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Abstract We present a computational method that can
be applied to capture surface stress and surface tension-
driven effects in both stiff, crystalline nanostructures, like
size-dependent mechanical properties, and soft solids, like
elastocapillary effects. We show that the method is equiva-
lent to the classical Young–Laplace model. The method is
based on converting surface tension and surface elasticity on
a zero-thickness surface to an initial stress and corresponding
elastic properties on a finite thickness shell, where the con-
sideration of geometric nonlinearity enables capturing the
out-of-plane component of the surface tension that results
for curved surfaces through evaluation of the surface stress
in the deformed configuration. In doing so, we are able to
use commercially available finite element technology, and
thus do not require consideration and implementation of the
classical Young–Laplace equation. Several examples are pre-
sented to demonstrate the capability of the methodology for
modeling surface stress in both soft solids and crystalline
nanostructures.

Keywords Surface tension · Finite element · Soft tissue ·
Bending · Buckling

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s00466-017-1474-4) contains
supplementary material, which is available to authorized users.

B Jin He
jinhe@njtech.edu.cn

Harold S. Park
parkhs@bu.edu

1 School of Mechanical and Power Engineering, Nanjing Tech
University, Nanjing 211816, China

2 Department of Mechanical Engineering, Boston University,
Boston, MA 02215, USA

1 Introduction

The surfaces of solids exhibit different mechanical behavior
as compared to their bulk. For both soft and hard (crystalline)
solids, this is due to the fact that surface atoms have a dif-
ferent bonding environment, and specifically fewer bonding
neighbors than do atoms that lie within the material bulk
[1]. These surface effects, which are typically negligible for
macroscopic solids, manifest themselves in different ways
and at different length scales depending on whether the solid
is soft or stiff.

In crystalline (stiff) solids, surface stress effects have
been shown over the past two decades to lead to interesting,
non-bulk mechanical properties in nanostructures, including
size-dependent mechanical properties [2–5], unique multi-
functionality, like phase transformations [6], shape memory
and pseudoelasticity [7,8] and non-bulk plastic deformation
mechanisms [9,10]. Much of the work that has been done to
capture surface effects on nanomaterials either computation-
ally [11–15] or analytically [16–20] is based on the Young–
Laplace (Y–L) model for incorporating the effect of the sur-
face tension in solids, thoughalternative computationalmeth-
ods based on decomposing the surface and bulk energies [21–
26] have also beenproposed.NamedafterThomasYoung and
Pierre SimonLaplace, theY–Lequationwas originally devel-
oped in the early nineteenth century [27,28], and describes
the pressure difference across a curved interface between two
fluids due to the surface tension. The Y–L equation has also
been demonstrated to be effective inmodeling surface effects
on not only fluids, but also crystalline solids [29–31].

Similarly, there has been significant recent interest in so-
called elastocapillary mechanics, where surface tension due
to fluid-structure interactions has been used to change the
mechanical behavior and properties of soft solids, like gels
[32,33]. While the best-known example of surface tension in
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fluid mechanics is likely that of deforming liquid droplets,
there has been interest in using it to deform solid structures
and the relevant reviews are in Refs. [34,35]. This interest
in using elastocapillary forces to deform soft structures has
emerged since for these systems the elastocapillary number,
which is defined as τ 0/(μl), where τ 0 is the surface tension,
μ is the shearmodulus and l is a characteristic length, is close
to unity, implying that elastocapillary effects can be substan-
tial for these soft materials. For example, recent work has
highlighted the important role surface tension plays in the
contact mechanics and adhesion of soft solids [36–38], iden-
tifying its effect on wetting, large deformations, and phase
separation [39], using liquid inclusions to stiffen soft solids
[40], and inducing Rayleigh-Plateau elastocapillary instabil-
ities in soft solids [41].

