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One of the exciting features of two-dimensional (2D) materials is their electronic and optical tunability through
strain engineering. Previously, we found a class of 2D ferroelectric Rashba semiconductors PbX (X = S, Se, Te)
with tunable spin-orbital properties. In this work, based on our previous tight-binding (TB) results, we derive an
effective low-energy Hamiltonian around the symmetry points that captures the effects of strain on the electronic
properties of PbX. We find that strains induce gauge fields which shift the Rashba point and modify the Rashba
parameter. This effect is equivalent to the application of in-plane magnetic fields. The out-of-plane strain, which
is proportional to the electric polarization, is also shown to modify the Rashba parameter. Overall, our theory
connects strain and spin splitting in ferroelectric Rashba materials, which will be important to understand the
strain-induced variations in local Rashba parameters that will occur in practical applications.
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I. INTRODUCTION

Monolayers and heterostructures of two-dimensional (2D)
materials with spin-orbit interactions offer promise for observ-
ing many novel physical effects [1–3]. In particular, it has been
proposed that topological insulators or semiconductors with
Rashba interactions coupled with superconductors may host
Majorana fermions, which are potential building blocks for
topological quantum computers [4,5].

In addition to 2D materials that exist in the hexagonal
phase, such as graphene and the transition-metal dichalco-
genides (TMDCs), 2D materials with square lattices have
been successfully fabricated [6,7]. Recently, the Rashba effect
has been observed in thin layers (6–20 nm) of lead sulfide
(PbS) [7], where an external electric field is used to break the
inversion symmetry. However, the spin splitting is not large. In
our previous work based on density functional theory (DFT)
calculations, we found that lead chalcogenide monolayers PbX

(X = S, Se, Te) have a large Rashba coupling λ ∼ 1 eV Å in
their noncentrosymmetric buckled phase [8]. In addition, the
spin texture can be switched in a nonvolatile way by applying
an electric field or mechanical strain, which puts these ma-
terials into the family of ferroelectric Rashba semiconductors
(FERSCs) [9,10]. This spin-switching mechanism has recently
been observed experimentally in thin-film GeTe where the
surface is engineered to have either an inward or outward
electric polarization [11].

In reality, monolayers experience strains due to substrates,
defects, and so on, where local strains may change the elec-
tronic properties of monolayers. Important examples of such
effects are pseudo-Landau levels in graphene blisters [12] and
band-gap shifts in biaxially strained MoS2 [13]. Recently,
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spatial variations of Rashba coupling due to variations in
local electrostatic potentials were reported in InSb [14]. To
date, most theoretical studies of lead chalcogenide monolayers
have been based solely on DFT calculations [15,16]. However,
because DFT is limited to the simulation of small systems,
typically several nanometers, it is difficult to model inhomo-
geneous strains over large spatial areas using DFT.

In this paper, based on our previous tight-binding (TB)
model [8,17], we develop a continuum model to predict
strain-induced changes in the spin and electronic properties
of buckled PbX monolayers. We have also performed DFT
calculations to validate our TB predictions. Due to the buckled
structure of PbX, the angular dependence becomes important
as the relative angle between hybrid orbitals of the top and
bottom layer can change substantially [8]. We note that some
studies on (nonbuckled) SnTe and PbX (X = S, Se, Te)
rocksalt-type materials have incorporated strain effects in the
TB, but did not include the changes in hopping parameters
due to angle changes [18,19]. In contrast, our TB formulation
incorporates the effects due to changes in (i) bond distance
and (ii) angle between nearest neighbors as well as (iii) lattice
vector deformation.

In the low-energy Hamiltonian, the biaxial (or uniaxial)
strains can be described as gauge fields, which are equivalent
to, by minimal coupling, the application of in-plane magnetic
fields. The out-of-plane strain is directly related to the out-of-
plane polarization and this also modifies the Rashba parameter.
Within this framework we are able to quantify the Rashba fields
in terms of the strain fields.

II. TIGHT BINDING

Lead chalcogenide PbX (X = S, Se, Te) consists of two
atoms per unit cell, denoted by A and B atoms, respectively.
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FIG. 1. (a) Schematic top and side views of a buckled AB monolayer. (b) Undeformed and deformed Brillouin zone as the monolayer is
stretched in the x and y direction. (c) Representative band structures of strained PbS along symmetry points X-�-Y -M-X and (d) close to M .
(e) Relative change in the Rashba parameters obtained from DFT calculations as a function of strain ε for PbS, PbSe, and PbTe. Energy spin
splitting of PbS for isotropic strains of (f) ε = 0.00 and (g) ε = 0.10. It can be seen that the M points are originally located at |kx,y | = π/a0

and shifted closer to the center under a strain of ε = 0.10.

Lead is a heavy atom [Z(Pb) = 82], and it is crucial for creating
large spin-orbit interactions (SOIs). The schematic top and side
views of a buckled AB lattice are shown in Fig. 1(a). aaa is the
unit lattice vector and δδδj is the vector connecting atom i and
its j neighbor. We denote the relaxed bond length between
the neighboring A and B atoms by d, the vector connecting
A and B atoms in the (0,0) unit cell δδδ1 = d(α,α,−γ ), where
α = cos θ√

2
, γ = sin θ , and θ is the buckling angle (with θ = 0

corresponding to a flat lattice).
The bands near the Fermi level are mostly composed of s

and p orbitals from both A and B atoms [8]. The bands near the
symmetry points can be described within the TB framework
including first nearest neighbors and SOI. The full derivation
of the TB model can be found in our previous works [8,17], and
thus we will only outline the important parts; a more detailed
derivation can be found in Appendix C.

For the two-atom AB unit cell shown in Fig. 1(a), the
relevant orbital basis involves {sA,pA

x ,pA
y ,pA

z ,sB,pB
x ,pB

y ,pB
z }.

To write down the hopping matrix, we use the Slater-Koster
matrix elements for the orbitals of neighboring atoms [20].
As we include the SOI, HSOI = TX ( L+⊗s−+L−⊗s+

2 + Lz ⊗ sz)
(whereX = A,B), we will write our Hamiltonian in an angular
momentum basis. The dimension of the total Hilbert space
is 16×16 with a new basis of |μ〉 → |m〉|morb〉|s〉, where
m = {|A〉,|B〉} is the sublattice degree of freedom, morb =
{|0,0〉,|1,1〉,|1, −1〉,|1,0〉} is the orbital angular momentum
degree of freedom, and s = {(|+〉,|−〉} is the spin degree of
freedom.

We found a Rashba-like dispersion near the � and M points
when the two sublattices are not equivalent [8,17]. In this paper,
we develop a continuum strain model describing changes in the
Rashba dispersion near the M point, and thus the Hamiltonian
is expanded around the M point k = (π/a,π/a). Exactly at M

(q = 0), the Hamiltonian decomposes into several uncoupled

blocks and the wave function of the conduction band is
given by |
±〉mn = c0|m〉 ⊗ |1,±1〉 ⊗ |∓〉 + c1|m〉 ⊗ |1,0〉 ⊗
|±〉 ± ic2|n〉 ⊗ |1, ∓ 1〉 ⊗ |∓〉, with c0, c1, and c2 being real
numbers [8,17]. The Hamiltonian for the valence band can be
obtained by interchanging m and n.

Projecting the Hamiltonian onto the conduction band sub-
space, we obtain the effective Rashba-like Hamiltonian

Hmn
eff = λ[(q × σσσ ) · ẑ] :

(|
+〉mn

|
−〉mn

)
, (1)

where q is the momenta,σσσ = (σx,σy,σz), λ ≡ a sin 2θ�c1c2 is
the Rashba parameter, and � = Vppσ − Vppπ . The coefficients
c0,c1,c2 can be obtained from the DFT calculations. Since we
know the buckling angle θ , we can can evaluate �. All of the
relevant (unstrained) parameters are tabulated in Appendix A.

