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Highlights

• NURBS elements are successfully employed to model the flexoelectric effect in dielectrics.
• Topology optimization of flexoelectric micro and nanostructures can enhance their energy conversion efficiency.
• An efficient design methodology based on a combination of isogeometric analysis (IGA), level set and point wise density

mapping techniques is presented.
• The point wise density mapping is directly used in the weak form of the governing equations and its derivative is consistently

derived using adjoint sensitivity technique.

Abstract

This paper presents a design methodology based on a combination of isogeometric analysis (IGA), level set and point wise
density mapping techniques for topology optimization of piezoelectric/flexoelectric materials. The fourth order partial differential
equations (PDEs) of flexoelectricity, which require at least C1 continuous approximations, are discretized using Non-Uniform
Rational B-spline (NURBS). The point wise density mapping technique with consistent derivatives is directly used in the weak form
of the governing equations. The boundary of the design domain is implicitly represented by a level set function. The accuracy of the
IGA model is confirmed through numerical examples including a cantilever beam under a point load and a truncated pyramid under
compression with different electrical boundary conditions. Finally, we provide numerical examples demonstrating the significant
enhancement in electromechanical coupling coefficient that can be obtained using topology optimization.
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Nomenclature

Bu , Bθ The matrices containing the gradient of the Nu and Nθ
C/Ci jkl The fourth-order elasticity tensor
DΩ The whole structural domain
d/di jkl The fourth-order converse flexoelectric tensor
Ds

j The surface gradient operator
Dn The normal gradient operatorDi The usual electric displacementsDi j The higher-order electric displacements
Di The physical electric displacements
E/Ei The electric field
e/eikl The third-order tensor of piezoelectricity
f/ fi jkl The fourth-order direct flexoelectric tensor
Gi/Gi, j The control points in 1D/2D
H The total electrical enthalpy

H The electric enthalpy density considering both piezoelectric and flexoelectric effects
H The electric enthalpy density considering only piezoelectric effect
Hu The matrix containing the Hessian of the NuH(Φ) The smooth approximation of the Heaviside function
KE The kinetic energy for the system
k2

eff The electromechanical coupling coefficient
l The Lagrangian objective function
mcp The number of basis functions corresponding to M j,q (η)

M j,q (η) The B-spline basis functions in Y direction
n/ni The unit normal to the boundary ∂Ω
Nu The basis functions corresponding to displacements
Nθ The basis functions corresponding to electric potential
N p,q

i, j /Ni,p (ξ) The B-spline basis functions in X direction
ncp The number of basis functions corresponding to Ni,p (ξ)

P/Pi The electric polarization
p/pi jk The third order piezoelectric tensor
p The polynomial order of basis functions corresponding to Ni,p (ξ)

q The polynomial order of basis functions corresponding to M j,q (η)

R p
i (ξ) /R p,q

i, j (ξ, η) The NURBS basis functions
rk The prescribed higher order traction
tk The prescribed tractions
u The mechanical displacements
ui The prescribed mechanical displacements
V The velocity vector
V f /V f 0 The total/arbitrary volume
Vn The normal component of the velocity vector
vi The prescribed normal derivative of displacement
Wext The work done by the external surface mechanical and electrical forces
W (ξ) The weighting function
wi The i th weight
welec The electrical energy
wmech The mechanical (or strain) energy
Y The Young’s modulus
δ The variation operator
δ̃ (Φ) The approximate Dirac delta function
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ε/εi j The mechanical strain
ηi The i th knot in Y direction
θ The electric potential
θ The prescribed electric potential
κ/κi j The second-order dielectric tensor
µ/µi jkl The fourth-order total flexoelectric tensor
ν The Poisson’s ratio
ξi The i th knot in X direction
ρ/ρ (x) The density function
ϱ The density
σ̂i j The usual stress
σ̃i jk The higher-order stress
σi j The physical stress
∆ The width of numerical approximation
ϕ/ϕi, j The corresponding nodal values of level set function
Φ(x) The level set function
ψ The Lagrange multiplier
Ω The admissible shape/domain
∂Ω The boundary of Ω
ω The surface charge density

1. Introduction

The piezoelectric effect, which only exists in materials with non-centrosymmetric crystal structures, refers to a
linear dependence between the electric polarization, P and the mechanical strain, ε given by

Pi = pi jkε jk (1)

where p is the third order piezoelectric tensor [1–4]. In contrast to piezoelectricity, flexoelectricity is possible in all
dielectrics, including those with centrosymmetric crystal structures, and is thus a more general electromechanical
coupling mechanism. When flexoelectric effects are accounted for, the polarization is written as

Pi = pi jkε jk + µi jkl
∂ε jk

∂xl
(2)

where the electric polarization exhibits a linear response to the gradient of mechanical strain [5]. In Eq. (2) µi jkl are
the flexoelectric coefficients; the first term on the right hand side is zero for non-piezoelectric materials.

Flexoelectricity in solids was introduced by Mashkevich and Tolpygo [6] in the 1950s but received little attention,
likely because the flexoelectric effect is relatively insignificant for bulk crystalline materials. However recent
developments in nanotechnology have shed a new light on flexoelectricity as a size dependent phenomenon due to
the large strain gradients that are obtainable at small length scales, or alternatively in soft materials like biological
membranes [7]. For additional recent reviews on flexoelectricity we refer interested readers to [8,9].