Finite element (FE) models of surface tension in the con-
text of soft solids have also emerged within the past decade.
Examples include the works of Saksono and Peric [42], Javili
et al. [25], Henann and Bertoldi [43], Seifi and Park [44,45],
and Wang and Henann [46]. As in the case of crystalline
solids, all of theseworks have captured surface tension effects
using the Y–L model. Recently, a method without using the
Y–L model based on the commercial FE software ANSYS
[47] was proposed [48], in which the surface tension is taken
into account by utilizing a special feature of the structural
surface element type SURF153 or SURF154 provided by
ANSYS, where the surface tension induced in-plane force is
applied to the surface nodes by assuming the surface nodes
are coplanar. However, this surface element does not account
for surface curvature [47], and furthermore, such surface ele-
ments are generally not used in other commercial FE codes.

Our objective in the present work is to present a FE model
that captures surface effects, and can be applied to either stiff
or soft solids that undergo arbitrary deformations, including
bending and surface curvature, using commercially used FE
codes. One motivation for this work is the realization that the
out-of-plane force induced from the in-plane surface stress on
a curved interface of a solid, described by the Y–L equation,
can alternatively be captured using geometric nonlinearity.
In doing so, we arrive at a formulation that can exploit con-
ventional FE methods. We additionally demonstrate in 2D
that the expression of the out-of-plane force induced from
the in-plane surface stress without using the Y–L equation
is identical to that obtained using the Y–L equation. Any FE
code with shell and solid type elements, as well as the fea-
tures of initial stress and geometric nonlinearity, can be used
to capture surface effects on stiff and soft solids, which are
demonstrated by using the commercially-available FE codes
ANSYS [47] and COMSOL [49]. Without explicitly using
the Y–L equation, the methodology implicitly mimics the
out-of-plane force induced from the in-plane surface stress
through formulating the surface stress induced force with

respect to the deformed configuration of the shell through
geometric nonlinear analysis.

We present a range of numerical examples demonstrat-
ing the ability of the method to capture surface effects on
both stiff and soft solids. We additionally demonstrate that
time-dependent material behavior, through viscoelasticity,
and strain-dependent surface stresses, which are critical for
stiff nanomaterials, and have recently become of interest in
the mechanics of soft solids [33], can be easily accounted
for through the standard options in ANSYS and COMSOL.
Overall, directly incorporating surface tension-related effects
into a commercial FE code should enhance the ability of
scientists and engineers to model, design, study, and under-
stand mechanical problems involving surface effects. All
input files with detailed modeling procedures, geometric and
mesh sizes, as well as material properties are provided in the
electronic supplemental material.

2 Method overview

In this section, we first present an overview of our proposed
methodology. After doing so, we also present a compari-
son between the proposed approach and the Y–L equation,
to establish that the proposed approach reproduces the Y–L
equation.

To consider the effects of surface stress, we show in Fig. 1a
a solid with a surface, in which the surface stress acts on
the zero-thickness film enveloping the core. This kinematic
model (solid with a zero thickness surface) has been used
previously in both the Y–L model as well as the well-known
Gurtin-Murdoch theory of surface elasticities [30,50]. How-
ever, the notion of a zero thickness surface presents some
challenges for formulating a core-shell surface stress model,
as shown in Fig. 1b, and therefore our method is based on
converting surface tension and surface elasticity on a zero-
thickness surface to an initial stress and the corresponding
elastic properties on an equivalent finite thickness shell.

The constitutive equation for the surface stress tensor τi j
in Fig. 1a for the zero-thickness surface, in the first order
approximation, can be written as [51,52]

τi j = τ 0i jδi j + Si jklεkl (i, j, k, l = 1, 2), (1)

where indicial notation is used, τ 0i j is the surface tension, δi j
is the Kronecker delta, Si jkl is the surface elasticity, and εkl
is the Green strain. The Green strain is written as

ε = 1

2
(FT F − I), (2)

where F is deformation gradient and I is the identity matrix.
The Green strain is introduced here since the following com-
putations are based on finite deformation theory.
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Fig. 1 The solid with the surface. a Core-film model; b Core-shell
model; c Difference between the Y–L equation-based methods and the
present methodology

On the right hand side of Eq. 1, the first term corresponds
to the strain-independent part of the surface stress and the
second term corresponds to the strain-dependent part of the
surface stress, which represents the first order approximation
of the Shuttleworth effect.