III. STRAIN-INDUCED GAUGE FIELDS

Since the SOI is independent of lattice distortions, in this
derivation we will focus on the spinless Hamiltonian and then
reintroduce the spin terms. We will focus on the conduction
band only, as the changes in the valence band should be similar.

Under deformation a vector connecting two points in a
unit cell i can be approximated as rrr ′

j − rrr ′
i 
 δδδj + δδδj · ∇uuu(rrri),

where uuu = (ux,uy,uz) is the displacement vector, and ∇uuu =
ε̃εε + ω̃ωω. In this work, we focus on deformation that does not
involve local rotation ω̃ωω = 0. Similarly, between two lattice
vectors, RRR′

j − RRR′
i 
 aaai + aaai · ∇uuu(RRRi).

Alterations in bond distance will result in changes in
the hopping energies. Since studies of lead chalcogenides
under strain are very limited, we follow the Wills-Harrison’s
argument [21] and assume that the hopping energy t ∝
r−βμν . Similar considerations also have been used for strained
TMDCs [22–24] and phosphorene [25,26]. Note that the
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hopping matrix derived from Slater-Koster has an angular
dependence and these relative angles should change due
to strain. Assuming the hopping matrix depends on bond
distance only, the modified hopping parameter, in terms of
the strain tensor ε̃εε, is t ′ij,μν(δij ) 
 tij,μν(1 − βμν

1
d2 δδδj · ε̃εε · δδδj )

[22,23]. This approximation is also the case for graphene,
where the hopping modulation is approximated as t ′(δδδij ) =
te−β(|δδδij |/d−1). In particular, this approximation works well
for flat graphene under strain because the angle between pz

orbitals does not change. The angular dependence becomes
more important when deformations, such as nanobubbles and
kirigami patterns, create a large curvature (bending) [27,28].
In buckled lead chalcogenides, however, the relevant hopping

terms for the Rashba dispersion depend on the buckling angle
even in the simple case of biaxial strains [8]. Thus we will
include this angular dependence, and we will show that this
is important to capture the changes in Rashba coupling with
uniaxial strain.

Let the unstrained vector connecting an atom A and its
neighbor be defined as δδδj = (x,y,z) and the equilibrium dis-
tance r = d. Here, we show the derivation for tpxpz

, while the
others can be found by following the same procedure. We as-
sume �(r ′) = �0( r

r ′ )
β and we expect β ≈ 3 [21]. In Cartesian

coordinates the strained hopping is given by tpxpz
(x ′,y ′,z′) =

x ′z′
r ′2 �0( r

r ′ )
β , and by Taylor expansion we obtain

δtij,pxpz
(x ′,y ′,z′) 
 − tij,pxpz

(x,y,z)

(
[(2 + β) − (r/x)2]

1

r2
x · (x′ − x) − [2 + β]

1

r2
y · (y′ − y)

− [(2 + β) − (r/z)2]
1

r2
z · (z′ − z)

)
. (2)

Within the strain approximation, x′ − x = x̂ · ε̃εε · δδδj . If we alter only the bond distance while keeping the angle constant, we will
get the same expression as above when angular effects are assumed to be negligible.

The interlattice-spinless Hamiltonian in reciprocal space can be written as

H int
orb(k) =

∑
μ,ν

∑
〈ij〉

(tij,μν + δtij,μν)eik·���j (1+ε̃εε)c
†
i,k,μcj,k,ν + H.c.

=
∑
μ,ν

∑
〈i,j〉

tij,μνe
ik·���j c

†
i,k,μcj,k,ν

︸ ︷︷ ︸
H0

+
∑
μ,ν

∑
〈i,j〉

itij,μνk · ε̃εε · ���je
ik·���j c

†
i,k,μcj,k,ν

︸ ︷︷ ︸
H (1)

+
∑
μ,ν

∑
〈i,j〉

δtij,μνe
ik·���j c

†
i,k,μcj,k,ν

︸ ︷︷ ︸
H (2)

+O(ε2),

(3)

where 〈ij 〉 is the sum over nearest-neighbor pairs and ���j = Rj − Ri . The first term H0 is the unstrained Hamiltonian, H (1) is
the correction due to lattice deformation, and H (2) is the correction from the altered hopping parameter due to changes in both
the interatomic distance and angle between orbitals.

IV. HOMOGENEOUS ISOTROPIC STRAINS

We start with a simple deformation with no shear, ε̃εε = (
εxx 0 0
0 εyy 0
0 0 εzz

). We will focus on the matrix elements that are relevant

to the conduction band, such as |A〉|1,0〉 and |B〉|1,1〉. In the angular momentum basis, the correction from H (1) and H (2) at M

is given by

A〈1,0|H (1)|1,1〉B = a0

√
2α0�0γ0[εxxπ/a0 + qxεxx − iεyyπ/a0 − iqyεyy],

A〈1,0|H (2)|1,1〉B = −a0

√
2α0γ0�0α

2
0(2 + β)[(εxx + f1εyy + f2εzz)qx − (f1εxx + εyy + f2εzz)iqy], (4)

where εij = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
+ ∂ul

∂xi

∂ul

∂xj
), f1 = 1 − 1

α2
0 (2+β)

, and f2 = γ 2
0

α2
0

− 1
α2

0 (2+β)
. Note that a0,α0,β0,γ0,�0 are the unstrained

geometrical and hopping parameters. H (1) is independent of the z direction strains (e.g., εxz) because the lattice vector R and k
are two dimensional. Because of the symmetry of M , we found that the first correction at M due to bond alterations is first order
in ε and momentum q. In graphene, the first correction from the hopping modulation that is linear in ε (but not proportional to
q) is not zero [29–31]. We have to include the contributions of H (1) up to first order in q as well because in H (2) (β-dependent
term) we keep terms up to first order in q and ε.

To obtain β we will consider an isotropic strain ε · 13×3. Notice that the change in the low-energy Hamiltonian of Eq. (1) due
to H (1) and H (2) at M can be written as gauge potentials,

Heff = −iλ0

(
0 (qx − iqy) + AAA1 + AAA2

(qx + iqy) + AAA∗
1 + AAA∗

2 0

)
, (5)
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FIG. 2. Schematic changes in the Rashba dispersions due to (a) in-plane strains and (b) out-of-plane strains. The linear Rashba dispersions
at the M for unstrained systems are colored blue. Under positive in-plane strains, the Rashba points shift closer to � and the strength of the
Rashba parameters decreases (smaller slope) with increasing strains. On the other hand, under out-of-plane strain, the strength of the Rashba
parameters increases with increasing uniaxial out-of-plane strain while the Rashba points do not shift.

where AAA1 = ( επ/a0 + ε qx

−iεπ/a0 − iε qy
) and AAA2 = −β( ε qx

−iε qy
), where we

have used 2α2
0 + γ 2

0 = 1 to simplify AAA1,AAA2 and λ0 is the
unstrained Rashba parameter.

AAA2 and the second term of AAA1 are proportional to q.
This modifies the strength of the Rashba parameter λ

λ0
− 1 


(1 − β)ε. This alteration in the Rashba term is similar to the
modification of Fermi velocity in graphene [30–32].

We next present our DFT results to validate our TB
predictions. Details of DFT calculations and the unstrained
geometrical parameters of buckled PbS, PbSe, and PbTe can be
found in Appendix A. Strains are applied to the relaxed buckled
phase. In order to find the effects that come from changes in
bond distance only, we deformed the monolayer in the DFT
simulations by changing the bond distance while keeping the
angle constant. The lattice vectors and atomic positions are
not relaxed under this deformation. The Rashba parameters λ

are obtained by taking the derivative of the energy dispersion
in the vicinity of the M point, |q| < 0.1π/a. Under isotropic
deformations, we found that λ at M decreases with increasing
strain (weakening of the hopping interaction), as expected from
Eq. (5), shown in Figs. 1(c)–1(e). A direct comparison between
DFT results and TB with strain included allows us to extract
β. By fitting DFT data points to a straight line, we obtained
β = 3.25,3.20,2.97 for PbS, PbSe, and PbTe, respectively
[Fig. 1(e)]. We see that the value of β would be different if
the lattice deformation correction was not included.

