the Cy mode ( −Z2) is IR inactive.

The Raman activity for each phonon mode can be 
determined by decomposing the six-dimensional tensor 

Figure 1.  The first Brillouin zone for bulk BP. Top is the projection 
of the first Brillouin zone onto the yz plane. Bottom is the three-
dimensional first Brillouin zone for bulk BP.

Figure 2.  Top view of bulk BP. The two BP layers are displayed by 
different colors. The x-direction is perpendicular to the pucker, and 
the y-direction is parallel with the pucker.

Table 1.  The irreducible representation for the D2h group at the Z 
point in the Brillouin zone.

E C2z C2y C2x i xyσ xzσ yzσ

Ag  =  Z2
+ 1 1 1 1 1 1 1 1

B1g  =  Z3
+ 1 1 −1 −1 1 1 −1 −1

B2g  =  Z1
+ 1 −1 1 −1 1 −1 1 −1

B3g  =  Z4
+ 1 −1 −1 1 1 −1 −1 1

Au  =  Z2
− 1 1 1 1 −1 −1 −1 −1

B1u  =  Z3
− 1 1 −1 −1 −1 −1 1 1

B2u  =  Z1
− 1 −1 1 −1 −1 1 −1 1

B3u  =  Z4
− 1 −1 −1 1 −1 1 1 −1

Note: The two symbols for the irreducible representation are listed in the 
first column.

J. Phys.: Condens. Matter 28 (2016) 165401
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representation, Γ ×v v. The bases for the tensor representation 
are +x y2 2 , z2, −x y2 2, xy , xz , and yz. The tensor representa-
tion is decomposed as follows,

Γ = ⊕ ⊕ ⊕× + + + +Z Z Z Z3 .v v
2 3 1 4

According to this decomposition result, none of the three 
interlayer modes is Raman active in bulk BP.

The above decomposition results for phonon modes at the 
Z point in bulk BP are shown in the third line of table 2. The 
symmetry analysis for phonon modes at the Γ point in the first 
Brillouin zone of bulk BP are shown in the second line of 
table 2. The symmetry for the three interlayer modes for bulk 
BP are shown in the second line of table 3.

2.2.  Few-layer BP

The FLBP studied in the present work has the same stacking 
order as the bulk BP as shown in figure  2, which can be 
regarded as the AB stacking, while the group symmetry for 
the AA stacking FLBP was analyzed in a previous work [18]. 
There is no translational symmetry in the z-direction for FLBP. 
Hence, the orthorhombic cell for the FLBP is the primitive 

unit cell in this structure. The bases are 
→
A1 and 

→
A2. There are 

4N atoms in the primitive unit cell of the FLBP. These eight 
point group symmetry operations in the bulk BP are still sym-
metry operations in the FLBP, but accompanied by different 
nonprimitive translations.

For even-layer FLBP, the point group for the FLBP with 
even N is D2h. Two of these eight symmetry operations, C2z 
and σyz, are accompanied by the following nonprimitive 
translations,

( )→ → →
τ = +A A

1

2
.E1 1 2� (15)

Another two symmetry operations, C2x and σxy, are accompa-
nied by the following nonprimitive translations,

τ =→ →
A

1

2
.E2 1� (16)

The irreducible representation for each phonon mode at the Γ 
point is found by decomposing the vibrational representation 
for the FLBP with even N. The symmetry analysis results are 
shown in the fourth line of table 2.

Table 3.  The irreducible representation for the B mode and C modes.

B1 mode Cx1 mode Cy1 mode B2 mode Cx2 mode Cy2 mode

Bulk Z4
− (IR) Z3

− (IR) Z2
− (No) / / /

FLBP, even N Ag (R) B2g (R) B3g (R) B1u (IR) B3u (IR) B2u (IR)
FLBP, odd N Ag (R) B3u (IR) B2u (IR) B1u (IR) B2g (R) B3g (R)
Layer dependence

N
1 cos

π
−

N
1 cos

π
+

N
1 cos

π
+

N
1 cos

2π
−

N
1 cos

2π
+

N
1 cos

2π
+

Note: IR or Raman-activity is listed in the parentheses, where ‘No’ indicates optically inactive. N is the layer number.

