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The Temperature-Dependent
Viscoelastic Behavior of
Dielectric Elastomers
In this paper, we investigated the temperature-dependent viscoelastic behavior of dielec-
tric elastomers (DEs) and the effects of viscoelasticity on the electro-actuation behavior.
We performed dynamic thermomechanical analysis to measure the master curve of the
stress relaxation function and the temperature dependence of the relaxation time of VHB
4905, a commonly used DE. The master curve was applied to calculate the viscoelastic
spectrum for a discrete multiprocess finite deformation viscoelastic model. In addition,
we performed uniaxial creep and stress relaxation experiments and electrical actuation
experiments under different prestretch conditions. The measured spectrum was applied to
predict the experimental results. Generally, the model produced good quantitative agree-
ment with both the viscoelastic and electro-actuation experiments, which shows the
necessity of using a multiprocess relaxation model to accurately capture the viscoelastic
response for VHB. However, the model underpredicted the electro-actuated creep strain
for high voltages near the pull-in instability. We attributed the discrepancies to the
complex boundary conditions that were not taken into account in the simulation. We also
investigated the failure of VHB membrane caused by viscoelastic creep when pre-
stretched and subjected to constant voltage loading. The experimental time to failure
for the specimens decreased exponentially with voltage, which agreed well with the
predictions of the model. [DOI: 10.1115/1.4030850]

1 Introduction

DEs can deform when exposed to an applied electric field. The
materials are capable of large deformation and have highly attrac-
tive features such as fast response, light weight, low cost, and
good electromechanical conversion efficiency [1,2]. When pre-
stretched and sandwiched between two compliant electrodes,
DE membranes have demonstrated voltage-induced areal expan-
sions up to 158% [3]. These features make DEs attractive for
soft robotic actuators [4–6], artificial limbs [7,8], energy
harvesters [9,10], adaptive optics [11–13], Braille displays [14],
and biostimulation pads [15,16].

Applying an electric field across the thickness of a DE gener-
ates a Maxwell stress that reduces the thickness of the film
and causes the area to expand. As the elastomer thins, applying
the same voltage leads to an increasing higher electric field. This
positive feedback between deformation and electric field can lead
to failure by pull-in instability and dielectric breakdown. When
the film becomes unstable, complex 3D wrinkling patterns
appear [17]. It has been revealed that prestretches can help to
eliminate the pull-in instability [18] and improve electric break-
down strength [19,20].

The elastic behavior of DEs has been studied extensively
[21–24], and the viscoelastic behavior of this material has gained
increased scrutiny in recent works [25,26]. Experiments have
shown that viscoelasticity can significantly affect the electrome-
chanical behavior. It has been observed in experiments that visco-
elastic creep under a constant voltage actuation can induce the
pull-in instability and electric breakdown [27]. Failure caused by
pull-in instability and dielectric strength is a major limitation in
the application of DEs. Therefore, accurate characterization of the
viscoelastic behavior is important for the development of dielec-
tric devices. Zhang and Chen proposed a viscoelastic model for
the DE balloon using free-energy method [28]. Zhao et al.

developed a nonequilibrium thermodynamic theory for the visco-
elastic behavior of DEs [29]. Park and Nguyen developed a
dynamic finite element method to investigate the effect of visco-
elasticity on the development of instabilities and electromechanical
actuation [30,31]. Lochmatter et al. [32] developed a viscohyper-
elastic model to study a DE strip actuator under sinusoidal excita-
tion. Yang et al. [33] developed a nonlinear finite deformation
viscoelastic model of dielectric membranes using Christensen’s
theory of viscoelasticity. Wissler and Mazza [34] used quasi-
linear viscoelastic constitutive models with different energy
formulations to predict creep behavior of VHB under different
voltage levels. Recently, Kollosche et al. [35] applied a single
process viscoelastic model to study the wrinkle-to-wrinkle transi-
tion of DEs.