While the theoretical basis for flexoelectricity in dielectrics has been developed in detail [1,10,11], there have been
a correspondingly small number of numerical studies. Recently, Abdollahi et al. presented a computational framework
to evaluate the flexoelectric effect in dielectric solids using a meshfree method in 2D [12] and 3D [13]. They showed
that available simplified analytical solutions only provide order of magnitude estimates in comparison with a more
general model which considers the multidimensional coupling effects.

Topology optimization is a powerful approach that optimizes the material distribution within the design domain.
The first computational model for topology optimization was presented by Bendsøe and Kikuchi [14]. Topology
optimization has since been successfully applied to a variety of applications such as structural design [15], compliant
mechanism [16] and microelectromechanical system [17,18]. To the best of our knowledge, employing topology
optimization for dielectric solids in order to enhance their flexoelectric behavior has not been done to-date.
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Various techniques have been developed for topology optimization. Among them, the Solid Isotropic Material
with Penalization (SIMP) technique [19] is very common due to its simplicity. Although this technique has been
widely applied to different problems, researchers have encountered difficulties with its numerical stability in
some multiphysics and multiconstraint problems [20]. Furthermore, in multiphysics problems the different sets of
penalization parameters will directly and noticeably impact the final results in terms of the stability of the solution
and the distinct void-solid representation.

To overcome the above mentioned difficulties, we use the Level Set Method (LSM) [21] for topology optimization
in order to exploit its intrinsic flexibility in handling topological changes. In the LSM, the boundaries of the domain are
implicitly represented with a scalar level set function which changes in time, providing unique benefits such as smooth
boundaries and distinct interfaces, integrated shape and topology optimization. We also use IGA instead of standard
finite elements method (FEM) because the fourth order PDEs of flexoelectricity demand at least C1 continuous basis
functions in a Galerkin method [12]. IGA also enables using the same data set for the analysis and the optimization as
well as an exact representation of the geometry.

The remainder of this paper is organized as follows: in Section 2 we introduce the theory of flexoelectricity; the
discretization based on IGA is presented in Section 3; Section 4 contains the topology optimization based on the LSM;
afterwards, numerical examples in Section 5 and concluding remarks in Section 6 are presented.

2. Flexoelectricity: theory and formulation

For a linear dielectric solid possessing only the piezoelectric effect, the electric enthalpy density, H, is a function of
ε and E, i.e. H(εi j , Ei ). When flexoelectric effects are accounted for, the enthalpy density, H, also becomes a function
of the strain gradient and electric field gradient. Thus

H

εi j , Ei , ε jk,l , Ei, j


=

1
2

C
i jkl
εi jεkl − eikl Eiεkl + (di jkl Ei, jεkl + fi jkl Eiε jk,l)−

1
2
κi j Ei E j (3a)

where Ei = −θ,i is the electric field; θ is the electric potential; ε is the mechanical strain; e is the third-order tensor
of piezoelectricity; κ is the second-order dielectric tensor; C is the fourth-order elasticity tensor; f is the fourth-order
direct flexoelectric tensor and d is the fourth-order converse flexoelectric tensor [12]. Let us consider the terms in the
brackets on the RHS of Eq. (3a) containing the direct and reverse flexoelectric effects. Integrating these terms over
the volume and using integration by parts and the Gauss divergence theorem on the first term yields

Ω


di jkl Ei, jεkl + fi jkl Eiε jk,l


dΩ =


Ω

di jkl Ei, jεkldΩ +


Ω

fi jkl Eiε jk,ldΩ

=


∂Ω

di jkl Eiεklds −


Ω

di jkl Eiεkl, j dΩ +


Ω

fi jkl Eiε jk,ldΩ

=


Ω


fi jkl Eiε jk,l − di jkl Eiεkl, j


dΩ +


∂Ω

di jkl Eiεklds

= −


Ω


dil jk − fi jkl


Eiε jk,ldΩ +


∂Ω

di jkl Eiεklds

= −


Ω
µi jkl E iε jk,ldΩ +


∂Ω

di jkl Eiεklds (3b)

which is expressed in terms of only one material tensor, µ where µi jkl = d il jk − fi jkl . Therefore, we can rewrite
Eq. (3a) as

H

εi j , Ei , ε jk,l


=

1
2

Ci jklεi jεkl − eikl Eiεkl − µi jkl Eiε jk,l −
1
2
κi j Ei E j . (4)

For a pure piezoelectric material we have

σi j =
∂ H
∂εi j

and Di = −
∂ H
∂Ei

(5)
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while in the presence of flexoelectricity, the electromechanical stresses including the usual (σ̂i j/Di ), higher-order
(σ̃i jk/Di j ) and physical (σi j/Di ) ones are defined through the following relations:

σ̂i j =
∂H
∂εi j

and Di = −
∂H
∂Ei

(6)

σ̃i jk =
∂H
∂εi j,k

and Di j = −
∂H
∂Ei, j

(7)

σi j = σ̂i j − σ̃i jk,k and Di = Di − Di j, j (8)

thus

σi j = σ̂i j − σ̃i jk,k = Ci jklεkl − eki j Ek + µli jk El,k (9)