When Si jkl is orthotropic and Si jkl = Skli j , Eq. 1 is
analogous to Eq. 3 below, which is written in the current
coordinate system and describes the stress-strain relation-
ship of an orthotropic, finite thickness shell in Fig. 1b under
plane stress with initial stress σ 0

i j

⎡
⎣

σ11
σ22
σ12

⎤
⎦ =

⎡
⎣

σ 0
11

σ 0
22
0

⎤
⎦

+ 1

1 − ν12ν21

⎡
⎣

E1 E2ν12 0
E1ν21 E2 0
0 0 (1 − ν12ν21)G12

⎤
⎦

⎡
⎣

ε11
ε22
ε12

⎤
⎦ ,

(3)

where E1, E2 are the Young’s moduli in the x1, x2 directions
respectively, ν12, ν21 are the major, minor Poisson’s ratio
in the x1x2 plane respectively, G12 is the shear modulus in
the x1x2 plane, and σi j (i, j = 1, 2) is the second Piola-
Kirchhoff stress, which is work conjugate to theGreen strain.
The relationship between the surface stress and the strain
in Eq. 1 is alternatively expressed by dividing by the shell
thickness t , which leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 0
i j = τ 0i jδi j/t (i, j = 1, 2) (4a)

E1 = (S1111S2222 − S21122)/(S2222t) (4b)

E2 = (S1111S2222 − S21122)/(S1111t) (4c)

G12 = S1212/t (4d)

ν12 = S1122/S2222 (4e)

ν21 = S1122/S1111. (4f)

Since plane stress is assumed, t needs to be far less than the
smallest dimensionof the solid.When the surface is isotropic,
τ 011 = τ 022 = τ 0 and Eq. 1 is simplified as

τi j = τ 0δi j + λsεkk + 2μsεi j (i, j, k = 1, 2), (5)

where λs andμs are referred as surface Lamé constants [50],
which can be obtained by imposing the symmetries of the
isotropic surface [52,53]

{
λs = S1122 (6a)

μs = (S1111 − S1122)/2. (6b)

Substituting Eq. 6 into Eq. 4 leads to the Young’s modu-
lus E and Poisson’s ratio ν of the equivalent isotropic shell
expressed with the surface Lamé constants [48]

{
E = Es/t (7a)

ν = λs/(λs + 2μs), (7b)

where the surface Young’s modulus Es is

Es = 4μs(λs + μs)/(λs + 2μs). (8)

The core of the solid conforms to the laws of classical solid
mechanics and can bemodeled as appropriate for thematerial
system under consideration, i.e. linear elastic, hyperelastic,
viscoelastic, etc. The whole shell-core structure is analyzed
as a conventional solid, which can be subject to arbitrary
loads and deformations, including bending.

The methodology described above is sufficiently simple
that it can be implemented in any commercially-available
FE package that contains both solid (for the bulk) and shell
elements (for the surface). We use both ANSYS [47] and
COMSOL [49] in the present work to demonstrate the ver-
satility and ease of implementation of the proposed method.

2.1 Comparison with Y–L equation

We now present an analysis of the proposed approach, and
demonstrate its equivalence with the Y–L model. The Y–L
model has the feature that when the surface is flat, the sur-
face tension results in an in-plane component only. However,
when the surface is curved, the surface tension has compo-
nents both in and out of the plane of the surface. According
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to the Y–L equation, the surface stress induced out-of-plane
force per area Qi j for curved surfaces is [31,51]

Qi jni n j = κi jτi j (i, j = 1, 2), (9)

where ni is the normal to the surface and κi j is the curvature
tensor. When Eq. 1 is formulated in the coordinate system
for the deformed configuration, the out-of-plane force com-
ponent described by the Y–L equation is implicitly realized
by formulating the surfaces stresses in the deformed con-
figuration. Explanations are presented in a 2D schematic
illustration (Fig. 1c), where the surface of a solid domain
is initially flat and then curved by an external force. In 2D,
Eq. 1 becomes

τ = τ 0 + Sε, (10)

where S is surface elasticity and τ , τ 0, ε are the surface
stress, the surface tension, the strain in t direction lying in
the surface respectively. t and n are the directions tangential
and normal to the surface respectively. In 2D, Eq. 9 becomes

Q = κτ, (11)

where Q is the out-of-plane force per area in n direction and
κ is curvature as shown in the bottom left of Fig. 1c.