Viscoelastic models of DEs typically apply a single relaxation
process to describe the creep, stress relaxation, and rate-dependent
stress response over a narrow range of time scales [29,35]. A few
models have applied multiple relaxation processes [30,34,36], up
to 4, to describe a wider range of behavior and time scales, such
10�1–103 s. The parameters for the relaxation times and moduli
were fit to mechanical creep or stress relaxation data [36] or
voltage-induced electrical actuation data [34]. These approaches
are limited in that they do not describe completely the broad
distribution of relaxation processes nor the temperature depend-
ence of the viscoelastic behavior. Michel et al. measured the
elastic modulus of VHB 4910 by uniaxial tension experiments
in different temperatures and observed a strong temperature
dependence [37]. The aim of this work was to characterize the
temperature-dependent viscoelastic spectrum of VHB, a widely
used commercial DE. We applied the principles of time-
temperature superposition (TTS) to construct the master curve of
the relaxation modulus from relaxation tests at different tempera-
tures. The master curve was applied to calculate the viscoelastic
spectrum and temperature dependence of the relaxation times for
a discrete multiprocess viscoelastic model. We performed stand-
ard viscoelastic experiments (creep and stress relaxation) as well
as voltage actuation experiments on VHB membranes. The meas-
ured spectrum was applied to simulate these experiments as well
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as experiments performed in Refs. [17,27] to validate the model.
Finally, we introduced an approach to selectively reduce and trun-
cate the viscoelastic spectrum for a given time scale and tempera-
ture for computational efficiency, and demonstrated the shifting
the spectrum to describe the viscoelastic behavior at different
temperatures.

2 Methods

2.1 Experimental Method. Commercially available VHB
4905 membranes (3M, St. Paul, MN) were used in all experi-
ments. The membrane was cut to different sizes, described in
below, according to needs of experiments.

2.1.1 Uniaxial Creep and Stress Relaxation Experiments. The
creep and stress relaxation response of VHB was measured using a
dynamic mechanical analyzer (DMA TA Q800, TA Instruments,
Newcastle, DE). Film specimens, 15 mm long, 6.0 mm wide, and
0.5 mm thick, were cut from the VHB 4905 tape and mounted in
the film tension grips of the DMA leaving an 8.0 mm gauge length.

The stress relaxation response was measured at different tem-
peratures to construct the master curve of the relaxation modulus.
The temperature was decreased from 60 �C to �40 �C in steps of
5 �C. Each temperature step was held for 15 min to reach thermal
equilibrium. The specimens were stretched at a strain rate of 1%/s
by 0.01 and held at 0.01 strain while the stress was measured for
20 min. The relaxation modulus was calculated as the uniaxial en-
gineering stress divided by the applied strain and was plotted as
function of time. The relaxation modulus measured at different
temperatures was horizontally shifted to the reference temperature
20 �C, according to the principles of the TTS, to form a master
curve for the time-dependent relaxation modulus. Specifically, we
defined a function a(T) for the temperature-dependent shift factor.
To determine the shift factor at the temperature T, the relaxation
modulus measured at T was shifted along the horizontal log-time
axis by the logarithm of the shift factor, log a(T), to join the
curves for the relaxation modulus generated by data from previous
temperatures. The logarithmic shift factor was log a(T)< 0 for
temperatures lower than the reference temperature and log
a(T)> 0 for temperatures higher than the reference temperature.
Shift factors were adjusted until all data points formed a continu-
ous, smooth master curve at the reference temperature.

We performed additional stress relaxation experiments at large
strains and creep experiments for model validation. For the stress
relaxation experiments, the film specimens were equilibrated at
20 �C, stretched to 100% strain at a rate of 12.5%/s, and relaxed for
2 hrs. For the creep experiments, film specimens were equilibrated at
20 �C and subjected to a uniaxial force, which linearly increased from
zero to 0.17 N with a loading rate of 0.01 N/s and then held for 6 hrs.
Uniaxial stretch during creep was recorded as a function of time.