Table 4.  VFFM parameters.

1α 2α 3α

Reference [16] 0.321 −0.01 0.015
Present work 0.281 −0.067 0.03

Note: The original parameters from [16] are listed in the second line. 
The third line lists optimized parameters used in the present work. All 
parameters are in the unit of eV 

−
Å

2
. The corresponding potential is 

[( ) ˆ ]α= − ⋅→ →V u u ei j ij
1

2
2, where →uj is the displacement for atom j and êij is the 

unit vector from atom i to atom j.

Table 5.  Frequency (in cm−1) for the B mode, Cx mode, and Cy 
mode in bulk BP.

B Cx Cy

Exp 87.1 19.4 51.6
Reference [16] 92.8 ( 6.5%↑  ) 21.1 ( 8.8%↑ ) 53.5 ( 3.7%↑ )
Present work 87.1 (0%) 20.0 ( 3.1%↑ ) 51.7 ( 0.2%↑ )

Note: Theoretical results from [16] (3rd line) and the present work (4th 
line) are compared with experiments (2nd line). The values in parentheses 
(3rd line and 4th line) are the relative difference between the theoretical 
prediction and the experiment.

Table 2.  Symmetry analysis for phonon modes in bulk BP (Γ point and Z point) and FLBP (Γ point).

Point 
group

Mode 
number vibΓ IRΓ RΓ

Bulk at Γ point D2h 12 ⊕ ⊕ ⊕ ⊕A B B B2 2g g g g1 2 3 B B Bu u u1 2 3⊕ ⊕ A B B B3 g g g g1 2 3⊕ ⊕ ⊕
A B B B2 2u u u u1 2 3⊕ ⊕ ⊕

Bulk at Z point D2h 12 ⊕ ⊕ ⊕ ⊕+ + + +Z Z Z Z2 22 3 1 4
Z Z Z1 3 4⊕ ⊕− − −

Z Z Z Z3 2 3 1 4⊕ ⊕ ⊕+ + + +

Z Z Z Z2 22 3 1 4⊕ ⊕ ⊕− − − −

FLBP, even N D2h 12N NA NB NB NB2 2g g g g1 2 3⊕ ⊕ ⊕ B B Bu u u1 2 3⊕ ⊕ A B B B3 g g g g1 2 3⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕NA NB NB NB2 2u u u u1 2 3

FLBP, odd N D2h 12N NA NB NB NB2 2g g g g1 2 3⊕ ⊕ ⊕ B B Bu u u1 2 3⊕ ⊕ A B B B3 g g g g1 2 3⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕NA NB NB NB2 2u u u u1 2 3

Note: The total number of phonons is listed in the third column. Phonon modes are classified by the irreducible representations of Γvib in the fourth column. 
The irreducible representations of the IR and Raman-active modes are listed in the fifth and sixth columns, respectively. N is the layer number.

J. Phys.: Condens. Matter 28 (2016) 165401
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For the B mode, we are interested in the first lowest- 
frequency B (B1) mode and the second lowest-frequency B (B2) 
mode in FLBP. The eigenvectors for these two B modes are 
shown in figure 4. For the C mode, we are interested in the first 
highest-frequency C mode (Cx1 or Cy1) and the second highest-
frequency C (Cx2 or Cy2) mode. The eigenvectors for these C 
modes are shown in figures 5 and 6. The third line of table 3 
shows the symmetry for these modes in the FLBP with even N.

For odd-layer FLBP, the point group is also D2h. Four of 
these eight symmetry operations, C2z, C2x, σxy, and σyz, are 
accompanied by the following nonprimitive translations,

( )τ = +→ → →
A A

1

2
.O 1 2� (17)

The symmetry analysis for phonon modes at Γ point in the 
odd-layer FLBP are shown in the fifth line of table  2. The 
symmetry for the interlayer modes are shown in the fourth line 
of table 3. The IR-activity and Raman-activity are also shown 
in the table.