Consider a small segment of the curved surfaceΔs shown
in the middle left of Fig. 1c and the enlarged view of the
segment on the right side of Fig. 1c. The segment is subject
to surface stress τ(tA, nA) and τ(tB, nB) at points A and
B respectively. Since the segment is small, the segment can
be approximated as an arc of a circle with radius R. The
central angle of the arc is Δθ = Δs/R and the curvature
of the arc is κ = 1/R = Δθ/Δs. As the segment becomes
infinitely small, Δs → ds, Δθ → θ , point A approaches
point B, and the strain at A has the same magnitude as the
strain at B, leading to the same magnitude of the two surface
stresses τ at one point. The angle of the two surface stresses
is π − dθ . The net force on the the segment ds is τdθ =
τ(dθ/ds)ds = κτds, in direction of n. The net force divided
by ds is the out-of-plane force per area κτ , identical to the
2D Y–L equation shown in Eq. 11. This net force is captured
in the present work through geometric nonlinearity, which
ensures that the surface stress calculations are performed in
the deformed configuration.

3 Numerical examples

We now present numerical examples demonstrating the per-
formance of the proposed approach for problems relevant to
soft solids, involving elastocapillary phenomena, as well as

surface stress effects on the mechanical properties of crys-
talline nanostructures. As previously mentioned, we use both
ANSYS [47] and COMSOL [49] to demonstrate the ease
of use and implementation in widely used commercial FE
packages. The input files with detailed modeling procedures,
geometric and mesh sizes, as well as material properties are
provided in the Online Supplementary Materials.

3.1 Rayleigh-plateau instability

One of the most interesting findings with regards to elas-
tocapillary effects on the deformation of soft solids was
the recent experimental report of surface-tension-induced
Rayleigh-Plateau instability in soft gels [41]. In this exper-
iment, researchers increased the elastocapillary number on
a soft gel until the gel broke up in a manner similar to the
classical Rayleigh-Plateau instability in fluids. Subsequent
researchers have investigated this effect further [54–58].

We simulated this problem using ANSYS, by considering
a soft, incompressible rodwith shearmodulusμ = 12 Pa and
radius R = 150µm.Both ends of the rod are clamped and the
rod has an aspect ratio of 200 in the ANSYS model, where
8-node element SOLID185 and 4-node element SHELL181
are used for modeling the core and the shell respectively. The
material model of the core is modeled as Neo-Hookean and
the shell is linear elastic. The initial shell-curvature effect is
consideredby settingKEYOPT(5) of theSHELL181element
to 1 in order to improve the accuracy inmodeling the strain in
the cross-sectional direction. The numbers of elements along
the length and cross-sectional directions are 1000 and 28
respectively. Surface stress resides in a few atomic layers of
a crystal according tomolecular dynamic simulations [59]. In
the following computations, the shell thickness t is arbitrarily
chosen to be 0.1nm. Choosing different values of t does not
lead to discernible results as long as t is far less than the
critical dimension of the material. The critical dimension of
this problem is 150µm.

We show in Fig. 2a the sinusoidal variation of the displace-
ment field along the axial direction, which is characteristic
of the elastocapillary Rayleigh-Plateau instability [58] of the
rod, if the surface tension is 11 mN/m. In contrast, if the sur-
face tension is slightly smaller, i.e. 10 mN/m as in Fig. 2a, no
Rayleigh-Plateau instability occurs. Figs. 2a and b present
about half of the rod including the contours of the displace-
ment magnitude, where the deformations are magnified 105

times for better illustration. In accordance with previous ana-
lytic studies of the experiments of Mora et al. [55–58], the
Shuttleworth effect is neglected in ANSYS, which is ensured
by making the shell Young’s modulus a very small value.