2.1.2 Electrical Actuation Experiments. Square specimens
ranging from 63.5 mm to 127 mm in size were cut from the VHB
tape. The side length was decided according to the prestretch level
that would be applied in a particular experiment. A cross was
drawn in the center of the film and four points were drawn around
the cross and used as optical markers to measure the prestretch
applied in the experiments. The specimen was uniaxially or
equibiaxially stretched to the desired prestretch and attached to a
rigid frame which is a square with side length of 190.5 mm. VHB
is an adhesive tape, which provided a strong attachment to the
frame. A circular electrode made from carbon conductive grease
(846-1P, MG Chemicals, Surrey, BC, Canada) with a diameter of
10 mm was applied to the center of the prestretched film on both
sides. The area of the central electrode was relatively small com-
pared to the dimensions of the prestretched specimen. The pre-
stretched film was allowed to relax 1.5 hrs to reach an equilibrium
stress state. A voltage was applied across the electrodes using a
high voltage power supply (ES50P-5 W, Gamma High Voltage
Research, Ormond Beach, FL). The experiments investigated
applied voltages from 2.5 kV to 6 kV. A digital camera mounted
above specimens was used to image the deforming specimens ev-
ery 8 s to 20 s. The images were analyzed using GIMP22 to mea-
sure the major and minor axes of the deformed electrode (Fig. 1).
The principal stretches were calculated from the ratio of deformed
major and minor axes to the undeformed diameter of the electrode.

2.2 Constitutive Model. We applied the analytical model
developed by Suo [38] to describe the viscoelastic biaxial stress
response of an incompressible DE membrane subjected to an equi-
librium prestretch and a sudden applied voltage change (Fig. 2). The
biaxial stress state was characterized by in-plane stretches k1 and k2,

Fig. 1 Images taken from actuation experiments: (a) and (b) equibiaxial prestretch, before and after actuation, and (c) and
(d) uniaxial prestretch, before and after actuation

Fig. 2 Model of electromechanical couple of DE membrane
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and an out-of-plane stretch k3. For membrane with applied pre-

stretch kpre
1 and kpre

2 , we can define relative stretches as

krel
1 ¼ k1=k

pre
1 ; krel

2 ¼ k2=k
pre
2 which represent stretches purely from

electric actuation.
In the model, we assumed that VHB 4905 is an incompressible

and isotropic material. Thus, k3 ¼ k�1
1 k�1

2 . The permittivity of the
material was assumed to be e¼ 3.98� 10�11 F/m [19], which
gave a dielectric constant of ed¼ 4.5. We also assumed that the
permittivity is independent of deformation for simplicity. Previous
studies have assumed both a linear and nonlinear dependence
on deformation [39,40]. Moreover, we assumed that VHB is an
ideal DE, such that the total free-energy density of DEs can be
decomposed into mechanical and electrical parts

W ¼ Wmech þWe (1)

The electrical contribution to the free-energy density is
described by a quadratic potential

We ¼ eE2=2 (2)

where E is electrical field. The electric displacement is given as
D¼ eE.

The electric field energy density of ideal DE can be written
in terms of the nominal electric field ~E and electric displacement ~D as

We ¼
~D2

2e
k�2

1 k�2
2 ¼

e ~E2

2
k2

1k
2
2 (3)

The mechanical behavior of the DE is described by the multi-
process viscoelastic model illustrated in Fig. 3. The model consists
of a parallel distribution of Maxwell models acting in parallel with
an equilibrium spring. The equilibrium spring is characterized by
an equilibrium shear modulus of leq, while the Maxwell models

are described by a shear modulus of lneq
k and relaxation time of sk.

The temperature dependence of the relaxation time was described

as skðTÞ ¼ sref
k aðTÞ, where sref

k is the relaxation time at the refer-
ence temperature (20 �C), and a(T) is the shift factor measured in
Sec. 2.1.1. We assumed a multiplicative decomposition of the

deformation gradient into elastic kk
1e and viscous components nk

2,

such that kk
1e ¼ k1=n

k
1; k

k
2e ¼ k2=n

k
2. The N relaxation processes

represent a discrete approximation of a continuous distribution of
relaxation times. Using a larger number N of processes provides a
more accurate description of the time-dependent relaxation behav-
ior at the expense of computational time. In Sec. 2.3, we present a
method to determine the parameters of the relaxation spectrum
from the master curve of the relaxation modulus. We also investi-
gated, in Sec. 3.4, the effect of coarsening and altering the range of
the discrete relaxation spectrum on the simulation results of the
viscoelastic behavior of VHB.

We assumed that the mechanical strain energy density can
be additively split into equilibrium and nonequilibrium compo-

nents, Wmechðk1; k2; n
k
1; n

k
2Þ ¼ Weq

mechðk1; k2Þ þ
P

Wneq
mechðk

k
1e; k

k
2eÞ.