3.  Interaction potential

The intralayer interaction is described by a recently developed 
Stillinger–Weber potential [19]. We apply the VFFM for the 
interlayer coupling between two adjacent BP layers [16]. This 
VFFM contains the following bond stretching interaction,

[( ) ˆ ]α= − ⋅→ →V u u e
1

2
,i j ij

2� (18)

where →uj is the displacement for atom j, êij is the unit vector 
from atom i to atom j, α = α1, α2, and α3 are the parameters 
for the first-, second-, and third-nearest-neighbor interlayer 
interactions, respectively. Figure  2 shows the configuration 
for bulk BP. The interlayer first-nearest-neighbor distance is 
the distance between atoms 9 and 2, i.e. d1  =  3.7311 Å. The 
interlayer second-nearest-neighbor distance is the distance 
between atoms 9 and 3, i.e. d2  =  3.8520 Å. The interlayer 
third-nearest-neighbor distance is the distance between atoms 
9 and 7, i.e. d3  =  4.9612 Å.

The original VFFM parameters from [16] are listed in the 
second column in table 4. These parameters are further optim
ized in the present work by fitting the frequencies of inter-
layer phonon modes in bulk phosphorus, and are also listed 
in table 4. After optimization, frequencies for the interlayer 

B mode and C mode in bulk BP agree well with the exper
imental results as shown in table 5.

The phonon modes are calculated using GULP [21]. 
Table 5 lists the frequency for the B mode and two C modes 
in bulk BP. Due to the intrinsic geometric anisotropy due to 
the puckered configuration, the frequency for the interlayer 
shear mode in the x-direction (Cx) is quite different from the 
frequency of the interlayer shear mode in the y-direction (Cy). 
The frequencies of the interlayer modes from the optimized 
VFFM parameters agree quite well with the experiment, with 
a maximum error of about 3% for the Cx mode. The eigen-
vectors for the interlayer modes in the bulk BP are shown in 
figure 3. The figure is produced using XCRYSDEN [22].

Table 4 shows that α2 is negative in both the original VFFM 
parameter set and the optimized parameter set. A negative 
VFFM parameter implies that BP becomes unstable under 
high pressure. This pressure induced structure instability was 
investigated experimentally by Yamada et al [14].

4.  Numerical results

For the interlayer mode in the layered structure, each layer 
can be regarded as a single atom. The entire layered struc-
ture can thus be considered as a single atomic chain with free 
boundary conditions at the two ends. This atomic chain model 
has been successfully applied to simulate the interlayer modes 
in few-layer graphene [2] and few-layer MoS2 [9]. It can be 
assumed that each atom in the chain only interacts with its 
nearest-neighboring atoms. The eigenvector for the phonon 
mode τ in the chain model is

( )( )⎡
⎣⎢

⎤
⎦⎥

τ π
∝

− −τu
j

N
cos

1 2 1

2
,j� (19)

where τ is the mode index, N is the total atom number and j 
is the site index for each atom. The first mode (τ = 1) is the 
acoustic mode. The frequency for mode τ is

( )⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

ω
β
µπ

τ π
= −

−
τ

c N2
1 cos

1
.

2 2� (20)

µ = × −1.53 10 26 kg
−

Å
2
 is the mass per unit area of the 

single-layer BP, c is the speed of light in cm s−1 and β is the 
force constant per unit area.

Figure 3.  Eigenvectors for the three interlayer modes in bulk BP. (a) B mode. (b) Cx mode. (c) Cy mode. The arrow on top of each atom 
represents the vibrational amplitude of the eigenvector.
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We discuss four sets of interlayer phonon modes for FLBP 
in this section. The eigenvectors for these modes are shown in 
figures 4–8. The layer number dependence for the frequency 
are shown in figures 9 and 10.