The wavelength associated with the instability is plotted
as a function of the surface tension in Fig. 2c, where the
curve obtained from ANSYS agrees well with the curves
from previous analytic studies [41,58]. The wavelengths
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Fig. 2 Rayleigh-Plateau instabilities in soft rods. a The instability
occurs when the surface tension is 11mN/m. b The instability does
not occur when the surface tension is 10mN/m. c Wavelength due to
the instability versus surface tension; d The radial displacement along
the surface and the inset shows the corresponding FT when the surface
tension is 12mN/m

from ANSYS are obtained by performing Fourier transform
(FT) of the radial displacements along the surface. As an
example, the method for determining the wavelength with
the surface tension of 12mN/m is shown in Fig. 2d. The
amplitude of the FT of the radial displacement reaches a peak
when the inverse of the length is about 0.33mm−1, as shown
in the inset of Fig. 2d, and thus the wavelength is determined
to be 1/0.33 ≈ 3mm. The surface tension threshold calcu-
lated from ANSYS is between 10.6 and 10.8mN/m, which
matches the theoretical threshold 6μR = 10.8mN/m quite
closely [41,58].

3.2 Stiffening soft solids with liquid inclusions

Another interesting elastocapillary effect that has recently
been reported is that a soft solid embedded with liquid inclu-
sionsmaybe stiffer than its counterpartwithout the inclusions
due to the resulting surface tension that acts on the solid
[40,46]. The 3D model of a droplet in a large solid domain
under far-field strains is shown in Fig. 3a, where 1/8 of the
entire domain is studied due to symmetry. The major and
minor diameters of the deformed droplet in Fig. 3b are l and
w respectively, and the liquid is assumed to be incompress-
ible. The Young’s modulus of the incompressible soft solid
is 1.7kPa and the surface tension is τ 0 = 3.6mN/m [40].
The 3D Solid Mechanics interface and Shell interface are
used to model the core and the shell respectively in COM-
SOL since the incompressible fluid can be implementedmore
easily in COMSOL than in ANSYS. In modeling the large
domain, the ratio of the edge size of the cube to the radius
of the sphere is chosen to be 10. Approximately 1.2 × 105

quadratic tetrahedral elements are generated in the simula-
tion. Default settings are used for the 3D Solid Mechanics
interface and Shell interface.

The aspect ratios l/w under the far-field strains ε11 =
5.6% and ε22 = −1.5% calculated from COMSOL are com-
pared with the experimental and theoretical results [40] in
Fig. 3c, where we initially neglect the Shuttleworth effect in
COMSOL. The present results are consistent with the exper-
iment and the theory. Both the results from COMSOL and
the theory predict that the aspect ratios of the liquid inclu-
sion become smaller when the surface tension is considered,
which means that the solid is stiffened by the surface ten-
sion. We also verify that if the surface tension τ 0 = 0, the
COMSOL results match the analytic theory.

The scattered experimental data in Fig. 3c are due to
the experimental complexities involving coating silicone
gel embedded with liquid drops on a stretchable sheet and
attaching fluorescent nanoparticles for displacement field
measurements [40]. InRef. [40], the experiment is performed
under different combinations of ε11 and ε22,which shows that
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Fig. 3 The soft solid stiffened by a liquid inclusion. a 1/8 of the 3D
model; b Deformed configuration in X1X2 plane; c Size-dependent
aspect ratio due to the surface tension; d The shuttleworth effect

the curves of the size-dependent aspect ratios agree reason-
ably with the theory. The maximum relative difference of the
aspect ratios in Fig. 3c between the COMSOL and the theory
is less than 0.9%. Further mesh refinement of the COMSOL
model yields to less than 0.2% difference in the aspect ratio.
One of the possible causes of the slight difference between
COMSOL and the theory is that small strain is assumed in
the theory [60] while nonlinear kinematics are considered in
the COMSOL model.

The Shuttleworth effect, whereby the surface stress is
strain-dependent, has been used widely in the mechanics
of crystalline nanostructures, but its effect on the mechan-
ics of soft solids subject to surface tension has rarely been
considered [33]. Here, we consider the influence of the Shut-
tleworth effect by assuming different combinations of surface
Young’s modulus and surface Poisson’s ratio (Es , ν), with
the COMSOL results shown in Fig. 3d. The combination
(0,0.01) corresponds to the case without the Shuttleworth
effect, which is also shown in Fig. 3c. The Shuttleworth effect
increases the stiffening effect of the soft solid for all the com-
binations: (5τ 0,0.01), (5τ 0,0.49), (10τ 0,0.01), (10τ 0,0.49),
though the change in inclusion aspect ratios due to the Shut-
tleworth effect appears to be smaller than 5%.