We adopted the Gent model for both the equilibrium and nonequi-
librium components to describe for the stiffening of the material
when approaching the limiting stretch [41]

Wmech ¼ �
leqJeq

lim

2
log 1� k2

1 þ k2
2 þ k�2

1 k�2
2 � 3

Jeq
lim

� �
�
XN

k¼1

lneq
k Jneq

lim

2

� log 1� k2
1ðn

k
1Þ
�2 þ k2

2ðn
k
2Þ
�2 þ k�2

1 k�2
2 ðn

k
1n

k
2Þ

2 � 3

Jneq
lim

 !

(4)

where Jeq
lim and Jneq

lim are the limiting stretches of the equilibrium
spring and nonequilibrium components, nk

1 and nk
2 denote kth vis-

cous stretches in two in-plane principle directions. We have
assumed that the nonequilibrium processes share the same limit-
ing stretch Jneq

lim for simplicity. This model is an extension of the
viscoelastic models developed by Zhao et al. [29] and Park and
Nguyen [30] that used a single exponential relaxation process to
describe the viscoelastic behavior. Substituting Eqs. (3) and (4)
into Eq. (1) gives the total free-energy density function. The prin-
cipal first Piola–Kirchhoff engineering stresses were defined from
the free-energy density as [38]

s1 ¼
@Wðk1; k2; n

k
1; n

k
2;

~DÞ
@k1

s2 ¼
@Wðk1; k2; n

k
1; n

k
2;

~DÞ
@k2

(5)

where s1 ¼ ðP1=L2L3Þ ¼ ðr1=k1Þ and s2 ¼ ðP2=L1L3Þ ¼ ðr2=k2Þ
are engineering stresses in two principle directions. Evaluating
Eq. (5) and applying the relation between the engineering and
Cauchy stresses gives

r1 þ eE2 ¼ leqðk2
1� k�2

1 k�2
2 Þ

1� ðk2
1þ k2

2þ k�2
1 k�2

2 � 3Þ=Jeq
lim

þ
XN

k¼1

� lneq
k ½k

2
1ðn

k
1Þ
�2� k�2

1 k�2
2 ðn

k
1n

k
2Þ

2�
1� ½k2

1ðn
k
1Þ
�2þ k2

2ðn
k
2Þ
�2 þ k�2

1 k�2
2 ðn

k
1n

k
2Þ

2� 3�=Jneq
lim

r2 þ eE2 ¼ leqðk2
2� k�2

1 k�2
2 Þ

1� ðk2
1þ k2

2þ k�2
1 k�2

2 � 3Þ=Jeq
lim

þ
XN

k¼1

� lneq
k ½k

2
2ðnk

2Þ
�2� k�2

1 k�2
2 ðnk

1n
k
2Þ

2�
1� ½k2

1ðn
k
1Þ
�2þ k2

2ðn
k
2Þ
�2 þ k�2

1 k�2
2 ðn

k
1n

k
2Þ

2� 3�=Jneq
lim

(6)

Following Ref. [42], we apply the following evolution equation
for the viscous stretches:

gk

dnk
i

nk
i dt
¼ 1

2
rneq

ik
; for i ¼ 1; 2 (7)

where gkðTÞ ¼ lneq
k skðTÞ ¼ lneq

k sref
k aðTÞ is the shear viscosity,

rneq
ik

is the nonequilibrium deviatoric component of the Cauchy
stress in Eq. (6) and can be written as

