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Forward and inverse design of kirigami via supervised autoencoder
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Machine learning (ML) methods have recently been used as forward solvers to predict the mechanical
properties of composite materials. Here, we use a supervised autoencoder (SAE) to perform the inverse design
of graphene kirigami, where predicting the ultimate stress or strain under tensile loading is known to be difficult
due to nonlinear effects arising from the out-of-plane buckling. Unlike the standard autoencoder, our SAE
is able not only to reconstruct cut configurations but also to predict the mechanical properties of graphene
kirigami and classify the kirigami with either parallel or orthogonal cuts. By interpolating in the latent space
of kirigami structures, the SAE is able to generate designs that mix parallel and orthogonal cuts, despite being
trained independently on parallel or orthogonal cuts. Our method allows us to both identify alternate designs and
predict, with reasonable accuracy, their mechanical properties, which is crucial for expanding the search space
for materials design.
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Introduction. Recently, there has been growing interest in
investigating the nonlinear mechanics of perforated thin sheets
across length scales ranging from the macroscale [1–4] down
to nanoscale systems [5–8]. The cuts in a thin sheet—known
as kirigami cuts—induce buckling and other motions (e.g.,
rotations). These mechanisms result in new properties, such
as enhanced ductility [7] and auxeticity [9] that are different
from the pristine (cut-free) counterpart. This simple strat-
egy has led to programable kirigami actuators which are the
building blocks of soft robots [1,10]. While many analytic
descriptions have been developed to understand the changes
in mechanical behavior due to the cuts [1,2,4], these analytic
approaches are used to describe systems with repeating and
uniform cut patterns or to optimize a specific target property.
An analytical model that can describe how the mechanical
properties of kirigami sheets depend on the interaction of
different types of cuts still needs to be developed.

For the inverse design problem, one ongoing challenge for
kirigami structures is in designing them to achieve specific
properties. Most current machine learning (ML) techniques
rely on applying ML to select top candidates from a fixed
library [8,11,12]. The usual approach is to perform “active
learning” where the model is trained incrementally with data
proposed by the ML [8,11], or by training the model with a
significant amount of data to predict top candidates [12]. For
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both approaches, ML (the “forward solver”) must be applied
to the entire library. Even when the computational cost of
the ML approach is much lower than the ground truth data
generator (physics-based simulations or experimental data),
in a highly complex system with many degrees of freedom,
it is not practical to use ML to calculate the properties of all
candidates to find the best candidates.

In computer vision problems, generative models have
shown to be successful in generating realistic synthetic sam-
ples [13]. Unlike supervised learning, the generative models
are trained to capture an underlying data distribution and
to learn important features. For instance, variational autoen-
coders have been used to capture the important information
from a high-dimensional space of the real representation (e.g.,
image) within a lower-dimensional space, known as the la-
tent space. The latent vectors capture important features, for
instance, smiles in facial images, and thus can be used for
interpolation which is useful for generating new synthetic
samples.

In optimizing material properties, we often have some key
observable properties, such as ultimate stress and fracture
strain. The goal is to make the learned hidden (latent) vari-
ables correlated to the key properties, so that we can perform
optimization in the latent space, which has a significantly
reduced dimensionality compared to that of the discrete (origi-
nal) representation of the structures. This strategy gives a large
advantage over performing optimization in the original repre-
sentation space, and has recently been applied for designing
materials with a large design space, such as drugs, organic
molecules, and optical metamaterials [14–17].

In this Rapid Communication we propose a supervised
autoencoder (SAE) for inverse structural design. We set up
our training such that we can evaluate the effectiveness of
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interpolation (generating different designs) within and outside
the training domain. First, we find that the SAE is able to
generate designs consisting of mixed cuts even though the
SAE is trained with kirigami structures with only parallel and
orthogonal cuts, which shows the ability of SAE to perform
interpolation in the latent space. Moreover, in the latent space,
the SAE captures similarities and differences between distinct
structures with different cut types whereas the information
about cut types is not provided during the training. As gener-
alization requires diversity in the training set, we can leverage
the ability of the SAE to distinguish different structures in
the latent space to use it as an exploration strategy to propose
designs that lie outside the training data.