Di = Di − Di j, j = eiklεkl + κi j E j + µi jklε jk,l (10)

since Di j has no contribution in Eq. (4) thus, the essential and natural electrical boundary conditions are the same as
electrostatics. So,

θ = θ on Γθ (11)

Di ni = −ω on ΓD (12)

Γθ ∪ ΓD = ∂Ω and Γθ ∩ ΓD = ∅ (13)

where θ and ω are the prescribed electric potential and surface charge density; ni is the unit normal to the boundary
∂Ω of the domain Ω . For the mechanical boundary conditions we have

ui = ui on Γu (14)

tk = n j (σ̂ jk − σ̃i jk,i )− Ds
j (ni σ̃i jk)− (Ds

pn p)ni n j σ̃i jk = tk on Γt (15)

Γu ∪ Γt = ∂Ω and Γu ∩ Γt = ∅ (16)

where ui and tk are the prescribed mechanical displacements and tractions; Ds
j = ∂ j − n j Dn is the surface gradient

operator and Dn
= nk∂k is the normal gradient operator. In addition to these, the strain gradients result in other types

of boundary conditions as follows

ui, j n j = vi on Γv (17)

ni n j σ̃i jk = rk on Γr (18)

Γv ∪ Γr = ∂Ω and Γv ∩ Γr = ∅ (19)

where vi and rk are the prescribed normal derivative of displacement and the higher order traction, respectively.
We can rewrite Eqs. (6) and (7) as

∂H = σ̂ i j ∂εi j (20)

∂H = σ̃ i jk ∂εi j,k (21)

∂H = −Di∂Ei (22)

and then by integrating over Ω we obtain

H =
1
2


Ω


σ̂i jεi j + σ̃i jkεi j,k − Di Ei


dΩ (23)

where H is the total electrical enthalpy.
The work done by the external surface mechanical and electrical forces can be written as

Wext =


Γt

t i ui d S −


ΓD

ωθd S. (24)
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The kinetic energy for the system is also defined as

KE =
1
2


Ω
ϱu̇i u̇i dΩ (25)

where ϱ denotes the density and the superimposed dot indicate time derivative.
Using Hamilton principle without the damping term we have

δ

 t2

t1
(KE − H + Wext) dt = 0 (26a)

and

δ

 t2

t1


1
2


Ω
ϱu̇i u̇i dΩ −

1
2


Ω


σ̂i jεi j + σ̃i jkεi j,k − Di Ei


dΩ +


Γt

t i ui d S −


ΓD

ωθd S


dt = 0 (26b)

moving the variation operation into the integral operations we obtain t2

t1


1
2


Ω
δ(ϱu̇i u̇i )dΩ −

1
2


Ω
δ

σ̂i jεi j + σ̃i jkεi j,k − Di Ei


dΩ +


Γt

t iδui d S

−


ΓD

ωδθd S


dt

= 0 (26c)

by changing the order of operations and using the chain rule of variation we have t2

t1


1
2


Ω
δ(ϱu̇i u̇i )dΩ


dt = −

 t2

t1


Ω
ϱ (δui üi ) dΩ


dt (27) t2

t1


1
2


Ω
δ

σ̂i jεi j + σ̃i jkεi j,k − Di Ei


dΩ


dt =

 t2

t1


Ω
(σ̂i jδεi j + σ̃i jkδεi j,k − DiδEi )dΩ


dt. (28)

Eq. (26c) now becomes t2

t1


−


Ω
ϱ (δui üi ) dΩ −


Ω


σ̂i jδεi j + σ̃i jkδεi j,k − DiδEi


dΩ +


Γt

t iδui d S

−


ΓD

ωδθd S


dt = 0. (29)

To satisfy Eq. (29) for all possible choices of u, the integrand of the time integration has to vanish, which leads to
Ω
ϱ (δui üi ) dΩ +


Ω


σ̂i jδεi j + σ̃i jkδεi j,k − DiδEi


dΩ −


Γt

t iδui d S +


ΓD

ωδθd S = 0. (30)

The inertia term is neglected for a static problem yielding
Ω


σ̂i jδεi j + σ̃i jkδεi j,k − DiδEi


dΩ −


Γt

t iδui d S +


ΓD

ωδθd S = 0. (31a)

Substituting Eqs. (6)–(10) into Eq. (31a) yields
Ω


Ci jklδεi jεkl − eki j Ekδεi j − µli jk Elδεi j,k − κi jδE i E j − eiklδE iεkl − µi jklδE iε jk,l


dΩ

−


Γt

t iδui d S +


ΓD

ωδθd S = 0. (31b)
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(a) Parent
element.

(b) Parameter space. (c) Physical space.

(d) Typical shape functions of order p and q .

Fig. 1. IGA concept: parent element (a), parameter space (b), physical space (c) and typical basis functions (d). The red dots represent control
points.

3. Discretization

The key idea of IGA has been to unify CAD and CAE. However, our main motivation to use NURBS basis functions
is their higher continuity (up to p − 1, where p is polynomial order). It means that NURBS basis functions are up to
p − 1 times continuously differentiable across element boundaries.

There are two different spaces in IGA namely the physical space (Fig. 1(c)) and parameter space (Fig. 1(b)). Each
element in the physical space is the image of a corresponding element in the parameter space. The parameter space
is discretized by knot vectors. A knot vector in one dimension is a non-decreasing set of coordinates in the parameter
space, written ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξi ∈ R is the i th knot, i is the knot index, i = 1, 2, . . . , ncp + p + 1,
p is the polynomial order and ncp is the number of basis functions.