As we stretch the lattice, the Brillouin zone (BZ) will
shrink, and the corner of the BZ (M point) will shift as
( π
a0

, π
a0

) → ( π
a0(1+ε) ,

π
a0(1+ε) ) 
 ( π

a0
(1 − ε), π

a0
(1 − ε)), where a0

is the undeformed lattice constant. For positive strains, the M

point shifts towards the � point (relative to the undeformed

BZ), shown in Fig. 1(b). In our modified TB model, the M

point is displaced due to the first term of the lattice deformation
correctionAAA1 [see Eq. (5)]. The momentum shifts due to lattice
deformations are also found in graphene [33]. The changes
in the Rashba dispersion and its locations due to strains are
illustrated in Fig. 2.

To show the momentum shifts relative to the undeformed
(reference) state, we plot the energy spin splitting at the
conduction band of PbS obtained from the DFT results as
a function of kx,ky , shown in Figs. 1(f) and 1(g). Note that
momenta are in units of π/a0. Originally, the M points are
located at |kx,y | = π/a0 and are shifted closer to � (|k′

x,y | ≈
0.9π/a0) when an isotropic strain of ε = 0.10 is applied. The
momentum shift is linear with strains k · ε̃εε, consistent with
several previous works [31,33]. This Rashba-point shift due to
strains is equivalent to applying in-plane magnetic fields Bex

to the system,

H = λ0

[(
q − eAex

c

)
× σσσ

]
· ẑ + m⊥σzB⊥ + m‖B‖ · σ‖,

(6)

where m⊥ = −μB(c2
1 − 2c2

2), m‖ = −μBc1( c0√
2

+ c1 + c0),
and μB is the Bohr magneton. For completeness, the derivation
of Eq. (6) is included in Appendix D. As an illustration, we
can choose an external field of Aex = (0,0,Bxy − Byx), upon
which the in-plane magnetic field is given by Bex = ∇ × Aex =
(Bx,By,0). Since the Bohr magneton is small, in order to get
a similar effect of 2% strain using magnetic fields, one has to
apply external magnetic fields with an approximate strength of
|Bex| ∼

√
20.02πλ0
a0m‖

≈ 600 T [by Eqs. (5) and (6)].
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V. ELECTRIC POLARIZATION AND RASHBA FIELD

Proposals have been made to change the spin texture (i.e.,
sign of λ) by changing the electric polarization [9,34–36].
Rinaldi et al. found that the spin texture in FERSC GeTe films
indeed depends on the locations of the atoms on the surface,
which dictate the direction of the electric polarization [11].
In DFT simulations of SnTe thin films, which have a structure
similar to PbX, it also has been shown that near the vacuum one
of the atomic species buckles outward while the other species
buckles inward [37]. While the proportionality between the
Rashba parameter and spontaneous electric polarization is well
known, it will be useful to understand this mechanism in PbX

from a microscopic view, where the changes in the Rashba
parameters can be understood in terms of interactions between
atoms and the external applied strains. We will show that
our strain-dependent TB model captures how the out-of-plane
strain, which is proportional to the out-of-plane polarization,
modifies the Rashba fields.

By the modern theory of polarization, the elec-
tric polarization is given by [38] �P = 1

V

∑
τ q ion

τ Rτ −
2ie

(2π)3

∑occ
n

∫
BZ d3ke−i�k·R〈
nk| ∂
nk

∂k 〉, where qτ is the ionic
charge plus the core electrons, Rτ is the position of ions, V is
the unit cell volume, e is the elementary charge, n is the valence
band index, k is the wave vector, and 
nk is the electronic wave
function. The first term is the contribution from core electrons
and ions, and the second term is the electronic contribution
defined as the adiabatic flow of current, which can be calculated
from the Berry phase (BP) [38]. The spontaneous polarization
is calculated by taking the difference between the polarization
of the polar (buckled) state and the nonpolar (reference) state,
� �P = �Ppolar − �Pnonpolar. We estimate the thickness to be 0.5
nm in order to compare the polarizations to typical bulk
ferroelectrics. Details can be found in Appendix B. In the DFT
simulations we distort the ions in the z direction while keeping
the in-plane lattice vectors fixed at the relaxed buckled values.
We report only the spontaneous polarizations of PbS and PbSe,
as PbTe is metallic [8]. A modified Berry phase calculation is
needed to evaluate the polarization of ferroelectric metals [39],
however, this is beyond the scope of our present study.

From the DFT results we found that the core electronic plus
ionic and the electronic contribution (BP) are proportional to
the distance between Pb and X (X = S, Se) in the z direction
(plotted in Appendix B). This gives a proportionality between
� �Pz and εzz, as shown in Fig. 3(a). Compressing the monolayer
in the ẑ with strain εzz < 0 results in a decrease in λ, shown in
Fig. 3(b). This is opposite to the case of isotropic deformation
[see Fig. 1(e)]. This result is consistent with TB predictions.
In the previous discussion, we found that increasing bond
distance (ε > 0) generally weakens the hopping interaction
and thus decreases λ. Using relaxed geometrical parameters
(i.e., buckling angle θ0) and from Eq. (4), λ is expected to
decrease with compressive strain in the ẑ as f2 is negative.
We also want to note that there is no gauge field AAA1 since k
is two dimensional, and thus M is not shifted. The changes
in the Rashba dispersion and its locations due to out-of-plane
strains are illustrated in Fig. 2(b). Notice that not including
the angular dependence in the hopping correction will not
capture this effect. The inclusion of the angular dependence
is particularly important for the PbX monolayer due to its

FIG. 3. (a) Out-of-plane polarization � �Pz as a function of out-
of-plane strain εzz. (b) Linear relationship between λ and εzz which is
consistent with TB predictions. (c) Rashba parameter λ as a function
of � �Pz. All data points are obtained from the DFT calculations.

buckled nature. Overall, this suggests that the out-of-plane
internal electric polarization acts as an in-plane gauge field in
the low-energy Hamiltonian. Assuming small strains, we found
that λ ∝ | �Pz|. This result is important as it establishes a direct
relationship between the Rashba field and the out-of-plane
polarization, which is also proportional to the out-of-plane
strain εzz. Recently, several works have also studied strain-
induced piezoelectricity in boron nitride [40] and TMDCs [41].
Several experimental works use out-of-plane magnetic fields
(parallel to the polar axis of Rashba materials) to measure
the Rashba parameter as the Landau level spectrum changes
with the strength of the Rashba parameter [14,42]. One could
also use this experimental approach to detect variations in the
Rashba parameter in PbX due to out-of-plane strains.

VI. CONCLUSIONS

We have developed a TB model where the electronic
changes in PbX can be described within continuum mechanics.
We found the scaling exponent that modifies the hopping pa-
rameter to be β 
 3. In the low-energy Hamiltonian, the effect
of strains can be described as gauge fields, which are equivalent
to, by minimal coupling, application of an in-plane magnetic
field. Our theory describes how the location of the Rashba
point and the strength of the Rashba field can be engineered by
applying strains. The out-of-plane strain in particular is directly
related to the out-of-plane polarization. Within this framework
we are able to understand the connection between the Rashba
and ferroelectricity.