3.3 Surface tension effects on relaxation of a viscoelastic
half-space subject to a point force

Most of the studies related to elastocapillary effects on soft
solids have not considered the time-dependent deformation
of the solid, or viscoelastic effects [33]. Viscoelasticity can
have a significant effect as most soft solids exhibit varying
degrees of rate-dependent material behavior. Furthermore,
consideration of such effects is a useful demonstration of
the different types of material behavior that can be easily
considered by implementing the surface tension model into
a commercial FE package.

Therefore, we consider a computational model following
the theoretical solution obtained by Hui and Jagota for the
effect of the surface tension on the relaxation of an incom-
pressible viscoelastic half-space excited by a point force [61].
We model the problem using a two-dimensional axisymmet-
ric (2DA) approach, as illustrated in Fig. 4a, b.

The short and long time shear modulus of the half-space
are μ0 = 50Pa and μ∞ = 200Pa respectively. The relax-
ation time is tr = 1ms and the surface tension is τ 0 =
1mN/m. The elastocapillary lengths are τ 0/μ0 = 20µm
and τ 0/μ∞ = 5µm. A point force F = 1nN in the z direc-
tion is initially applied at location r = 0 for a sufficient
time until the half-space is fully relaxed (Fig. 4a). After the
force is suddenly removed, the z-directional displacements
along the surface gradually relax to zero (Fig. 4b). The 2DA
Solid Mechanics interface and Membrane interface are used
to model the core and the shell respectively in COMSOL.
Default settings are used for the 2DA Solid Mechanics inter-
face andMembrane interface. Inmodeling the half-space, the
radius of the semicircle is chosen to be 100τ 0/μ0, which is
100 times the elastocapillary length.Approximately 1.2×105

triangular elements are generated in the simulation. The anal-
ysis is performed in two steps – a stationary analysis with the
the point force applied followed by a time dependent analysis
with the point force removed.
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The z-direction displacements at z = 0 calculated from
COMSOL agree with the theory [61] at time t = tr and 3tr
in Fig. 4c, where the Shuttleworth effect is neglected. The
Shuttleworth effect calculated fromCOMSOL is presented in
the inset of Fig. 4c, in which the z-directional displacements
at t = tr with (Es , ν) equal to (10τ 0,0.01) and (10τ 0,0.49)
are almost the same as those without the Shuttleworth effect.

3.4 Surface stress effects on crystalline nanowires in
bending

We now focus on validating the proposed approach in captur-
ing the effects of surface stress on the mechanical behavior
of stiff crystalline nanostructures, or nanowires (NWs). For
NWs, it has been well-established that surface stress effects
may influence the bending behavior of static NWs, which has
been shown experimentally, theoretically, and computation-
ally [2–4,17,62,63].

The bending NWs in clamped-free (CF) and clamped-
clamped (CC) boundary conditions are in Fig. 5a, b respec-
tively, which are modeled by using ANSYS and COMSOL
in 3D. The cross section of the NWs is circular and the diam-
eter is D = 10nm. The ratio of length to diameter is 20.
The element types are the same as those in the previous 3D
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Fig. 5 The surface effects on static bending NWs. aCF boundary con-
ditions; b CC boundary conditions; c Transverse displacements of the
CF NW; d Transverse displacements of the CC NW. Case 0: no surface
effects; Case 1: effect of the surface tension only; Case 2: effect of the
surface elasticities only; Case 3: both effects