Control points in IGA are used to discretize the geometry and define the degrees of freedom. As schematically
shown in Fig. 1(c), they do not necessarily lie on the surface itself, but define its envelope. For approximation of the
corresponding fields the values on control point are multiplied with their corresponding basis functions as shown in
Fig. 1(d). The parent element (Fig. 1(a)) is used for numerical integration.

NURBS basis functions and derivatives
The NURBS basis is given by

R p
i (ξ) =

Ni,p (ξ)wi

W (ξ)
=

Ni,p (ξ)wi
ncp
i ′=1

Ni ′,p (ξ)wi ′

(32a)

where Ni,p (ξ) are B-spline basis functions recursively defined by using Cox–de Boor formula and starting with
piecewise constants (p = 0) [22]

Ni,0 (ξ) =


1 if ξi ≤ ξ < ξi+1
0 otherwise

(32b)

and for p = 1, 2, 3, . . .

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ)+

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) (32c)
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wi is referred to as the i th weight while W (ξ) is the weighting function defined as follows:

W (ξ) =

ncp
i=1

Ni,p (ξ)wi (32d)

simply applying the quotient rule to Eq. (32a) yields:

d

dξ
R p

i (ξ) = wi
W (ξ) N ′

i,p (ξ)− W ′ (ξ) Ni,p (ξ)

(W (ξ))2
(33a)

where,

N ′

i,p (ξ) =
p

ξi+p − ξi
Ni,p−1 (ξ)−

p

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) (33b)

and

W ′ (ξ) =

ncp
i=1

N ′
i,p (ξ)wi . (33c)

Among NURBS basis functions characteristics, the most important ones are partition of unity property, compact
support of each basis functions and non-negative values. It can be also noted that if the weights are all equal, then
R p

i (ξ) = Ni,p (ξ); so, B-spline is the special case of NURBS. Details related to higher order derivatives formulations
can be found in [23].

NURBS curves and surfaces
A NURBS curve is defined as:

Crv (ξ) =

ncp
i=1

R p
i (ξ)Gi (34a)

where Gi ∈ Rd are control points and i = 1, 2, . . . , ncp, are the number of control points. Similarly, for definition of
a NURBS surface, two knot vectors ξ = {ξ1, ξ2, . . . , ξn+p+1} and η = {η1, η2, . . . , ηm+q+1} (one for each direction)
as well as a control net Gi, j are required. A NURBS surface is then defined as:

Srf (ξ, η) =

ncp
i=1

mcp
j=1

R p,q
i, j (ξ, η)Gi, j (34b)

where R p,q
i, j (ξ, η) is defined according to the following equation, while Ni,p (ξ) and M j,q (η) are univariate B-spline

basis functions of order p and q corresponding to knot vector ξ and η, respectively.

R p,q
i, j (ξ, η) =

Ni,p (ξ)M j,q (η)wi, j
ncp
i ′=1

mcp
j ′=1

Ni ′,p (ξ)M j ′,q(η)wi ′, j ′

. (35)

In this work the NURBS basis functions are employed to approximate displacement u and electric potential θ fields
as well as their derivatives according to

uh(x, y) =

ncp
i=1

mcp
j=1

N p,q
i, j (ξ, η) ue

i j = (Nu)
Tue (36a)

θh(x, y) =

ncp
i=1

mcp
j=1

N p,q
i, j (ξ, η) θ

e
i j = (Nθ )Tθe (36b)

∂ j uh = ∂ j Nuue
= (Bu)

Tue
= ε (36c)

∂ jθh = ∂ j Nθθe
= (Bθ )Tθe

= −E (36d)
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∂ j∂kuh = ∂ j∂kNuue
= (Hu)

Tue (36e)

where the superscript e denotes nodal parameters at the control points; Bu , Bθ and Hu are the matrices containing the
gradient and Hessian of the corresponding basis functions (i.e. Nu and Nθ ) which are defined as

Bu =



∂N1

∂x
0

∂N1

∂y
∂N2

∂x
0

∂N2

∂y
...

...
...

∂Nncp

∂x
0

∂Nncp

∂y

0
∂N1

∂y

∂N1

∂x

0
∂N2

∂y

∂N2

∂x
...

...
...

0
∂Nncp

∂y

∂Nncp

∂x



, Bθ =


∂N1

∂x

∂N1

∂y
...

...

∂Nncp

∂x

∂Nncp

∂y

 ,

Hu =



∂2 N1

∂x2 0
∂2 N1

∂y∂x

∂2 N1

∂x∂y
0

∂2 N1

∂y2

∂2 N2

∂x2 0
∂2 N2

∂y∂x

∂2 N2

∂x∂y
0

∂2 N2

∂y2

...
...

...
...

...
...

∂2 Nncp

∂x2 0
∂2 Nncp

∂y∂x

∂2 Nncp

∂x∂y
0

∂2 Nncp

∂y2

0
∂2 N1

∂y∂x

∂2 N1

∂x2 0
∂2 N1

∂y2

∂2 N1

∂x∂y

0
∂2 N2

∂y∂x

∂2 N2

∂x2 0
∂2 N2

∂y2

∂2 N2

∂x∂y
...