Our strain-dependent TB model should be applicable for
calculating the effects of inhomogeneous strain on the spa-
tially resolved Rashba fields over a large region, whereas
this calculation would not be feasible within a reasonable
time using a DFT approach. Employing classical atomistic
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simulations (e.g., molecular dynamics) together with strain-
dependent TB will be an efficient tool for studying larger and
more realistic systems with strain modulation due to substrates,
indentors [12,13,43], or geometrical cuts [28,44]. This will
open possibilities of using lead chalcogenides for strain and
electric-controlled spintronic devices.

ACKNOWLEDGMENTS

P.Z.H. developed the theory, wrote the paper, and performed
the DFT calculations. A.S.R. contributed to the analytical
work. H.S.P., D.K.C., and A.C.H.N. supervised the research.
We thank Vitor M. Pereira for useful comments and dis-
cussions. P.Z.H., H.S.P., and D.K.C. acknowledge support
by the Boston University Materials Science and Engineering
Innovation Grants. P.Z.H, H.S.P., and D.K.C are grateful for
computing resources provided by the Boston University Shared
Computing Cluster.

APPENDIX A: COMPUTATIONAL DETAILS

To validate our tight-binding predictions, we performed
density functional theory (DFT) calculations implemented in
the QUANTUM ESPRESSO package [45]. We employed projector
augmented-wave (PAW) type pseudopotentials with Perdew-
Burke-Ernzerhof (PBE) within the generalized gradient ap-
proximation (GGA) for the exchange and correlation func-
tional with Ref. [46]. The Kohn-Sham orbitals were expanded
in a plane-wave basis with a cutoff energy of 100 Ry and a
charge density cutoff of 200 Ry. The cutoff was chosen follow-
ing the suggested minimum cutoff in the pseudopotental file.
A k-point grid sampling was generated using the Monkhorst-
Pack scheme with 16×16×1 points [47]. A vacuum of 20 Å
was used. The relaxed structures of PbS, PbSe, and PbTe
were obtained by relaxing the ionic positions and the lattice
vectors. A convergence threshold on a total energy of 10−5

eV and a convergence threshold on forces of 0.005 eV/Å−1

were chosen. Lattice vectors are relaxed until the stress is less
than 0.01 GPa. Our first-principles calculations show that the
buckled phase of the PbX monolayer is more stable than the
centrosymmetric planar phase [8], consistent with other DFT
studies [16,48]. Detailed discussions on the bistable nature,
ferroelectric properties, and orbital-spin texture properties of
lead chalcogenides can be found in our previous paper [8].
In the current work, the deformations (atomic distortions) are
applied to the optimized buckled structure.

We used a finer grid for band-structure calculations with
the spin-orbit interaction included. We have tried several large
numbers of k points and found that a grid of 100 k points
between two symmetry points (e.g., between X and M) is
enough to obtain the Rashba parameter λ at the M point [8]. A
regular grid of 40×40×1 was used for the surface plot of the
energy spin splitting.

Here, we tabulate the optimized (relaxed) geometrical
parameters of buckled PbX (X = S, Se, and Te) monolayers
in Table I. The Rashba parameters λ are obtained by taking the
derivative of energy dispersion near the M point. The orbital
coefficients are obtained by projecting the wave functions into
the atomic orbital basis. The unstrained values of λ and � are
tabulated in Table II. From the table it can be seen that the wave

TABLE I. Relaxed lattice constant a, buckling angle θ , buckling
height dz, and nearest-neighbor bond distance d .

a(Å) θ (deg) dz(Å) d(Å)

PbS 3.74 21.6 1.04 2.84
PbSe 3.82 24.3 1.22 2.96
PbTe 4.01 26.3 1.40 3.16

functions are mostly composed of in-plane and out-of-plane
p orbitals of Pb and an in-plane orbital of the chalcogen X

(X = S, Se, Te).

APPENDIX B: ELECTRIC POLARIZATION

We used the modern theory of polarization [38] to calculate
the spontaneous polarization implemented in the QUANTUM

ESPRESSO package [45]. The electric polarization is calculated
via a Berry phase calculation [38], which is given by

�P = 1

V

∑
τ

q ion
τ Rτ − 2ie

(2π )3

occ∑
n

∫
BZ

d3ke−i�k·R
〈

nk

∣∣∣∣∂
nk

∂k

〉
,

(B1)

where qτ is the ionic charge plus the core electrons, Rτ is the
position of ions, V is the unit cell volume, e is the elementary
charge, n is the valence band index, k is the wave vector,
and 
nk is the electronic wave function. The first term is
the contribution from core electrons and ions, and the second
term is the electronic contribution defined as the adiabatic
flow of current which can be calculated from the Berry
connection [38].

The spontaneous polarization is calculated by taking the
difference between the polarization of the polar (buckled) state
and the nonpolar (reference) state, � �P = �Ppolar − �Pnonpolar.
To find the polarization at different heights, we change the
out-of-plane distance between the Pb and X (X = S, Se) atom
while keeping the in-plane lattice vectors fixed at the optimized
buckled values. It is a common practice to use a value on the
order of the bulk lattice constant (0.5–1 nm) to estimate the
monolayer thickness in order to compare the polarizations of
the monolayers to the typical bulk ferroelectrics [49–51]. In
this current work, we estimate the thickness to be 0.5 nm.
In QUANTUM ESPRESSO, spontaneous polarization with the
spin orbit included can be calculated using norm conserving
pseudopotentials. A difference of 0.03 μC/cm2 is found when
the spin-orbit interaction is included. Thus, to save computa-
tional time, we only report spontaneous polarization without
inclusion of the spin-orbit interaction. This small difference
has also been reported previously [35,52]. In Fig. 4 we plot the

TABLE II. Rashba parameters λ, projected wave-function coeffi-
cients |c0|2, |c1|2, |c2|2 obtained from DFT, and �.

|c0|2 |c1|2 |c2|2 λ (eV Å) � (eV)

PbS 0.305 0.534 0.115 3.40 5.36
PbSe 0.272 0.549 0.137 3.37 4.28
PbTe 0.286 0.522 0.130 3.18 3.83
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FIG. 4. From the DFT results we found that the ionic plus
core electronic and the electronic (by a Berry phase calculation)
contributions are proportional to the distance between Pb and X

(X = S, Se) in the z direction.

polarization from the ionic plus core electron contribution, and
the electronic contribution, from the Berry phase calculation,
scaled by their values at zero strain as a function of distance
between the Pb and S atom in the z direction.

APPENDIX C: TIGHT BINDING

The lead chalcogenide monolayer has two atoms per unit
cell (A,B). Based on density functional theories, the relevant
orbitals near the valence and conduction bands are s and p

orbitals. The wave function of sublattice A then can be written
as

ψA(r) = 1√
N

∑
k,μ

eik·Raμ,kφμ(r − R), (C1)

where R is the lattice vector, k is a wave vector, and μ is
the basis wave function [s,px,py,pz]. Including only nearest-
neighbor hopping, the spinless Hamiltonian can be written as

Horb =
∑
μ,ν

∑
i,j

[tij,μνc
†
i,μcj,ν + H.c.] +

∑
μ,ν

∑
i

Eμνc
†
i,μci,ν,

(C2)

where 〈i,j 〉 runs over the on-site cell and the nearest-
neighboring cells. c

†
i,μ creates an electron in the unit cell i

with atomic orbital μ. We can write this more compactly as

Horb =
(

HAA HAB

H
†
AB HBB

)
, (C3)

where HAA (the on-site term) is given by

HAA =

⎛
⎜⎜⎝

Es
A 0 0 0

0 E
px

A 0 0
0 0 E

py

A 0
0 0 0 E

pz

A

⎞
⎟⎟⎠. (C4)

To write down the hopping matrix, we use the following Slater-
Koster matrix elements for the orbitals of neighboring atoms
[20],

s-s : Vssσ ,
s-p : Vspσ d̂ · ôj , (C5)

p-p : (ôi · ôj )Vppπ + (ôi · d̂)(ôj · d̂)(Vppσ − Vppπ ).