examples. The number of elements in length direction is 100
both in ANSYS and COMSOL. The numbers of elements
in diameter direction are 16 and 8 in ANSYS and COM-
SOL respectively. The absolute values of the surface tension
and the surface Young’s modulus of face-center cubic crystal
surfaces are on the order of 10−1 to 101 N/m [52]. In Fig. 5,
τ 0 = 1N/m and Es = 10N/m are used for illustration pur-
poses. The Young’s modulus and the Poisson’s ratio of the
NW core, same as the bulk material properties, are assumed
to be Em = 78GPa and νm = 0.42 respectively. The surface
tension only (Case 1), the surface elasticities only (Case 2),
both effects (Case 3), and neither effects (Case 0) are studied.
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Under a point transverse force Fb = 0.01nN applied at
the free end, the transverse displacements of the CF NW
along the NW axial direction are shown in Fig. 5c, where
the displacement curves are categorized into two groups.
The transverse displacements calculated from ANSYS and
COMSOL coincide with the theory [62] if the effective flex-
ural rigidity of the circular NW is formulated as (E I )∗ =
πEmD4/64 + πEsD3/8 [17].

The surface tension does not have a significant influence
on the bending behavior of theCFNWand the detailed expla-
nations are in Ref. [62]. The CFNW appears stiffer under the
influence of the surface elasticities since the surface surface
Young’s modulus is positive. Under Fb = 1nN applied at the
midspan of the CC NW, the transverse displacements of the
CC NW are in Fig. 5d. Good agreements are found between
the results from ANSYS, COMSOL, and the theory [17],
where both the surface tension and the surface elasticities
increase the stiffness of the CC NW.

3.5 Surface stress effects on crystalline nanowires in
buckling

Our final example examines surface stress effects on the
buckling of crystalline nanowires. Before presenting the
results calculated by using the proposed methodology, we
show theoretical derivations of the critical loads of axially
bucklingNWsunder the influence of the surface effects based
on a simplified 2Dmodel. A CF NW, with height, depth, and
length denoted as h, d, and L respectively, shown in Fig. 6a,
is under an external compressive force Fa . The dimensions
satisfy L � d � h so that the bending in xy plane can be
considered as a 2D plane strain problem as shown in Fig. 6b.
In equilibrium, the total axial compressive load on the NW
is the summation of the external force Fa and the counteract-
ing force balancing the in-plane surface stress induced force
2τd. Denote the transverse displacement as v. When the NW
is under small bending, the out-of-plane force component,
derived from the Y–L equation, is 2τd(d2v/dx2) [16–18],
which can be treated as a distributed transverse force per
length. Thus, the differential equation of the axis of the bend-
ing NW under the total axial compressive load Fa +2τd and
the distributed transverse force per length 2τd(d2v/dx2) is
[64]

(E I )∗ d
4v

dx4
+ (Fa + 2τd)

d2v

dx2
= 2τd

d2v

dx2
, (12)

where the effective flexural rigidity (E I )∗ of the rectangular
NW is [16–18]

(E I )∗ = Emdh
3/12 + Esdh

2/2 + Esh
3/6. (13)
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Fig. 6 The surface effects on buckling NWs. aCFNW satisfying L �
d � h; b 2D plane strain model; c CF NW with square cross section;
d CC NW with square cross section; e Axial force versus transverse
displacement at the tip of the CF NW with a = 10nm and L/a = 10;
f Axial force versus transverse displacement at the midspan of the CC
NW with a = 10nm and L/a = 10; g Critical buckling loads of the
CC NW with a = 5.71nm

Eq. 12 can be simplified as

(E I )∗ d
4v

dx4
+ Fa

d2v

dx2
= 0. (14)

As can be seen from Eq. 14, the surface tension does not
influence the critical load of the buckling CFNW if the short-
ening of the NW due to the surface tension is neglected. The
reason is that the contribution from the out-of-plane force