...
...

...
...

...

0
∂2 Nncp

∂y∂x

∂2 Nncp

∂x2 0
∂2 Nncp

∂y2

∂2 Nncp

∂x∂y



. (37)

By substituting Eqs. (36a)–(36e) into Eq. (31b) we obtain after some algebra the following discrete system of
equations

AUU AUθ
AθU Aθθ

 
U
θ


=


fU
fθ


(38)

where

AUU =


e


Ωe

(Bu)C(Bu)
TdΩe (39a)

AUθ =


e


Ωe

[(Bu)e(Bθ )T + (Hu)µ
T(Bθ )T]dΩe (39b)
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AθU =


e


Ωe

[(Bθ )eT(Bu)
T

+ (Bθ )µ (Hu)
T
]dΩe (39c)

Aθθ = −


e


Ωe

(Bθ )κ(Bθ )TdΩe (39d)

fU =


e


Γt e

NT
u tΓ dΓt e (39e)

fθ = −


e


ΓD e

NT
θ ωdΓDe. (39f)

In Eqs. (39a)–(39f), the subscript, e, in Ωe, Γt e and ΓDe denotes the eth finite element where Ω = ∪e Ωe. Moreover,
C, κ , e and µ can be written in matrix form as

C =


Y

(1 + ν)(1 − 2ν)


1 − ν ν 0
ν 1 − ν 0

0 0


1
2

− ν


 (40a)

κ =


κ11 0
0 κ33


(40b)

eT
=


0 0 e15

e31 e33 0


(40c)

µ =


µ11 µ12 0 0 0 µ44
0 0 µ44 µ12 µ11 0


where ν denotes Poisson’s ratio and Y is the Young’s modulus. (40d)

Interested readers can also refer to [1,10] for more details about the theory of flexoelectricity.

4. Level Set Method (LSM) and optimization problem

4.1. LSM

In this section we briefly describe the LSM fundamentals. We assume Ω ⊂ DΩ ⊂ Rd (d = 2 or 3), where DΩ is
the whole structural domain including all admissible shapes, Ω . A level set function Φ(x) is defined as

Solid : Φ (x) > 0 ∀x ∈ Ω \ ∂Ω
Boundary : Φ (x) = 0 ∀x ∈ ∂Ω ∩ DΩ

Void : Φ (x) < 0 ∀x ∈ DΩ \ Ω .
(41)

The design boundary Γ (x) is then implicitly represented by the iso-surface (in this text zero surface) of Φ(x) such
that

Γ (x) =


x ∈ Rd

|Φ (x) = 0


(42)

and by letting the level set function dynamically change in time, the dynamic model is expressed as

Γ (t) =


x(t) ∈ Rd

|Φ (x (t) , t) = 0


(43)

and by differentiating both sides of Eq. (43) with respect to time and applying the chain rule we have

∂Φ (x (t) , t)

∂t
+ ∇Φ (x (t) , t) .

dx
dt

= 0 (44)
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where V =
dx
dt is the velocity vector of the design boundary and its normal component is Vn = V.n where n =

∇Φ
|∇Φ|

is the unit outward normal to the boundary. Eq. (44) is the so-called Hamilton–Jacobi equation and can be written in
the form of

∂Φ
∂t

+ Vn |∇Φ| = 0 (45)

which defines an initial value problem for the time dependent function Φ. In optimization process Vn is the movement
of a point on a surface driven by the objective of the optimization. The optimal structural boundary is then expressed
as a solution of Eq. (45) obtained by a so called “up-wind scheme” [20].

In this paper, the LS function at the point (x, y) is denoted by Φ (x, y) and defined as

Φ(x, y) =

ncp
i=1

mcp
j=1

N p,q
i, j (ξ, η) ϕi, j (46)

where N p,q
i, j and ϕi, j are B-spline basis functions and corresponding nodal values of LS, respectively. ϕi, j are the only

design variables which are defined on the control points mesh being set as the signed distance to the given boundary
of the initial design.

The density-based approach is used for mapping the geometry to the mechanical model. Using this approach, the
material domain (density field 0 < ρmin ≤ ρ (x) ≤ 1) flows through a fixed discretization of the design domain
in each optimization iteration. In other words, these densities are used to directly scale the stiffness of the material,
known as the “Ersatz material” approach. ρ = 1 represents the solid material while ρmin = 1e−4 is the lower bound
to avoid singularity of the stiffness matrix.

Using point-wise mapping to control an element-wise constant density distribution we have

ρe = (1 − ρmin) H (Φ (Xe))+ ρmin (47)

where Xe is the center of a finite element e. H(Φ) is a smooth approximation of the Heaviside function defined
by [20]

H (Φ) =


0 for Φ < −∆

−
1
4


Φ
∆

3

+
3
4


Φ
∆


+

1
2

for − ∆ ≤ Φ ≤ ∆

1 for ∆ < Φ.

(48)

where ∆ is the width of numerical approximation. Having ρ, the volume integrals of some functional f over a material
domain can then be defined as

Ω
f dV =


D

f H(Φ)dV ≈


D

fρ (Φ) dV . (49)

Meanwhile ρ is embedded in the electromechanical problem as

M (x, y) = ρ (Φ) M0 with M0 = C, e, κ, µ (50)

where C, e, κ and µ denote elastic, piezoelectricity, permittivity and flexoelectricity tensors, respectively. Subscript 0
represents properties of the solid material.