Here, ôi is the orientation of the ith orbital and d̂ is the unit
vector pointing from atom 1 to atom 2. If we include up to first
nearest neighbors only we can write the interlattice hopping
matrix HAB ≡ K as

K = ��

⎛
⎜⎜⎝

Vssσ 0 0 −γV (1)
spσ

0 Vppπ + α2� 0 0
0 0 Vppπ + α2� 0

γV (2)
spσ 0 0 Vppπ + γ 2�

⎞
⎟⎟⎠ + 4α2��M

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0

0 0 0 0

⎞
⎟⎟⎠

+ 4α�X

⎛
⎜⎜⎝

0 iV (1)
spσ 0 0

−iV (2)
spσ 0 0 −iγ�

0 0 0 0
0 −iγ� 0 0

⎞
⎟⎟⎠ + 4α�Y

⎛
⎜⎜⎝

0 0 iV (1)
spσ 0

0 0 0 0
−iV (2)

spσ 0 0 −iγ�

0 0 −iγ� 0

⎞
⎟⎟⎠, (C6)

where ��,M,X,Y = [cos kxa

2 cos kya

2 , sin kxa

2 sin kya

2 , sin kxa

2 cos kya

2 , sin kya

2 cos kxa

2 ]. The momentum π/a � kx/y � π/a and γ =
sin θ . To keep the expression more compact, we have introduced � = Vppσ − Vppπ . In addition, since the A and B species are
not necessarily the same, we have two quantities of the Vspσ form.

While it is convenient to use s and p orbitals to write down the hopping matrix, since we are interested in including SOI in
our model, it is helpful to go to a basis which is more natural for the angular momentum operators,

|0,0〉 = |s〉, |1,±1〉 = ∓|px〉 − i|py〉√
2

, |1,0〉 = |pz〉, (C7)

where the first number represents the orbital momentum quantum number and the second one is its projection along the ẑ direction.
This basis change does not alter the HAA and HBB matrices. The interlattice hopping portion of the Hamiltonian, on the other
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hand, becomes

K̄ = ��

⎛
⎜⎜⎝

Vssσ 0 0 −γV (1)
spσ

0 Vppπ + α2� 0 0
0 0 Vppπ + α2� 0

γV (2)
spσ 0 0 Vppπ + γ 2�

⎞
⎟⎟⎠

︸ ︷︷ ︸
K�

+ 4α2��M

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠

︸ ︷︷ ︸
KM

+ 2
√

2α�X

⎛
⎜⎜⎜⎝

0 −iV (1)
spσ iV (1)

spσ 0

iV (2)
spσ 0 0 iγ�

−iV (2)
spσ 0 0 −iγ�

0 iγ� −iγ� 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
KX

+2
√

2α�Y

⎛
⎜⎜⎜⎝

0 V (1)
spσ V (1)

spσ 0

V (2)
spσ 0 0 γ�

V (2)
spσ 0 0 γ�

0 −γ� −γ� 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
KY

. (C8)

From here we write H ≡ UHorbU
−1, where U is a matrix projector from the orbital basis to the angular momentum basis.

To include the SOI, we use the standard form describing the spin-orbit coupling arising from the interaction with the nucleus,

HSOI = TX

(
L+ ⊗ s− + L− ⊗ s+

2
+ Lz ⊗ sz

)
, (C9)

where X is either Pb or X (X = S, Se, Te). The last term modifies the diagonal elements of the self-energy for |1,±1〉 by adding
(subtracting) TX/2 if Lz and sz point in the same (opposite) direction. The first term couples |1,1〉 ⊗ |↓〉 with |1,0〉 ⊗ |↑〉 and
|1,−1〉 ⊗ |↑〉 with |1,0〉 ⊗ |↓〉 with the coupling strength TX/

√
2.

The total Hamiltonian can then be written as

Htot = H ⊗ 12x2 + HSOI. (C10)

M point

We first look around the M point kx = ky = π/a. To the leading order in q, the hopping matrix K̃ is given by

K̃ = 4α2�

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠ − a

√
2αq

⎛
⎜⎜⎜⎝

0 V (1)
spσ e−iφ V (1)

spσ eiφ 0

V (2)
spσ eiφ 0 0 γ�eiφ

V (2)
spσ e−iφ 0 0 γ�e−iφ

0 −γ�e−iφ −γ�eiφ 0

⎞
⎟⎟⎟⎠, (C11)

where φ is the angle measured from the x̂ direction. At q = 0 (kx = ky = π/a), the Hamiltonian decomposes into several
uncoupled blocks with the corresponding bases,

Hm,±
s = Es

m : |0,0〉 ⊗ |±〉 ⊗ |m〉, Hmn,±
p =

⎛
⎜⎝E

p
m − Tm

2
Tm√

2
∓4iα2�

Tm√
2

E
p
m 0

±4iα2� 0 E
p
n + Tn

2

⎞
⎟⎠ :

⎛
⎜⎝ |m〉 ⊗ |1,±1〉 ⊗ |∓〉

|m〉 ⊗ |1,0〉 ⊗ |±〉
|n〉 ⊗ |1, ∓ 1〉 ⊗ |∓〉

⎞
⎟⎠, (C12)

where m �= n labels the sublattices and the middle |±〉 ket denotes the spin state. Using the direct sum notation, we can write
down the total Hamiltonian as H = HA,+

s ⊕ HA,−
s ⊕ HB,+

s ⊕ HB,−
s ⊕ HAB,+

p ⊕ HAB,−
p ⊕ HBA,+

p ⊕ HBA,−
p .

From Hs , we see that for a given m, the eigenstates are spin degenerate. The degeneracy becomes fourfold if the atoms of
sublattices A and B are the same, leading to E

p

A = E
p

B . Equation (C11) shows that at finite q there is no coupling between the
degenerate |0,0〉 states that is linear in the momentum. This means that the bands composed of s orbitals have local extrema at
the M point.

Next, we turn to Hp from Eq. (C12). Just as for Hs , the bands are doubly or fourfold degenerate depending on whether the
sublattices are composed of the same atomic species. Without making assumptions about the lattice composition, the general
form of the degenerate states is

|
±〉mn = c0|m〉 ⊗ |1,±1〉 ⊗ |∓〉 + c1|m〉 ⊗ |1,0〉 ⊗ |±〉 ± ic2|n〉 ⊗ |1,∓1〉 ⊗ |∓〉, (C13)

with c0, c1, and c2 real. At finite q,

mn〈
+|H |
−〉mn = −a sin 2θc1c2
(
�iqe−iφ

)
εmn, (C14)

where εAB = −εBA = 1 is the two-dimensional Levi-Civita symbol. This coupling between the degenerate states leads to an
effective Rashba-like Hamiltonian,

Hmn
eff = a sin 2θc1c2�εmn[(q × σσσ ) · ẑ] :

(|
+〉mn

|
−〉mn

)
, (C15)
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or in the matrix form,

Heff =
(

0 −iλ(qx − iqy)
iλ(qx + iqy) 0

)
. (C16)

We use values of c0, c1, and c2 obtained from DFT results. To give better physical pictures of these coefficients, we will solve
the Hamiltonian Eq. (C12). We treat the spin-orbit interaction (SOI) as perturbations and we will assume that Tm � Tn, where m

is the index denoting Pb with strong SOI and n denotes weak SOI of the chalcogen atom. Focusing on Hmn,+
p , Eq. (C12) becomes

Hmn,+
p =

⎛
⎝ E

p
m 0 −4iα2�

0 E
p
m 0

4iα2� 0 E
p
n

⎞
⎠ :