rneq
1k
¼ 1

3

�
2½k2

1ðnk
1Þ
�2�k�2

1 k�2
2 ðnk

1n
k
2Þ

2�
1�½k2

1ðnk
1Þ
�2þk2

2ðnk
2Þ
�2þk�2

1 k�2
2 ðnk

1n
k
2Þ

2�3�=Jneq
lim

� ½k2
2ðn

k
2Þ
�2�k�2

1 k�2
2 ðn

k
1n

k
2Þ

2�
1�½k2

1ðnk
1Þ
�2þk2

2ðnk
2Þ
�2þk�2

1 k�2
2 ðnk

1n
k
2Þ

2�3�=Jneq
lim

�
lneq

k

rneq
2k
¼ 1

3

�
�½k2

1ðn
k
1Þ
�2�k�2

1 k�2
2 ðn

k
1n

k
2Þ

2�
1�½k2

1ðn
k
1Þ
�2þk2

2ðn
k
2Þ
�2þk�2

1 k�2
2 ðn

k
1n

k
2Þ

2�3�=Jneq
lim

þ 2½k2
2ðnk

2Þ
�2�k�2

1 k�2
2 ðnk

1n
k
2Þ

2�
1�½k2

1ðn
k
1Þ
�2þk2

2ðn
k
2Þ
�2þk�2

1 k�2
2 ðn

k
1n

k
2Þ

2�3�=Jneq
lim

�
lneq

k

(8)Fig. 3 Standard rheological model
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To determine the criteria for pull-in instability, we calculated
the Hessian matrix of the free-energy density function (1)

H ¼

@2W

@k2
1

@2W

@k1@k2

@2W

@k1@ ~D

@2W

@k1@k2

@2W

@k2
2

@2W

@k2@ ~D

@2W

@k1@ ~D

@2W

@k2@ ~D

@2W

@ ~D2

2
666666664

3
777777775

(9)

The components of H are functions of k1; k2; n
k
1; n

k
2;

~D and
evolve with time. We used the following criteria for pull-in insta-
bility in our simulation [29]:

det H ¼ 0 (10)

2.3 Parameters Determination. The master curve of the
relaxation modulus was used to determine the equilibrium shear
modulus and the parameters of the discrete relaxation spectrum
ðsk;l

neq
k Þ. We initially assumed a large number of relaxation

processes, N¼ 30. The relaxation modulus measured at different
temperature was plotted on a log–log scale in Fig. 4(a). The relax-
ation modulus was shifted horizontally to a reference temperature
of 20 �C to form the master curve for the time-dependence of the
relaxation modulus in (Fig. 4(b)). The material exhibited a broad
glass relaxation spectrum, where the relaxation modulus spanned
more than 13 decades of log time. The temperature dependence of
shift factor can be described by the Williams–Landel–Ferry
(WLF) empirical relation

log aðTÞ ¼ �Cref
1 ðT � TrefÞ

Cref
2 þ T � Tref

(11)

where Cref
1 and Cref

2 are the WLF constants for the reference tem-
perature. Fitting the WLF relation to the shift factor data (Fig. 5)
gave Cref

1 ¼ 13:7 and Cref
2 ¼ 187:1�C. The equilibrium modulus

Eeq¼ 0.078 MPa was approximated from the plateau of the master
curve at large times. Assuming incompressibility, the equilibrium
shear modulus can be determined from the equilibrium Young’s
modulus as leq¼Eeq/3¼ 0.026 MPa. The nonequilibrium
Eneq¼ 689 MPa was approximated by the maximum relaxation
modulus of the master curve in Fig. 4(b) and applied to calculate
the lneq¼ 230 MPa assuming incompressibility. Physically, lneq

represents the glassy modulus. However, we were unable to reach
plateaus for the lowest temperature,�40 �C, of the stress relaxa-
tion tests. At room temperature 20 �C, the relaxation observed at

�40 �C corresponds to stress relaxation at 10�7 s, which is signifi-
cantly smaller than the experimental time scale. Consequently,
truncating the master curve at 10�7 s should not significantly
affect the model predictions of material behavior and instability at
room temperature.

We developed a second-order approximation method based on
Schwarzl and Staverman [43] to determine the discrete relaxation
spectrum [44]. A seventh-order polynomial was first fit to the
master curve in Fig. 4(b). The resulting polynomial function was
denoted as log G¼ f0(log t), where G is the relaxation modulus.
The relationship between the relaxation modulus and a continuous
relaxation spectrum was defined as [45]

GðtÞ ¼ leq þ
ð1

0

hðsÞ
s2

e�t=sds (12)

where h(s) is the continuous relaxation spectrum. The cumulative
relaxation spectrum was defined from h(s) as

HðsÞ ¼
ðs

0

hðzÞdz (13)

Evaluating h(s) requires inverting the integral equation (12),
which can be challenging. A number of approximations have been
developed. In particular, we used a second-order accurate approxi-
mation developed by Schwarzl and Staverman [43]