Supervised autoencoder. An autoencoder (AE) consists of
two parts: (i) an encoder E that maps a vector to a reduced
representation and (ii) a decoder D that reconstructs a vector
to its original representation from the reduced representa-
tion. Let x ∈ IRn = X be the n-dimensional vector, and z =
(z0, z1, . . . , zp−1) ∈ IRp = Z be the p-dimensional latent vari-
ables. Since the goal is to have a compressed representation,
p is chosen to be smaller than n. Mathematically we can
write this transformation as E : X → Z , D : Z → X . In the
standard AE the mean reconstruction loss is given by

LX (x, x′) = 1

m

m∑

i=1

|x(i) − x′(i)|2

= 1

m

m∑

i=1

|x(i) − D[E (x(i) )]|2, (1)

where i is the ith data point and m is the number of train-
ing samples. AEs are widely used for unsupervised learning
where only unlabeled data x are provided. In many physical
systems, we want to include the known properties to the un-
supervised AE such that the supervised AE (SAE) learns new
“hidden” features. In this work, we choose p to be 10 and we
enforce the first two latent vectors (z1 and z0) to learn ultimate
(maximum) stress σ u and the corresponding ultimate strain εu.
We choose a latent dimension that is larger than the number of
known properties since kirigami with different cuts can have
the same mechanical properties (e.g., due to symmetries).
Thus, for this proposed supervised AE (SAE) architecture, we
introduce a target property mean-squared error loss function,

LY (y, z) = 1

m

m∑

i=1

|z(i) − y(i)|2 = 1

m

m∑

i=1

d−1∑

k=0

∣∣z(i)
k − y(i)

k

∣∣2
,

(2)
where y ∈ IRd = Y is a d-dimensional vector that contains the
known properties and d equals the number of observable prop-
erties. The total loss function then becomes L = LX + ηLY ,
where η is a hyperparameter. We standardize y to have zero
mean and unit standard deviation [18], which is essential for
training a neural network as the optimizer treats all directions
uniformly in the parameter space [19,20].

Here, we used the typical AE architecture [21], where a
schematic of the SAE is shown in Fig. 1(a). For the encoder,
we use a deep neural network (DNN) architecture similar to
our previous work [8] with one additional fully connected
layer (FCL). The decoder consists of two fully connected
layers. More details of the DNN architecture and training

FIG. 1. (a) Schematic of an autoencoder. (b) Schematic of
graphene kirigami partitioned into 3 × 5 grids. The training set con-
tains either parallel or orthogonal cuts (no mixing of cut types). Each
grid consists of 10 × 16 graphene unit cells. Kirigami is stretched in
the x direction by moving the edges (gray regions).

procedure can be found in the Supplemental Material (SM)
[22].

Results. We train the SAE with configurations having par-
allel cuts, i.e., that are parallel to the loading direction (x
axis), and orthogonal cuts (y axis), as shown in Fig. 1(b). Each
orthogonal cut has a size of 3 × 16 unit cells (holes), whereas
each parallel cut has a size of 3 × 10 unit cells (holes). We
trained the SAE with configurations having between 0 and 15
cuts. Each graphene membrane has 2400 unit cells and we
define the density ρ as the number of holes divided by the
total number of unit cells. This gives a range of density from
1 (0 cuts) to 0.7 (15 cuts or equivalently 720 holes) [23]. We
used LAMMPS (Large-scale Atomic/Molecular Massively Par-
allel Simulator) to simulate graphene kirigami under tension
[24]. The molecular dynamics (MD) simulation procedure is
similar to our previous work [8] and the simulation details
can found in the SM. The SAE takes an image of size 2400
(30 × 80) and outputs an image with the same size. While
we train the SAE with configurations having large cuts (∼30
holes in each grid), in principle, the SAE can generate con-
figurations with any arbitrary cut size, i.e., as small as one
hole. We simulated all possible configurations of parallel and
orthogonal cuts without mixing the two types. As we allow
either only 0–15 orthogonal cuts or 0–15 parallel cuts, we
obtain a total of 62 558 configurations, of which 29 791 are
nondetached configurations with orthogonal cuts while the
remaining are the configurations with parallel cuts which have
nondetached configurations. The networks were trained with
50% of the data set while the remainder of the data set is used
for validation and a test set (25% each).