⎛
⎝ |m〉 ⊗ |1,1〉 ⊗ |−〉

|m〉 ⊗ |1,0〉 ⊗ |+〉
|n〉 ⊗ |1,−1〉 ⊗ |−〉

⎞
⎠, (C17)

and the perturbation

δHmn,+
p =

⎛
⎜⎝− Tm

2
Tm√

2
0

Tm√
2

0 0
0 0 0

⎞
⎟⎠ :

⎛
⎝ |m〉 ⊗ |1,1〉 ⊗ |−〉

|m〉 ⊗ |1,0〉 ⊗ |+〉
|n〉 ⊗ |1,−1〉 ⊗ |−〉

⎞
⎠. (C18)

We first solved Eq. (C17) to find the eigenvalues and eigenvectors and used first-order perturbation theory to obtain the corrections
to the eigenvectors. Using MATHEMATICA, we found to the first order in Tm that

|c1c2| 

Tm

(
E

p
m − E

p
n +

√(
E

p
m − E

p
n

)2 + 64α4�2
)

8
√

2α2�
(
E

p
n − E

p
m +

√(
E

p
m − E

p
n

)2 + 64α4�2
) . (C19)

Recall that we defined the Rashba parameter λ ≡ a sin 2θ�c1c2. From Eq. (C19) we see that |c1c2| weakly depends on strains.
For this reason, in the main text we assumed c1 and c2 are constant and the corrections to λ come mostly from � and θ .

APPENDIX D: MAGNETIC FIELD

Let us now try to include external fields to the system. The magnetic field can be included via the Peierls substitution so that
q → q − eA/c, where A is the vector potential. In addition, applying an external magnetic field leads to the interaction of the
electron angular momentum with the field.

The total magnetic moment of an electron is given by

μ = −μB

L + 2S
h̄

, (D1)

so that

B · μ = −μB

Bx

(
L++L−

2 + S+ + S−
) + By

(
L+−L−

2i
+ S+−S−

i

) + Bz(Lz + 2Sz)

h̄
. (D2)

Setting B = (B‖ cos τ,B‖ sin τ,B⊥) gives

B · μ = − μB

B‖ cos τ
(

L++L−
2 + S+ + S−

) − iB‖ sin τ
(

L+−L−
2 + S+ − S−

) + B⊥(Lz + 2Sz)

h̄

= − μB

B‖
[
e−iτ

(
L+
2 + S+

) + eiτ
(

L−
2 + S−

)] + B⊥(Lz + 2Sz)

h̄
. (D3)

The first term ∝B‖ introduces coupling between |
±〉 while the last term ∝B⊥ modifies and breaks the symmetry between the
degenerate states. Starting with last term, we get

〈
+|B · μ|
+〉 = −〈
−|B · μ|
−〉 = −μBB⊥
(
c2

1 − 2c2
2

)
. (D4)

Next, we apply the first term onto |
+〉,

− μB

B‖
[
e−iτ

(
L+
2 + S+

) + eiτ
(

L−
2 + S−

)]
h̄

(c0|m〉 ⊗ |1,1〉 ⊗ |−〉 + c1|m〉 ⊗ |1,0〉 ⊗ |+〉 + ic2|n〉 ⊗ |1,−1〉 ⊗ |−〉)

= −μBB‖

[
e−iτ c0|m〉|1,1〉|+〉 + e−iτ c0√

2
|m〉|1,0〉|−〉 + e−iτ c1√

2
|m〉|1,1〉|+〉

+eiτ c1√
2
|m〉|1, −1〉|+〉 + eiτ c1|m〉|1,0〉|−〉 + e−iτ i

c2√
2
|n〉|1,0〉|−〉 + eiτ ic2|n〉|1, −1〉|+〉

]
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= −μBB‖

[
eiτ

(
c0√

2
+ c1

)
|m〉|1,0〉|−〉 + e−iτ

(
c0 + c1√

2

)
|m〉|1,1〉|+〉 + c1e

iτ c1|m〉|1, −1〉|+〉

+e−iτ i
c2√

2
|n〉|1,0〉|−〉 + eiτ ic2|m〉|1, −1〉|+〉

]
. (D5)

Now, we apply 〈
−| onto Eq. (D5). We see that the states on |n〉 drop out. The remaining states yield

〈
−|B · μ|
+〉 = −μBB‖eiτ

[
c1

(
c0√

2
+ c1 + c0

)]
. (D6)

Thus, our general Hamiltonian becomes

H = λ

[(
q − eA

c

)
× σσσ

]
· ẑ + m⊥σzB⊥ + m‖B‖ · σ‖, (D7)

where m⊥ = −μB(c2
1 − 2c2

2) and m‖ = −μB[c1( c0√
2

+ c1 + c0)].

APPENDIX E: IN-PLANE FIELD

If the field is in plane, the Hamiltonian is given by

H =
(

0 iλqeiφ + Be−iτ

−iλqe−iφ + Beiτ 0

)
= λ

(
0 iqeiφ + B

λ
e−iτ

−iqe−iφ + B
λ
eiτ 0

)
, (E1)

where we have defined B ≡ m‖B‖. The eigenvalues become

E = ±λ

√(
qx − B

λ
sin τ

)2

+
(

qy − B
λ

cos τ

)2

. (E2)

Applying an in-plane magnetic field shifts the cone in the Brillouin zone.
Let us take a closer look at the Hamiltonian,

H = λ

(
0 i

[(
qx − B

λ
sin τ

) + i
(
qy − B

λ
cos τ

)]
−i

[(
qx − B

λ
sin τ

) − i
(
qy − B

λ
cos τ

)]
0

)
= λ

(
0 ipeiξ

−ipe−iξ 0

)
. (E3)

The eigenstates are

|I〉 = |
+〉 + ie−iξ |
−〉√
2

, |II〉 = |
+〉 − ie−iξ |
−〉√
2

. (E4)

Now we can obtain the in-plane spin texture for the cones. First, it is easy to show that

〈
I|σx/y |
I〉 = 〈
II|σx/y |
II〉 = 0. (E5)

Next,

〈
II|σx |
I〉 = c2
1〈+|σx |−〉 = c2

1, 〈
II|σy |
I〉 = c2
1〈+|σy |−〉 = −ic2

1. (E6)

This leads to

〈I|σx |I〉 = −ieiξ

2
c2

1 + ie−iξ

2
c2

1 = −i
c2

1

2
(eiξ − e−iξ ) = c2

1 sin ξ,

〈I|σy |I〉 = −ic2
1
−ieiξ

2
+ ic2

1
ie−iξ

2
= −c2

1
eiξ

2
− c2

1
e−iξ

2
= −c2

1 cos ξ,

〈II|σx |II〉 = ieiξ

2
c2

1 + −ie−iξ

2
c2

1 = −c2
1 sin ξ,

〈II|σy |II〉 = ic2
1
−ieiξ

2
− ic2

1
ie−iξ

2
= c2

1 cos ξ. (E7)

As a result, the spin texture becomes

〈I|σ̂ |I〉 = c2
1(x̂ sin ξ − ŷ cos ξ ) ∝ (x̂py − ŷpx), 〈II|σ̂ |II〉 = −c2

1(x̂ sin ξ − ŷ cos ξ ) ∝ −(x̂py − ŷpx). (E8)

Recall that

px = qx − λ

h̄v
sin τ, py = qy − λ

h̄v
cos τ. (E9)

This means that spin contours now revolve not around the q = 0 point but instead around a p = 0 point.

235312-10



STRAIN-INDUCED GAUGE AND RASHBA FIELDS IN … PHYSICAL REVIEW B 97, 235312 (2018)

[1] A. K. Geim and I. V. Grigorieva, Nature (London) 499, 419
(2013).

[2] K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto,
Science 353, aac9439 (2016).

[3] A. Manchon, H. C. Koo, J. Nitta, S. Frolov, and R. Duine,
Nat. Mater. 14, 871 (2015).