The derivative of the density function with respect to the level set nodal values is obtained by

∂ρe

∂ϕi, j
= (1 − ρmin)δ̃(Φ(Xe))

∂Φ(Xe)

∂ϕi, j
(51)

where δ̃ (Φ) =
∂ H
∂Φ is the approximate Dirac delta function defined by

δ̃ (Φ) =


3 (1 − ρmin)

4∆


1 −


Φ
∆

2


for − ∆ ≤ Φ ≤ ∆

0 otherwise

(52)
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and ∂Φ(Xe)
∂ϕi, j

is calculated by

∂Φ(Xe)

∂ϕi, j
= R p,q

i, j (ξ, η) . (53)

4.2. Optimization problem

The electromechanical coupling coefficient, k2
eff , is defined as

k2
eff =

welec

wmech
(54)

where welec and wmech are the electrical and mechanical (or strain) energies, respectively. By extending welec and
wmech in Eq. (54) and defining the objective function, J (u (ϕ) , θ (ϕ) ,ϕ), as the inverse of k2

eff we have

J (u (ϕ) , θ (ϕ) ,ϕ) =
1

k2
eff

=
wmech

welec
=

1
2


Ω εTCε dΩ

1
2


Ω ETκE dΩ

(55)

where ε and E are obtained according to Eqs. (36c)–(36d) and ϕ denotes the vector containing all ϕi, j . Eventually,
the optimization problem can be summarized as follows

Minimize : J (u (ϕ) , θ (ϕ) ,ϕ)

Subjected to : (56)

V f =


D
ρ (Φ) dV ≤ V f 0

AUU AUθ
AθU Aθθ

 
U
θ


=


fU
fθ


where V f is the total volume in each optimization iteration; V f 0 is an arbitrary volume which must be set at the
beginning of the optimization process. By introducing a proper Lagrangian objective function, l, and Lagrange
multiplier, ψ , we obtain

l = J − ψ

V f − V f 0


. (57)

To find the minimum of l, we set the first derivatives of Eq. (57) with respect to ϕ as zero. So,

dl

dϕ
=

d J

dϕ
− ψ

dV f

dϕ
= 0. (58)

To update the design variables, sensitivity analysis is required which is presented in Section 4.3.

4.3. Sensitivity analysis

To solve Eq. (58), one should differentiate the objective and constraint functions with respect to the design
variables. Considering the coupled system of equations in residual form, we have

R∗

1 (u, θ) = 0 (59a)

R∗

2 (u, θ) = 0 (59b)

where R∗

1 and R∗

2 are residuals that must be simultaneously satisfied, and u and θ are solution (i.e. displacement and
electric potential) fields. By assembling Eqs. (59a) and (59b) into a single global residual R we have

R (U) =


R∗

1 (u, θ)
R∗

2 (u, θ)


= R(U (ϕ) ,ϕ) = 0 (60)
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where

U =


u
θ


. (61)

Thus, the objective function takes the form J (U (ϕ) ,ϕ). Recalling Eq. (58), we use the chain-rule to calculate the
sensitivity of J (U (ϕ) ,ϕ) with respect to ϕ. So,

d J

dϕ
=
∂ J

∂U

∂U

∂ϕ
+
∂ J

∂ϕ
. (62)

The last term of Eq. (62) is the explicit quantity and easy to calculate

∂ J

∂ϕ
=

1
welec


1
2


Ω

εT ∂C
∂ϕ

ε dΩ


−
wmech

w2
elec


1
2


Ω

ET ∂κ

∂ϕ
E dΩ


(63)

while welec and wmech are calculated according to Eq. (55); For plane strain problem

∂C
∂ϕ

=
∂ρe

∂ϕ


Y

(1 + ν)(1 − 2ν)


1 − ν ν 0
ν 1 − ν 0

0 0


1
2

− ν


 (64)

and

∂κ

∂ϕ
=

∂ρe

∂ϕ


κ11 0
0 κ33


(65)

where ∂ρe
∂ϕ

is obtained according to Eq. (51). To calculate ∂U
∂ϕ

as an implicit quantity, we differentiate Eq. (60) as
∂R

∂U

T
∂U

∂ϕ
+
∂R

∂ϕ
= 0 (66)

∂U

∂ϕ
= −


∂R

∂U

−T
∂R

∂ϕ
(67)

substituting Eq. (67) into the first term of Eq. (62) right hand side yields

∂ J

∂U

∂U

∂ϕ
= −

∂ J

∂U


∂R

∂U

−T
∂R

∂ϕ


(68)

assuming

λ = −
∂ J

∂U


∂R

∂U

−T

(69)

and knowing that ∂R
∂U = Ktotal, we can write

Ktotalλ = −
∂ J

∂U
(70)

Ktotalλ = −
1

welec


Ω

BuC(Bu)
Tu dΩ +

wmech

w2
elec


Ω

Bθκ(Bθ )Tθ dΩ (71)

eventually, Eq. (68) can be written in the form

∂ J

∂U

∂U

∂ϕ
= (λ)T

∂R

∂ϕ
(72)
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Table 1
The cantilever beam problem: material properties, geometry and load data.