We first show that the mechanical properties of cut
graphene are indeed highly dependent on the material archi-
tecture. In some composite designs, the stiffness of materials
can be well described by density. In contrast for kirigami,
the nonlinear regime becomes important and thus predicting
properties beyond the linear regime, such as ultimate stress
and yield strain, via density is no longer viable [4,7,8]. For
instance, in typical kirigami geometries, the effective stiffness
in the postbuckling regime is proportional to bending rigidity
as opposed to the Young’s modulus [4,25].
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FIG. 2. Stress as a function of strain for pristine graphene ribbon
and kirigami with parallel cuts (a) and kirigami with orthogonal cuts
(b). The stress-strain curve changes significantly as the orientation of
the cuts is changed.

Thus, the architecture of the materials strongly impacts
their properties. To demonstrate this, in Figs. 2(a) and 2(b),

we plot stress-strain curves of kirigami with parallel and or-
thogonal cuts. Importantly, the orthogonal cuts in Fig. 2(b)
represent the same cut pattern with the same number of cuts
as shown for the parallel cut kirigami in Fig. 2(a). As can be
seen, simply changing the orientation of each cut but fixing
the cut configurations results in a completely different stress-
strain curve, consistent with MD simulations by Ref. [26].
Furthermore, we can see from Fig. 3(a) that density alone does
not correlate to σ u or εu. This further suggests that the desired
global properties are highly dependent on the structural con-
figuration.

To summarize, the mechanical properties of graphene
kirigami depend not only on (i) material density but also on
(ii) cut configurations, and on (iii) cut orientations. We will
show that despite this complexity our SAE is able to organize
the materials based on the structural properties that are not
encoded to the latent space in a supervised fashion.

Next, we investigate the learned latent variables. We first
turn off the constraint LY (η = 0) to enable the AE to
learn in an unsupervised manner. To better visualize the ten-
dimensional (10D) latent space we project the latent vectors to
a 2D space using a principal component analysis (PCA). The
latent vectors are generated by passing x of the training data
through the encoder. From Fig. 3 we see that the 2D projected
latent variables (from the training data) clearly separate the
two different cut orientations despite the fact that the AE
was not provided with the cut orientations. In addition to
separating structures based on cut orientation, the AE clusters
different structures based on their density. This is similar to
how a latent variable found by AE coincides with the net
magnetization (the order parameter) in the Ising spin system
[27]. However, none of the latent variables found by the AE
strongly correlates to either σ u or εu in this kirigami problem.

We now include the property predictions into the latent
space by setting η = 1.0 [28]. Similar to the unsupervised
AE, as shown in Fig. 3, the SAE clusters the data based on

FIG. 3. (a) Log-log plot of ultimate stress as a function of ultimate strain for all simulated data. The color bar represents the density,
where density alone does not correlate with ultimate strain. Projected latent space for (b)–(d) unsupervised autoencoder and (e)–(g) supervised
autoencoder. The latent vectors are generated by passing x of the training data through the encoder. The two axes are found by PCA. The
unsupervised autoencoder is able to distinguish different structures based on their cut density and cut orientations. The supervised autoencoder
successfully captures not only the structural differences but also mechanical properties such as normalized ultimate strain and normalized
ultimate stress.
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cut orientation. Furthermore, by color coding the data by the
normalized ultimate strain εu, and normalized ultimate stress
σ u, we see that in each phase the SAE organizes structures
based on their properties. This shows that the SAE has not
only learned to distinguish different structures of the input
image in the real representation but also to predict their me-
chanical properties. We use the R2 metric to quantify the
performance of the model in predicting εu and σ u as we did
in our previous work [8]. The R2 on the training, validation,
test sets for σ u (εu) are 0.99 (0.92), 0.99 (0.87), and 0.99
(0.87), respectively. Thus we indeed find that z0 and z1 are
correlated to the normalized εu and σ u, respectively. Similarly,
the SAE is successful in reconstructing the structures x in the
real space. We use the fraction of correctly placed graphene
unit cells as an accuracy metric and we obtain accuracies of
99.4% for training, validation, and a test set. Details regarding
the distribution of all latent variables and the reconstructed
structures of the can be found in the SM. For the remainder of
the Rapid Communication we will focus on the SAE.