The first set is the two B modes, i.e. B1 mode and B2 mode. 
The B1 mode corresponds to the phonon mode with τ = 2 in 
the chain model. Figure 4 shows that the eigenvector of the B1 
mode indeed follows the prediction of the chain model, i.e. 

( )⎡⎣ ⎤⎦∝ π−u cosj
j

N
2 2 1

2
. The N-dependence for the frequency of the 

B1 mode is shown in figure 9, where the black solid line illus-
trates a perfect fitting of the frequency for the B1 mode to the 

function ( )⎡
⎣

⎤
⎦ω = −β

µπ
π1 cos

c N2 2
B
2 2 . These results show that 

the B1 mode can be well described by the chain model. From 
the fitting of the frequency, we get the breathing force con-
stant parameter β = ×9.8 10B

19 Nm−3 for the chain model.
The B2 mode corresponds to τ = 3 in the chain model. Its 

eigenvector is shown in figure 4, which agrees with the prediction 

of the chain model, i.e. ( )⎡⎣ ⎤⎦∝ π−u cosj
j

N
3 2 1 . The N-dependence 

for the frequency of B2 mode is shown in figure 10, where the 
black solid line shows that the frequency for the B2 mode can 

be well fitted to the function ( )⎡
⎣

⎤
⎦ω = −β

µπ
π1 cos

c N3 2

2B
2 2 . The 

fitting parameter β = ×9.8 10B
19 Nm−3 is exactly the same as 

that obtained from the B1 mode. This agreement further con-
firms the success of the chain model in the description of the 
layered structure.

The second set of phonon modes are the interlayer Cx modes 
in FLBP, including the first highest-frequency Cx1 mode and 
the second highest-frequency Cx2 mode. This mode can also be 
described by the chain model. The Cx1 mode corresponds to the 
phonon mode with τ = N in the chain model. The eigenvector 
of the Cx1 mode is shown in figure 5. This eigenvector follows 

the function ( )( )⎡⎣ ⎤⎦∝ π− −u cosj
N N j

N

1 2 1

2
. The N-dependence for 

the frequency of the Cx1 mode is shown in figure 9, which is 

fitted to the function ( )⎡
⎣

⎤
⎦ω = +β

µπ
π1 cosN c N2

Cx
2 2 . The fitting 

parameter β = ×5.5 10Cx
18 Nm−3 is the force constant for the 

transverse motion in the x-direction for the chain model.
The Cx2 mode corresponds to τ = −N 1 mode in the chain 

model. Its eigenvector is shown in figure 5, which coincides 
with the eigenvector of the chain model with τ = −N 1 in 
equation (19). The frequency for the Cx2 is shown in figure 10. 

Figure 4.  Eigenvectors and frequencies for two B modes. Bottom is the lowest-frequency B mode. Top is the second-lowest-frequency B 
mode.
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Figure 5.  Eigenvectors and frequencies for two Cx modes. Bottom is the highest-frequency Cx mode. Top is the second-highest-frequency 
Cx mode.

Figure 6.  Eigenvectors and frequencies for two Cy modes. Bottom is the highest-frequency Cy1 mode. Top is the second-highest-frequency 
Cy2 mode.
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The N-dependence of the frequency is also consistent with the 
chain model prediction by equation (20) with τ = −N 1.

The third set of phonon modes are two interlayer Cy modes 
in FLBP; i.e. the first highest frequency Cy1 mode and the 
second highest-frequency Cy2 mode. These modes can also 
be described by the chain model. Cy1 mode corresponds to 
the phonon mode with τ = N in the chain model, while the 
Cy2 mode corresponds to the phonon mode with τ = −N 1 
in the chain model. The eigenvectors of these two modes are 
shown in figure 6. They agree with the chain model predic-
tion in equation (19). The frequencies of these two modes are 
shown in figures 9 and 10. They can be fitted by the frequency 
in the chain model in equation  (20). The fitted parameter 
β = ×3.6 10Cy

19 Nm−3 is the force constant for the y-direc-
tional transverse motion for the chain model. The transverse 
force constant is about ×1.28 1019 Nm−3 for the few-layer 
graphene [2] and ×2.7 1019 Nm−3 in the few-layer MoS2 [9]. 
These values are sandwiched between the two transverse force 
constants βCx and βCy in FLBP.