L/h υ Y e31 µ12 κ11 κ33 χ33 F

20 0.37 100 GPa −4.4 C/m2 1 µC/m 11 nC/Vm 12.48 nC/Vm 1408 100 µN

L
h : beam aspect ratio, ν : Poisson ratio, Y : Young’s modulus, e31 : piezoelectric constant.
µ12 : flexoelectric constant, κ11 and κ33 : dielectric constants, χ33 : electric susceptibility, F : point load.

∂ J

∂U

∂U

∂ϕ
=


A′

UU A′

Uθ
A′

θU A′
θθ


[λ] (73)

A′

UU =


Ω

uT


Bu
∂C

∂ϕ
BT

u


dΩ (74)

A′

Uθ =


Ω

uT


Bu
∂e
∂ϕ

BT
θ + Hu

∂µ

∂ϕ

T

BT
θ


dΩ (75)

A′

θU =


Ω

θT


Bθ
∂e
∂ϕ

T

BT
u + Bθ

∂µ

∂ϕ
HT

u


dΩ (76)

A′
θθ = −


Ω

θT


Bθ
∂κ

∂ϕ
BT
θ


dΩ (77)

where

∂e
∂ϕ

T

=
∂ρe

∂ϕ


0 0 e15

e31 e33 0


(78)

and

∂µ

∂ϕ
=

∂ρe

∂ϕ


µ11 µ12 0 0 0 µ44
0 0 µ44 µ12 µ11 0


(79)

and finally, for the last term of Eq. (58) we have

dV f

dϕ
=
∂V f

∂ϕ
=


Ω

∂ρe

∂ϕ
dΩ (80)

which is already obtained according to Eq. (51).

5. Numerical examples

In this section, we first verify our analysis model by comparing our results with some benchmark examples. The
verified IGA model is then employed in the optimization algorithm to demonstrate its validity and usefulness. We
assume isotropic linear elasticity under plane strain conditions in all examples. Commonly studied flexoelectric
configurations (cantilever beam and truncated pyramid) with different electrical boundary conditions are solved.
Electrodes are assumed as very thin deposited layers on the structures to impose equipotential boundary conditions,
and have no contribution to the structural stiffness.

5.1. Verification of the IGA model

5.1.1. Cantilever beam (mechanical loading)
Fig. 2(a) and (b) schematically represent the cantilever beam with mechanical and electrical boundary conditions.

The model is discretized by 50 × 10 B-spline elements of order 3. The red dots represent the control points as shown
in Fig. 2(c). Material properties of BaTiO3 and loading data as listed in Table 1 are considered based on [12].
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Fig. 2. Electromechanical boundary conditions for open circuit (a) and closed circuit (b), FE discretization with red dots representing the control
points (c).

10

8

6

4

2

0
0 2 4 6 8

Fig. 3. Normalized effective piezoelectric constant e′ versus normalized beam thickness h′. Graphs are for open circuit conditions and contain both
piezoelectric and non-piezoelectric materials. The results for analytic solutions are reproduced according to Eq. (81).

Following the terminologies of our benchmark examples [12] and assuming that the only non-zero component of
the stress is σ11 and of the electric field is E2, for one-dimensional coupling, Eq. (54) is analytically estimated in [10]
as

keff =
χ

1 + χ


κ

Y


e2 + 12

µ
h

2


(81)

where the normalized effective piezoelectric constant is

e′
=

keff

kpiezo
(82)

where kpiezo is obtained by neglecting flexoelectricity (µ = 0) in Eq. (81).
To numerically simulate a 1-D coupling, we simplify our model by setting Poisson’s ratio as well as all piezoelectric

and flexoelectric constants to zero except e31 and µ12 which take the corresponding values of Table 1. Fig. 3 compares
the results of the present and the analytical methods for both piezoelectric and non-piezoelectric materials. Here h′ is
the normalized beam thickness and for the open circuit condition is obtained by h′

= −eh/µ. The non-piezoelectric
materials are also obtained by setting e31 = 0. Fig. 3 illustrates that when the thickness of the beam decreases,
the electromechanical response of the beam increases. This enhancement in electromechanical response at small
length scales has also been observed for non-piezoelectric materials. Furthermore, as expected the flexoelectric effect
vanishes for larger beam thicknesses. Overall, we observe excellent agreement between the results of the current
method and the analytical solutions.

5.1.2. Cantilever beam (electrical loading)
For our next example we study a cantilever beam acting as an electromechanical actuator. The beam is 50 µm long,

2.5 µm high, is made of non-piezoelectric material and has the closed circuit configuration as illustrated in Fig. 2. A
voltage V equal to −20 MV is applied to the bottom edge while the top edge is grounded. The mechanical point load,
F , is also set to zero.
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Fig. 4. Distribution of electric field across the beam thickness for different orders of basis functions. p and q are order of basis functions in direction
of length and width of the beam, respectively.

Fig. 5. Truncated pyramid under compression, problem setup (a), FE discretization (b).