Generating designs via interpolation in the latent space.
While the SAE can be used to generate designs by sampling
from the latent space, the question remains as to how the latent
values (z0, . . . , zp−1) are set as they all reside in the same
space and are interconnected. Another simple approach is to
perform interpolation in the latent space. In this section, we
introduce metrics to quantify different designs and show that
we can generate designs while simultaneously predicting their
mechanical properties with reasonable accuracy. The question
we want to address here is what objective function should be
chosen in order to generate kirigami designs that were not in
the training data.

In a p-dimensional space, we can write z =
(z0, z1, . . . , zp−1) in terms of a radius r and p − 1 angles
(φ0, φ1, . . . , φp−2). By analogy to a genetic algorithm,
designs (children) can be generated by combining two
parents and applying a mutation rule. This approach is
usually performed in the real representation of the genome.
In the current work, we generate designs from the latent
space, which is much smaller than the real space. The
simplest approach to generate designs is by performing
linear interpolation between two latent vectors. Here, we
use spherical linear interpolation (SLERP), which has been
used for interpolating images in generative networks [29,30].
Suppose we have two parent vectors vα, vβ ∈ Z , then a new
vector can be generated vt = sin[(1−t )	αβ ]

sin 	αβ
vα + sin[t	αβ ]

sin 	αβ
vβ ,

where 0 � t � 1 and 	αβ = cos−1 vα ·vβ

|vα ||vβ | . With this approach
the interpolated vectors then can be decoded into a real
structure. Note that in the limit 	αβ → 0 SLERP becomes
linear interpolation.

As our goal is to perform inverse design outside the train-
ing domain, an important step is to quantify similarity. We
use angular distance (	tk), and Tanimoto similarity (Ttk) to
quantify the difference between the interpolated structure and
the parent structure,

	tk = cos−1 vt · vk

|vt ||vk|/	αβ, (3)

Ttk = Xt · Xk

|Xt |2 + |Xk|2 − Xt · Xk
, (4)

where t is the interpolation step and k = α, β. Note that
	tk ∼ 0 indicates two structures that are close in latent space
whereas Ttk ∼ 1 indicates structures that are close in real
space.

We generated a total of 200 structures from ten pairs of
random configurations obtained from the training data set.
Each interpolation path contains 20 intermediate structures.
We then pass the structures through the encoder and compare
the predicted mechanical properties with the MD results. The
mechanical predictions of half of the 200 structures are within
15% error relative (in real units) to the MD results. Our dis-
cussion will focus on a few representative examples. Details
on how configurations were randomly selected and results on
all other structures can be found in the SM.

Figure 4(a) shows intermediate structures from interpo-
lating two structures with orthogonal cuts (path 3) and
orthogonal and parallel cuts (path 5 and path 8). Figure 4(b)
shows the corresponding property predictions and the MD
results (path 3 and path 8) in the normalized ultimate stress
versus ultimate strain plot (mechanical space). As shown in
Fig. 4(a)(p3), the interpolation scheme allows us to generate
similar structures in regions that are close to the training do-
main. It can be seen the MD results are close to the predicted
values.