Fig. 4 Relaxation modulus as a function of time: (a) measured for different temperature and (b) shifted to a refer-
ence temperature of 20 �C to form a master curve

Fig. 5 Shift factor as a function of temperature
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hðsÞ ¼ � t

2
GðtÞ½d log GðtÞ=d log t� ðd log GðtÞ=d log tÞ2

� ð1=2:303Þd2 log GðtÞ=dðlog tÞ2�jt¼2s (14)

Applying the polynomial fit to Eqs. (14) and (13), we can
calculate the continuous relaxation spectrum and cumulative dis-
tribution from polynomial f0 as

hðsÞ¼�1

2
10f0ðxÞþxðf 00ðxÞ�ðf 00ðxÞÞ

2�ð1=2:303Þf 000 ðxÞÞjx¼log2s (15)

HðsÞ ¼ 10 f0ðxÞð1� f 00ðxÞÞjx¼log 2s (16)

The relaxation modulus of the discrete model can be written as
assuming infinitesimal deformation as

GdiscðtÞ ¼ leq þ
XN

k

lneq
k expð�t=skÞ (17)

The discrete cumulative spectrum can be evaluated by combin-
ing Eqs. (12), (13), and (17) as

HdiscðsÞ ¼
XN

k

lneq
k s� skh i � leq (18)

where s� skh i ¼ 0 for s> sk. A power law distribution was
applied for relaxation time [46]

sk ¼ smax

smin

smax

� � k�1ð Þ= N�1ð Þ
(19)

The upper and lower bounds of relaxation distribution,
smax¼ 1.59� 105 s and smin¼ 3.98� 10�8 s, were determined
according from the time range of master curve of the relaxation
modulus (Fig. 4(b)). Finally, the nonequilibrium moduli lneq

k
corresponding to the relaxation times sk were determined from the
continuous cumulative distribution as follows [46,47]:

lneq
1 ¼ 1

2
ðHðs1Þ þ Hðs2ÞÞ

lneq
k ¼ 1

2
ðHðskþ1Þ � Hðsk�1ÞÞ; 1 < k < N � 1

lneq
N ¼ lneq �

XN�1

k

lneq
k

(20)

The discrete cumulative spectrum forms a stepwise approxi-
mation of the continuous cumulative spectrum. Figure 6(a) plots
relaxation spectrum ðsk;l

neq
k Þ determined as described above.

Note that lneq
k was maximum at the lower bound smin of the

distribution of relaxation times, which indicates that relaxation
spectrum extends to relaxation times lower than the chosen
smin. However, relaxation times below the lower bound would
relax too quickly to significantly affect the modeling results at
room temperature. The spectrum was applied to Eq. (17) to
evaluate the relaxation modulus of the discrete model. The
results in Fig. 6(b) show excellent agreement with the measured
master curve.

3 Results and Discussion

3.1 Creep and Stress Relaxation. The viscoelastic model
was applied using parameters determined in Sec. 2.3 to simulate
the creep and stress relaxation experiments described in
Sec. 2.1.1. In addition, we used Jeq

lim ¼ 110; Jneq
lim ¼ 55 in the simu-

lations based on the previous work of Foo et al. [48]. It was veri-
fied through numerical tests that the simulations were insensitive
to Jeq

lim and Jneq
lim , which means changing these values has little

effect on results presented in this paper. Figure 7(a) compares the
results of the uniaxial stress relaxation experiment and simulation
of VHB films stretched to 100% strain. The simulation used the
same loading history prescribed in experiments. The stress
response showed significant relaxation, decaying from 255 kPa to
52 kPa in 2 hrs. The modeling results showed good agreement
with the stress relaxation measurements.

Figure 7(b) plots the creep response from experiments and
modeling. The loading history of the experiment was applied for
the simulations. The specimen exhibited significant creep through-
out the experiment. The stretch increased nearly linearly in log
time for the entire duration of the 6 hrs of the experiment. The
model predictions showed good agreement with the creep
measurements.