[4] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma,
Phys. Rev. Lett. 104, 040502 (2010).

[5] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[6] K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y.

Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q.-K. Xue, X. Chen,
and S.-H. Ji, Science 353, 274 (2016).

[7] M. M. R. Moayed, T. Bielewicz, M. S. Zöllner, C. Herrmann,
and C. Klinke, Nat. Commun. 8, 15721 (2017).

[8] P. Z. Hanakata, A. S. Rodin, A. Carvalho, H. S. Park, D. K.
Campbell, and A. H. Castro Neto, Phys. Rev. B 96, 161401
(2017).

[9] D. Di Sante, P. Barone, R. Bertacco, and S. Picozzi, Adv. Mater.
25, 509 (2013).

[10] D. Di Sante, A. Stroppa, P. Barone, M.-H. Whangbo, and S.
Picozzi, Phys. Rev. B 91, 161401 (2015).

[11] C. Rinaldi, S. Varotto, M. Asa, J. Sławińska, J. Fujii, G. Vinai,
S. Cecchi, D. Di Sante, R. Calarco, I. Vobornik, G. Panaccione,
S. Picozzi, and R. Bertacco, Nano Lett. 18, 2751 (2018).

[12] N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F. Guinea,
A. C. Neto, and M. Crommie, Science 329, 544 (2010).

[13] A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema,
F. Guinea, H. S. van der Zant, and G. A. Steele, Nano Lett. 13,
5361 (2013).

[14] J. R. Bindel, M. Pezzotta, J. Ulrich, M. Liebmann, E. Y. Sherman,
and M. Morgenstern, Nat. Phys. 12, 920 (2016).

[15] J. Liu, X. Qian, and L. Fu, Nano Lett. 15, 2657 (2015).
[16] W. Wan, Y. Yao, L. Sun, C.-C. Liu, and F. Zhang, Adv. Mater.

29, 1604788 (2017).
[17] A. S. Rodin, P. Z. Hanakata, A. Carvalho, H. S. Park, D. K.

Campbell, and A. H. Castro Neto, Phys. Rev. B 96, 115450
(2017).

[18] E. Tang and L. Fu, Nat. Phys. 10, 964 (2014).
[19] P. Barone, D. Di Sante, and S. Picozzi, Phys. Status Solidi RRL

7, 1102 (2013).
[20] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[21] W. A. Harrison, Elementary Electronic Structure: Revised

(World Scientific, Singapore, 2004).
[22] M. A. Cazalilla, H. Ochoa, and F. Guinea, Phys. Rev. Lett. 113,

077201 (2014).
[23] H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, and F. Guinea,

Phys. Rev. B 92, 195402 (2015).
[24] S. Fang, S. Carr, J. Shen, M. A. Cazalilla, and E. Kaxiras,

arXiv:1709.07510.
[25] J.-W. Jiang and H. S. Park, Phys. Rev. B 91, 235118 (2015).
[26] E. Taghizadeh Sisakht, F. Fazileh, M. H. Zare, M. Zarenia, and

F. M. Peeters, Phys. Rev. B 94, 085417 (2016).
[27] Z. Qi, A. L. Kitt, H. S. Park, V. M. Pereira, D. K. Campbell, and

A. H. Castro Neto, Phys. Rev. B 90, 125419 (2014).

[28] Z. Qi, D. K. Campbell, and H. S. Park, Phys. Rev. B 90, 245437
(2014).

[29] F. Guinea, M. Katsnelson, and A. Geim, Nat. Phys. 6, 30 (2010).
[30] J. L. Mañes, F. de Juan, M. Sturla, and M. A. H. Vozmediano,

Phys. Rev. B 88, 155405 (2013).
[31] M. R. Masir, D. Moldovan, and F. Peeters, Solid State Commun.

175, 76 (2013).
[32] F. de Juan, M. Sturla, and M. A. H. Vozmediano, Phys. Rev. Lett.

108, 227205 (2012).
[33] A. L. Kitt, V. M. Pereira, A. K. Swan, and B. B. Goldberg,

Phys. Rev. B 85, 115432 (2012).
[34] M. Liebmann, C. Rinaldi, D. Di Sante, J. Kellner, C. Pauly, R.

N. Wang, J. E. Boschker, A. Giussani, S. Bertoli, M. Cantoni, L.
Baldrati, M. Asa, I. Vobornik, G. Panaccione, D. Marchenko, J.
Sánchez-Barriga, O. Rader, R. Calarco, S. Picozzi, R. Bertacco,
and M. Morgenstern, Adv. Mater. 28, 560 (2016).

[35] L. Leppert, S. E. Reyes-Lillo, and J. B. Neaton, J. Phys. Chem.
Lett. 7, 3683 (2016).

[36] Q. Liu, Y. Guo, and A. J. Freeman, Nano Lett. 13, 5264 (2013).
[37] X. Qian, L. Fu, and J. Li, Nano Res. 8, 967 (2015).
[38] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651

(1993).
[39] A. Filippetti, V. Fiorentini, F. Ricci, P. Delugas, and J. Íñiguez,

Nat. Commun. 7, 11211 (2016).
[40] M. Droth, G. Burkard, and V. M. Pereira, Phys. Rev. B 94,

075404 (2016).
[41] H. Rostami, F. Guinea, M. Polini, and R. Roldán, npj 2D Mater.

Appl. 2, 15 (2018).
[42] S. Bordács, J. G. Checkelsky, H. Murakawa, H. Y. Hwang, and

Y. Tokura, Phys. Rev. Lett. 111, 166403 (2013).
[43] A. Georgi, P. Nemes-Incze, R. Carrillo-Bastos, D. Faria, S.

Viola Kusminskiy, D. Zhai, M. Schneider, D. Subramaniam, T.
Mashoff, N. M. Freitag, M. Liebmann, M. Pratzer, L. Wirtz, C.
R. Woods, R. V. Gorbachev, Y. Cao, K. S. Novoselov, N. Sandler,
and M. Morgenstern, Nano Lett. 17, 2240 (2017).

[44] P. Z. Hanakata, Z. Qi, D. K. Campbell, and H. S. Park, Nanoscale
8, 458 (2016).

[45] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R.
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos et al., J. Phys.: Condens. Matter 21, 395502
(19pp) (2009).

[46] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[47] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[48] K. Kobayashi, Surf. Sci. 639, 54 (2015).
[49] P. Z. Hanakata, A. Carvalho, D. K. Campbell, and H. S. Park,

Phys. Rev. B 94, 035304 (2016).
[50] R. Fei, W. Kang, and L. Yang, Phys. Rev. Lett. 117, 097601

(2016).
[51] H. Wang and X. Qian, 2D Mater. 4, 015042 (2017).
[52] A. Stroppa, C. Quarti, F. De Angelis, and S. Picozzi, J. Phys.

Chem. Lett. 6, 2223 (2015).