The fourth set of phonon modes are the collective vibra-

tion modes corresponding to the mode index τ = + 1N

3
 in the 

chain model. According to equation (19), the eigenvector for 

this set of vibration modes is ( )π∝ −u cosj
j2 1

6
. Hence, we have 

uj  =  0 for j  =  2, 5, 8, ..., 3i  +  2 with integer i; ( / )π∝u cos 6j  
for j  =  1, 4, 7, ..., 3i  +  1; ( / )π∝−u cos 6j  for j  =  3, 6, 9, ..., 3i. 
The frequency for this set of vibration modes is independent 

of layer number N, i.e. ω =τ β
µπ c4 2 2

. For instance, figure 7 

shows the collective B mode in FLBP with layer number 
N  =  3i (i  =  1, 2, 3, ..., ). The frequencies of these collective 
B modes are independent of the layer number. For N  =  6, 
the third and fourth BP layers have the same vibrational dis-
placement, so the overall displacement can be regarded as 
a collective vibration of two segments (displayed by dotted 
rectangles). Furthermore, the displacement for each segment 
is the same as the displacement for N  =  3. As a result, the 
frequency for the phonon mode in 6-layer BP is the same as 
the frequency for 3-layer BP. Similarly, for N  =  9, the struc-
ture can be deconstructed into three collective segments. Each 
segment has the same displacement as FLBP with N  =  3, so 
the frequency for the phonon mode in FLBP with N  =  9 is 
the same as the FLBP with N  =  3. Figure 8 shows a similar 
phenomenon for the collective Cx mode and Cy modes in 
FLBP. As shown in table 3, this set of phonon modes are opti-
cally active, so we expect that it will be possible to identify 
these FLBP phonon modes experimentally. It should be noted 
that equation  (20) is applicable to other layered structures,  

Figure 7.  Interlayer collective B modes with the same frequency 
for FLBP with N  =  3, 6, and 9 (from left to right). The eigenvector 
can be regarded as the collective vibration of the small segments 
(dotted rectangles).

Figure 8.  Interlayer collective C modes with the same frequency 
for FLBP with N  =  3, 6, and 9. Bottom is the Cx mode, and top is 
the Cy mode.
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so this set of collective modes are a general feature for all 
layered structures, including few-layer graphene, few-layer 
MoS2, and few-layer BP.

We note that our manuscript was put publicly on arXiv 
in December 2014 [23]. During the submission process of 
the present manuscript, there have been several experiments 
measuring the frequency of the interlayer B and C modes in 
the FLBP [24–30]. The frequency of the B1 mode in bilayer 
BP is about 62.7 cm−1 by Ling et al [24], or 67.5 by Dong 
et al [25], which are quite close with 60.4 cm−1 in the present 
work. The frequency of the B1 mode in four-layer BP is about 
35 cm−1 by Luo et al [26], which is quite close to 32.3 cm−1 
in the present work. Some theoretical studies also emerge on 
the layer number dependence of the interlayer B and C modes 
very recently [31, 32].

5.  conclusion

To summarize, we have analyzed the lattice dynamical proper-
ties for the interlayer B and C modes in FLBP. The symmetry 
group for the FLBP with even layer numbers is compared with 
the FLBP with odd layer numbers. The symmetry properties 
for the interlayer modes are determined based on the symmetry 
groups. The IR and Raman activity for the phonon modes is 
also determined. We applied the VFFM to compute the eigen-
vectors and frequencies for the interlayer modes, which can be 
successfully explained by the chain model. The two C modes 
have very different frequencies, due to the anisotropic puck-
ered configuration for the BP layer. We found a particular set 
of collective phonon modes with the same frequency in the 
FLBP with layer number N  =  3i (i integer). These collective 
phonon modes have a constant frequency with respect to the 
layer number.
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