In contrast, as shown in Figs. 4(a)(p5) and 4(a)(p8), by
interpolating two configurations that have different cut types,
we are able to generate designs consisting of separate paral-
lel and orthogonal cuts as well as overlapping (mixed) cuts,
whereas the training data set does not have configurations
with two types of cuts. Because the SAE is interpolating two
structures that are mechanically and structurally different (far
in the mechanical space), the predicted mechanical properties
are not exact but still in reasonable agreement. The mean
absolute ultimate strain relative errors of the three represen-
tative structures are 8.5%, 51%, and 15% for p3, p5, and p8,
respectively. The mean absolute ultimate stress relative errors
of the three representative structures are 10%, 43%, and 11%
for p3, p5, and p8, respectively. Several works in computer
vision have also shown that ML models do not generalize well
to samples that are from a slightly different distribution than
the training set [31–33], which means that the ML model can
capture only a subset of the underlying physics. We also ob-
served some trends showing the prediction errors of test data
points increase with increasing distances from their nearest
training point in the latent space (see Figs. 9–12 in the SM). A
comparison between MD and ML predictions for all structures
as well as details on the increase in error with increasing latent
space distance can be found in the SM.

In Figs. 4(c) and 4(d) we plot the similarity metrics for
path 8. We found that designs that are different in real space
are not necessarily different in the latent space [34]. For in-
stance, in path 8, there are many distinct designs with similar
mechanical properties. By comparing the visualization of the
structures and their mechanical properties to the similarity
metrics, we find that the angular distance performs best in
capturing both the differences in structures and mechanical
properties.

With this in mind, we recommend using the angular dis-
tance as an alternate metric to guide searching in the latent
space and to generate diverse training data sets or potential
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FIG. 4. (a) Three representative designs generated by interpolating from parent A (first column) to parent B (last column). Some structures
with mixed cuts are obtained when the two parent structures have distinct cut types. (b) Comparison between ML predictions and MD results
plotted in the normalized ultimate stress vs normalized strain plot (mechanical space). Similarity metrics for path 8 measured by (c) Tanimoto
similarity and (d) angular distance. Note that the kirigami are stretched in the x direction and the edges are not shown.

designs to obtain nonredundant models. To show how we can
utilize our approach to search for designs, we compare two
search strategies in generating structures: (i) Select the struc-
ture with the highest strain or (ii) select the structure that is the
most different, as measured by the angular distance similarity
metric. Out of the 200 representative generated designs, we
obtained 87 designs with mixed cuts when we used strategy
(ii) whereas we only obtained four designs with mixed cuts
when we used strategy (i) (see Figs. 10 and 11 in the SM).
It is an open question in ML research how to best maximize
search diversity, which we hope to further investigate in future
studies.

Conclusions. In this Rapid Communication, we have
demonstrated the ability of the supervised autoencoder (SAE)
to perform both forward and inverse design of graphene
kirigami. With regards to forward design, by distinguishing
the difference in mechanical properties depending on the cut
pattern and orientation, the SAE can overcome the traditional
problem of needing to search through the entire design space
library to obtain different designs. With regards to inverse de-
sign, the SAE enables the generation of structures by passing
the latent variables to the decoder. Because the latent space
is significantly smaller than the real space, we can perform
optimization in the latent space as has previously been done
to discover new drugs and chemical compounds [15]. Most
importantly, we are able to classify designs that are different
from the training data by measuring similarity metrics. While

the mechanical property predictions of the sAE for structures
that are significantly different (far from the training data) are
less accurate, the SAE can still be utilized to propose alternate
designs. As online databases for mechanical systems, such
as the mechanical MNIST database [35], are developed, our
model will be important for learning the underlying physics
in a reduced-dimensional space, as well as for proposing
designs. Moreover, as the local structures are tightly con-
nected to electronic properties, this method can be extended
for learning electronic properties in 2D materials, such as
pseudomagnetic and electric polarization, as a function of
defects or kirigami cut patterns [36–41].

Codes to generate kirigami structures and TENSORFLOW

codes are freely available [42].
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