235312-11

https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1126/science.aad8609
https://doi.org/10.1126/science.aad8609
https://doi.org/10.1126/science.aad8609
https://doi.org/10.1126/science.aad8609
https://doi.org/10.1038/ncomms15721
https://doi.org/10.1038/ncomms15721
https://doi.org/10.1038/ncomms15721
https://doi.org/10.1038/ncomms15721
https://doi.org/10.1103/PhysRevB.96.161401
https://doi.org/10.1103/PhysRevB.96.161401
https://doi.org/10.1103/PhysRevB.96.161401
https://doi.org/10.1103/PhysRevB.96.161401
https://doi.org/10.1002/adma.201203199
https://doi.org/10.1002/adma.201203199
https://doi.org/10.1002/adma.201203199
https://doi.org/10.1002/adma.201203199
https://doi.org/10.1103/PhysRevB.91.161401
https://doi.org/10.1103/PhysRevB.91.161401
https://doi.org/10.1103/PhysRevB.91.161401
https://doi.org/10.1103/PhysRevB.91.161401
https://doi.org/10.1021/acs.nanolett.7b04829
https://doi.org/10.1021/acs.nanolett.7b04829
https://doi.org/10.1021/acs.nanolett.7b04829
https://doi.org/10.1021/acs.nanolett.7b04829
https://doi.org/10.1126/science.1191700
https://doi.org/10.1126/science.1191700
https://doi.org/10.1126/science.1191700
https://doi.org/10.1126/science.1191700
https://doi.org/10.1021/nl402875m
https://doi.org/10.1021/nl402875m
https://doi.org/10.1021/nl402875m
https://doi.org/10.1021/nl402875m
https://doi.org/10.1038/nphys3774
https://doi.org/10.1038/nphys3774
https://doi.org/10.1038/nphys3774
https://doi.org/10.1038/nphys3774
https://doi.org/10.1021/acs.nanolett.5b00308
https://doi.org/10.1021/acs.nanolett.5b00308
https://doi.org/10.1021/acs.nanolett.5b00308
https://doi.org/10.1021/acs.nanolett.5b00308
https://doi.org/10.1002/adma.201604788
https://doi.org/10.1002/adma.201604788
https://doi.org/10.1002/adma.201604788
https://doi.org/10.1002/adma.201604788
https://doi.org/10.1103/PhysRevB.96.115450
https://doi.org/10.1103/PhysRevB.96.115450
https://doi.org/10.1103/PhysRevB.96.115450
https://doi.org/10.1103/PhysRevB.96.115450
https://doi.org/10.1038/nphys3109
https://doi.org/10.1038/nphys3109
https://doi.org/10.1038/nphys3109
https://doi.org/10.1038/nphys3109
https://doi.org/10.1002/pssr.201308154
https://doi.org/10.1002/pssr.201308154
https://doi.org/10.1002/pssr.201308154
https://doi.org/10.1002/pssr.201308154
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRevLett.113.077201
https://doi.org/10.1103/PhysRevLett.113.077201
https://doi.org/10.1103/PhysRevLett.113.077201
https://doi.org/10.1103/PhysRevLett.113.077201
https://doi.org/10.1103/PhysRevB.92.195402
https://doi.org/10.1103/PhysRevB.92.195402
https://doi.org/10.1103/PhysRevB.92.195402
https://doi.org/10.1103/PhysRevB.92.195402
http://arxiv.org/abs/arXiv:1709.07510
https://doi.org/10.1103/PhysRevB.91.235118
https://doi.org/10.1103/PhysRevB.91.235118
https://doi.org/10.1103/PhysRevB.91.235118
https://doi.org/10.1103/PhysRevB.91.235118
https://doi.org/10.1103/PhysRevB.94.085417
https://doi.org/10.1103/PhysRevB.94.085417
https://doi.org/10.1103/PhysRevB.94.085417
https://doi.org/10.1103/PhysRevB.94.085417
https://doi.org/10.1103/PhysRevB.90.125419
https://doi.org/10.1103/PhysRevB.90.125419
https://doi.org/10.1103/PhysRevB.90.125419
https://doi.org/10.1103/PhysRevB.90.125419
https://doi.org/10.1103/PhysRevB.90.245437
https://doi.org/10.1103/PhysRevB.90.245437
https://doi.org/10.1103/PhysRevB.90.245437
https://doi.org/10.1103/PhysRevB.90.245437
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1103/PhysRevB.88.155405
https://doi.org/10.1103/PhysRevB.88.155405
https://doi.org/10.1103/PhysRevB.88.155405
https://doi.org/10.1103/PhysRevB.88.155405
https://doi.org/10.1016/j.ssc.2013.04.001
https://doi.org/10.1016/j.ssc.2013.04.001
https://doi.org/10.1016/j.ssc.2013.04.001
https://doi.org/10.1016/j.ssc.2013.04.001
https://doi.org/10.1103/PhysRevLett.108.227205
https://doi.org/10.1103/PhysRevLett.108.227205
https://doi.org/10.1103/PhysRevLett.108.227205
https://doi.org/10.1103/PhysRevLett.108.227205
https://doi.org/10.1103/PhysRevB.85.115432
https://doi.org/10.1103/PhysRevB.85.115432
https://doi.org/10.1103/PhysRevB.85.115432
https://doi.org/10.1103/PhysRevB.85.115432
https://doi.org/10.1002/adma.201503459
https://doi.org/10.1002/adma.201503459
https://doi.org/10.1002/adma.201503459
https://doi.org/10.1002/adma.201503459
https://doi.org/10.1021/acs.jpclett.6b01794
https://doi.org/10.1021/acs.jpclett.6b01794
https://doi.org/10.1021/acs.jpclett.6b01794
https://doi.org/10.1021/acs.jpclett.6b01794
https://doi.org/10.1021/nl4027346
https://doi.org/10.1021/nl4027346
https://doi.org/10.1021/nl4027346
https://doi.org/10.1021/nl4027346
https://doi.org/10.1007/s12274-014-0578-9
https://doi.org/10.1007/s12274-014-0578-9
https://doi.org/10.1007/s12274-014-0578-9
https://doi.org/10.1007/s12274-014-0578-9
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1038/ncomms11211
https://doi.org/10.1038/ncomms11211
https://doi.org/10.1038/ncomms11211
https://doi.org/10.1038/ncomms11211
https://doi.org/10.1103/PhysRevB.94.075404
https://doi.org/10.1103/PhysRevB.94.075404
https://doi.org/10.1103/PhysRevB.94.075404
https://doi.org/10.1103/PhysRevB.94.075404
https://doi.org/10.1038/s41699-018-0061-7
https://doi.org/10.1038/s41699-018-0061-7
https://doi.org/10.1038/s41699-018-0061-7
https://doi.org/10.1038/s41699-018-0061-7
https://doi.org/10.1103/PhysRevLett.111.166403
https://doi.org/10.1103/PhysRevLett.111.166403
https://doi.org/10.1103/PhysRevLett.111.166403
https://doi.org/10.1103/PhysRevLett.111.166403
https://doi.org/10.1021/acs.nanolett.6b04870
https://doi.org/10.1021/acs.nanolett.6b04870
https://doi.org/10.1021/acs.nanolett.6b04870
https://doi.org/10.1021/acs.nanolett.6b04870
https://doi.org/10.1039/C5NR06431G
https://doi.org/10.1039/C5NR06431G
https://doi.org/10.1039/C5NR06431G
https://doi.org/10.1039/C5NR06431G
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1016/j.susc.2015.04.009
https://doi.org/10.1016/j.susc.2015.04.009
https://doi.org/10.1016/j.susc.2015.04.009
https://doi.org/10.1016/j.susc.2015.04.009
https://doi.org/10.1103/PhysRevB.94.035304
https://doi.org/10.1103/PhysRevB.94.035304
https://doi.org/10.1103/PhysRevB.94.035304
https://doi.org/10.1103/PhysRevB.94.035304
https://doi.org/10.1103/PhysRevLett.117.097601
https://doi.org/10.1103/PhysRevLett.117.097601
https://doi.org/10.1103/PhysRevLett.117.097601
https://doi.org/10.1103/PhysRevLett.117.097601
https://doi.org/10.1088/2053-1583/4/1/015042
https://doi.org/10.1088/2053-1583/4/1/015042
https://doi.org/10.1088/2053-1583/4/1/015042
https://doi.org/10.1088/2053-1583/4/1/015042
https://doi.org/10.1021/acs.jpclett.5b00542
https://doi.org/10.1021/acs.jpclett.5b00542
https://doi.org/10.1021/acs.jpclett.5b00542
https://doi.org/10.1021/acs.jpclett.5b00542