3.2 Effect of Strain Rate. Next, we applied the model and
parameters determined in Sec. 2.3 to simulate the uniaxial stress
experiments of VHB 4905 at different strain rates by Plante
and Dubowsky [17]. Figure 8 compares model prediction and
experimental for stretch rates 3.3� 10�4/s, 9.4� 10�2/s, and
1.8/s. The model accurately predicted the stress–strain response
of VHB for the two lower stretch rates up to a stretch of 4. The
largest discrepancy between the experimental data and model
prediction was 18% and occurred for the highest stretch rate
which was 1.8/s.

Fig. 6 (a) Distribution of discrete viscoelastic spectrum ðsk ; l
neq
k Þ. (b) Comparison between master curves from

experiments and the discrete model.
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3.3 Voltage-Induced Creep. Figure 9 plots the relative
stretch as a function of time for the electro-actuation of an
equibiaxially prestretched membrane, comparing experiments in
Sec. 2.1.2 and model predictions. In the experiments, the speci-
men was prestretched equibiaxially to 1.9, relaxed for 1.5 hrs, and
then subjected to an applied voltage. The voltage was ramped
from 0 to 2.5 kV in 10 s, held for 5 min, ramped to 3 kV in 10 s,
and held until electric breakdown occurred. The loading history of
the experiment was applied for the simulation. The electric field E
was evaluated from the applied voltage as E¼V/l3, where l3 is the
deformed thickness of the film, then applied to Eq. (6) to evaluate
the equibiaxial stretch response. In addition, we simulated the
electro-actuation experiments of Ref. [27], which subjected pre-
stretched VHB membranes to the same prestretch, Vlow¼ 2.5 kV
and a higher Vhigh¼ 3.5 kV. Keplinger et al. [27] used a more
accurate capacitive method to measure the stretch. The experi-
ments and modeling results were compared in Fig. 9. The model
predictions showed excellent agreement with experiments for the
2.5 kV step and also for the first 100 s of the 3.0 kV step. However,
the model stretch prediction was significantly lower than experi-
mental measurements near the onset of the pull-in instability
observed by the accelerated creep rate.

3.4 Reduced Representations of the Stress Relaxation
Spectrum. In Secs. 2.3–3.3, we used a large number of relaxation
processes, N¼ 30, to guarantee accurate description of the visco-
elastic response. However, the larger number of relaxation proc-
esses resulted in long computational times. In this section, we
investigated the effect of reducing the number of processes on the
modeling results for voltage-induced creep. The majority of the
distribution of relaxation times at 20 �C fell below 1 s and should
not significantly affect the long time electro-actuated creep
response measured in the experiments. To demonstrate this, we
determined the discrete spectrum for a reduced number N¼ 20 of
processes over the same span of relaxation times, smin

¼ 3.98� 10�8 s and smax¼ 1.59� 105 s. In addition, we evaluated
the effects of using truncated relaxation spectrum with small
number of processes, N¼ 10, N¼ 5, and N¼ 3. To obtain the
truncated spectrum, we first determined the relaxation spectrum
for Ntotal¼ 13 processes, then truncated this spectrum by picking
the last ten processes for N¼ 10, the last five processes for N¼ 5,
and the last three processes for N¼ 3. Thus, the truncated distribu-
tion spans smin ¼ 3:16� 10�5 s; smax ¼ 1:59� 104 s for the
N¼ 10 case, smin ¼ 2:16 s; smax ¼ 1:59� 104 s for the N¼ 5
case, and smin ¼ 185 s; smax ¼ 1:59� 104 s for the N¼ 3 case.
The different cases were summarized in Table 1 and the spectra
were plotted in Fig. 10.

Fig. 8 Normalized stress as a function of stretch from uniaxial
tension with different stretch rates, comparing experiments and
model prediction

Fig. 9 Relative stretch as a function of time (kpre
1 ¼ k

pre
2 ¼ 1:9),

comparing results from experiments and simulation

Fig. 7 (a) Relaxation of the uniaxial tension engineering stress response and (b) uniaxial tension creep
stretch response, comparing experiments and model prediction
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The electro-actuation stretch response was computed for the
five cases in Table 1 at room temperature T¼ 20 �C. The loading
history was the same as introduced in Sec. 3.3 with Vlow¼ 2.5 kV
and Vhigh¼ 3.0 kV. The results in Fig. 11 for cases 1–4 showed
negligible differences. The largest discrepancy among the first
four cases was about 1%. Case 5 with only three nonequilibrium
processes, however, cannot precisely describe the material’s
short time response because of the truncation. This shows the
importance of using multiple nonequilibrium processes to
accurately capture the viscoelastic response of VHB, which is in
contrast to the single relaxation process models that have been
used to date [29,35].