123



Comput Mech (2018) 61:687–697 695

component due to the surface tension is completely compen-
sated by the contribution from the in-plane axial force due
to the same surface tension. We tentatively infer that Eq. 14
is suitable for buckling CF NWs with any cross-sectional
geometry whenever the effective flexural rigidity is formu-
lated accordingly, such as the buckling CF NWwith a square
cross section in Fig. 6c. In order to make the NW buckle, at
least one end of the NW can move axially regardless of the
boundary conditions, and therefore the counteracting force
balancing the in-plane surface stress induced force always
exists, which implies that Eq. 14 is valid for all the boundary
conditions, such as the CCNW in Fig. 6d. The critical load of
the axially buckling NW FEB

cr , based on the Euler-Bernoulli
beam theory, is the solution of Eq. 14

FEB
cr = π2(E I )∗/(K L)2, (15)

where K = 2.0 for the CF NW and K = 0.5 for the CC
NW [64]. The transverse shear deformation is neglected in
Eq. 15, which is nontrivial for stubby NWs. Based on previ-
ous discussions and the Timoshenko beam theory [64], the
critical load of the axially buckling NW FT

cr is similar to the
classical one except that the flexural rigidity is substituted by
the effective flexural rigidity

FT
cr = π2(E I )∗/(K L)2

1 + π2(E I )∗/[βμm A(K L)2] , (16)

where the shear coefficient is β = 5(1 + νm)/(6 + 5νm) for
rectangular cross sections [65], μm is shear modulus, and A
is cross-sectional area.

The calculations in studying the surface effects on the
NWs in Buckling are based on gold in [001] growth direc-
tion with (001) crystal face. For the (001) crystal face of
gold, the surface tension is τ 0 = 1.41N/m and the surface
Young’s modulus is Es = (S1111S2222 − S21122)/S2222 =
−4.96N/m [52]. The Young’s modulus and Poisson’s ratio
of macroscopic single-crystal gold in [001] direction are
Em = 49.5Gpa and νm = 0.455 respectively [66]. The
CF NW (Fig. 6c) and the CC NW (Fig. 6d) have a square
cross section with a side dimension of a. The curves of the
axial force Fa versus the transverse displacement v of the
CF and CC NWs calculated from COMSOL are in Fig. 6e
and f respectively, where a is 10nm and the aspect ratio L/a
is 10. In the COMSOL model, small forces in x direction
contributing to approximately v = a/100 are applied at the
tip and the midspan of the CF and CC NWs respectively for
introducing the perturbation. Increasing Fa until Fa changes
slowly with respect to v leads to the critical buckling loads,
which agree well with the theoretical values calculated from
Eq. 16 in Table 1. The theoretical values are further compared
to the results from atomistic simulations for [001]/(001) gold
[67] in Fig. 6g, where the boundary conditions are CC and

Table 1 The critical buckling loads of the CF and CC NWs

Without surface effects With surface effects

COMSOL Theory Diff. COMSOL Theory Diff.
(nN) (nN) % (nN) (nN) %

CF 10.1 10.1 0.0 9.4 9.3 1.1

CC 143.9 146.9 −2.0 134.2 136.2 −1.5

The parameters are a = 10nm, L/a = 10, τ 0 = 1.41N/m, Es =
−4.96N/m, Em = 49.5Gpa, and νm = 0.455

a = 5.71nm. Good agreement is found between the theory
and the atomistic simulations. For comparison, the incor-
rect critical buckling loads obtained from Ref. [18] are also
shown in Fig. 6g, which occurs if the Y–L equation is directly
applied for buckling without accounting for the axial force
resulting from the surface tension.

4 Conclusion

Wehavepresented amethodology formodeling surface stress
effects on both stiff and soft solids. In contrast to most pre-
vious approaches for modeling surface stress, the proposed
methodology leverages the vast resources available in widely
used commercial FE software packages like ANSYS and
COMSOL. The present methodology is also different in that
the Young–Laplace equation is not the starting point for
capturing surface stress effects. Instead, we model the out-
of-plane force component induced by the surface tension in
curved surfaces through geometric nonlinear analysis. The
essence of the methodology is to convert the surface ten-
sion and the surface elasticities in the zero-thickness surface
to an initial stress and corresponding elastic properties in
the equivalent finite-thickness shell. The results obtained by
using the methodology are consistent with previous experi-
mental and analytical work where surface tension impacts
both stiff and soft solids. The methodology offers exten-
sive opportunities for performing complex multidisciplinary
modeling work such as electromechanical coupling, fluid-
structural coupling, and thermomechanical coupling in the
solid systems by exploiting the built-in functionality of com-
mercial FE codes under the influence of the surface tension
or surface stress.
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