The electro-actuation response was computed for a higher tem-
perature, 60 �C comparing all five cases (Fig. 12). The spectra for
all cases were shifted to 60 �C using the temperature-dependent
shift factors shown in Fig. 5. Larger differences were observed
between the truncated and full relaxation spectrum. The largest
difference between the full and truncated spectrum was 5%. At
high temperature, the VHB material became more mobile, and
accurate predictions were needed for the relaxation processes with
smaller relaxation times.

3.5 Voltage-Induced Creep Failure. As shown in Sec. 3.3,
the model was unable to capture the accelerated creep at the onset
of the pull-in instability. We attributed this discrepancy to the
complex boundary conditions of the experiments, which were
neglected in the simulations. The simulations assumed homogene-
ous deformation and a uniform biaxial stress state in the film. In
experiments, the voltage was applied to a small region of the film,
and the resulting electro-actuation caused the surrounding film to
unload, which created a nonuniform deformation state.

We applied the model to investigate the effects of prestretch
and voltage on the failure of DEs. The simulations considered two
equibiaxial prestretch ratios, 1.7 and 1.9, and evaluated the time
to creep-induced instability for different voltages. The criteria for
pull-in instability were defined as det H ¼ 0. In addition, we eval-
uated the time to electric breakdown for different voltages. The
critical condition for electric breakdown was k¼ kEB, where kEB

is the breakdown stretch.

kEB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EEBL3

V

r
(21)

where L3 represents the initial thickness and EEB is the break-
down electric field. Kofod et al. [19] and Plante and Dubowsky
[17] have measured EEB as a function of prestretch. From their
measurements, we used EEB¼ 40 MV/m for a prestretch
kpre¼ 1.7 and EEB¼ 48 MV/m for kpre¼ 1.9. Figures 13(a) and
13(b) plotted the voltage-induced relative strain for kpre¼ 1.7
and kpre¼ 1.9. The time to break-down were marked using
crosses on the curves in the figure, and the unstable limit points
predicted from det H ¼ 0 were marked using circles. In all
cases, breakdown happened before the pull-in instability which
is coincident with our observations in the experiments that the
stretch did not increase dramatically before electric breakdown
occurred. Figure 13(c) compared the time to failure measured
from experiments and calculated from the electric breakdown
criteria for the model. The experiments and modeling results
showed the same trends. The time to electric breakdown

Table 1 Parameters of spectra with different number of
processes

N smax (s) smin (s) lneq (MPa)

Case 1 30 (full range) 1.59� 105 3.98� 10�8 230
Case 2 20 (full range) 1.59� 105 3.98� 10�8 230
Case 3 10 (truncated) 1.59� 104 3.16� 10�5 39.7
Case 4 5 (truncated) 1.59� 104 2.16 0.110
Case 5 3 (truncated) 1.59� 104 185 0.0247

Fig. 10 Distribution of discrete spectra for cases 1–5

Fig. 11 Voltage actuated creep simulation for cases 1–5 at
20 �C

Fig. 12 Voltage actuated creep simulation for cases 1–5 at
60 �C
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decreased exponentially with voltage (linearly in a semilog
time). They also decreased with the prestretch.

4 Conclusions

We measured the viscoelastic relaxation spectrum of VHB
4905 and the temperature dependence of the relaxation times and
applied the results to a discrete multiprocess viscoelastic model.
We showed that the viscoelastic spectrum can be truncated
systematically to describe the time-dependent behavior in a more
narrow time range, though the truncation was shown to require
multiple and not a single nonequilibrium process in order to accu-
rately capture the viscoelastic response. Moreover, the spectrum
can be shifted using the temperature-dependent shift factor to
describe the time-dependent behavior at higher temperatures. The
model generally showed good quantitative agreement with experi-
mental measurements of electromechanical behaviors. The model
was able to qualitatively capture the dependence of the electric
breakdown time with voltage and prestretch.
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