For above settings, the only phenomenon that deforms the beam is flexoelectricity, which acts as a result of
polarization gradients. To demonstrate this, the distribution of the electric field across the beam thickness at the
mid length of the beam is graphed in Fig. 4. The results are slightly dependent on the order of the basis functions.
In particular, larger gradients near the surfaces are obtained with increasing basis functions order. Our results, which
are converged on a sufficiently fine discretization, are in good agreement with the benchmark example [12] from both
values and field distribution points of view. All graphs clearly represent the high gradients at the top and bottom
surfaces of the beam, which generate mechanical stresses and eventually deform the beam. The electric field is
represented more smoothly away from the surfaces using higher orders basis functions.

5.1.3. Truncated pyramid

For the next example we investigate the flexoelectric effect in a truncated pyramid under compression; this
geometry has been widely studied in flexoelectricity [24] because of the intrinsic generation of strain gradients due to
the different widths of the top and bottom surfaces. A uniformly distributed force of magnitude F is applied on the
top edge while the bottom edge is mechanically fixed. The problem configuration and its FE discretization are shown
in Fig. 5. The material parameters are according to Table 1 while the other design parameters are listed in Table 2.

Fig. 6 shows the distribution of the electric potential (left) and the resulted strain in Y direction, ε22, (right). Once
again there is an acceptable agreement, in both patterns and values, between the results of the present method and [12].
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Table 2
The truncated pyramid problem: geometry and load data.

a1 a2 h F

750 µm 2250 µm 750 µm 6 N
µm

Fig. 6. Distribution of the electric potential (left) and strain in Y direction, ε22 (right).

Fig. 7. Initial (a) and the optimized (b) topologies considering 70% of the solid beam volume as design constraint. Normalized objective function
versus iterations is plotted in (c). The beam is made of non-piezoelectric material with open circuit boundary conditions. The length of the beam is
60 µm with aspect ratio of 7.

5.2. Topology optimization of the flexoelectric beam

Since there is no benchmark topology optimization example available for flexoelectricity, we have initially verified
our methodology for an elastic (by setting all the electrical parameters to zero) cantilever beam subjected to a
mechanical load [25].

We now consider a cantilever beam of length 60 µm with an aspect ratio (defined by the beam length over its height)
of 7. It is made of non-piezoelectric material (e31 = 0) with open circuit boundary conditions. The loading and other
material constants are according to Table 1. The objective function in all the following examples is minimizing the
inverse of k2

eff , as defined by Eq. (55). Fig. 7(a)–(c) show the initial Fig. 7(a) and the optimized Fig. 7(b) topologies
constrained by 70% of the solid beam volume as the design limit.

To understand the optimum topology seen in Fig. 7(b), we emphasize that for flexoelectric materials, electric
polarization displays a linear relationship to the gradient of mechanical strain (see Eq. (2)) while for piezoelectric
materials, the electric polarization and the mechanical strain are interrelated (see Eq. (1)). Thus, for flexoelectric
structures, recognizing the zones with high strain gradients in the structure is the key to interpret the optimal topology.
In Fig. 7(b) it is observed that more material is available in the left half (including fixed edge) of the structure (where
the strain and strain gradients are higher) rather than the right half (including free edge). Within the left half, the
material is also more available on top and bottom edges rather than the central part of the beam, for the same reason.
The shape of the fixed edge is also in line with more electrical energy generation, as our detailed investigations
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Fig. 8. k N
eff versus beam aspect ratio. k N

eff is the ratio of the electromechanical coupling coefficients of the optimized structure to the solid structure.
For all cases, the length of the beam is 60 µm and the optimized topology has 70% of the solid beam volume.

have shown that material reduction along the fixed edge will increase the generated electrical energy. Thus overall,
the optimized geometry is in line with maximizing the electromechanical coupling coefficient which is equivalent
to minimizing the objective function. The history of the objective function, which converges towards the minimum
value, is presented in (7(c)).

We define ksld
eff and kopt

eff as parameters that define the electromechanical coupling coefficients of the solid and

optimized structures, respectively. In this case ksld
eff = 4.75e−5 and kopt

eff = 315e−5 and their ratio, k N
eff =

kopt
eff

ksld
eff

= 66.32,

is the normalized electromechanical coupling coefficient. That would be a reasonable argument that such an increase
in energy conversion is partially due to 30% decrease in structural volume; we declare that the electromechanical
coupling coefficient for the initial structure (Fig. 7(a)), kini

eff , which has nearly the same volume as the optimized

structure (i.e. 70% of the solid beam volume), is equal to 22.5e−5. By comparison of these numbers (
kopt

eff

kini
eff

= 14) we

can determine how significant the role of topology optimization in increasing keff is. We performed similar analysis
for different beam aspect ratios, plotted in Fig. 8. It is observable that, the higher the aspect ratio, the higher k N

eff is
obtained. It means topology optimization shows profound advantages in higher aspect ratios.

We now consider the flexoelectric truncated pyramid under a 10 µN point load applied at the midpoint of the top
edge. Other design parameters and dimensions are listed in Tables 1 and 2 considering 70% of the solid truncated
pyramid volume as design constraint. Boundary conditions are according to Fig. 5. The optimized topology is shown
in (Fig. 9(a)). The region with high strain gradients is located underneath the point load where the crown shape
topology increases the strain gradients and consequently, the generated electrical energy. It is also observable that the
length of the top edge has shortened, which also causes larger strain gradients.

The graph related to the history of the normalized objective function (Fig. 9(b)) and the graph for structural
volume (Fig. 9(c)) converge relatively smoothly. The small jumps in graph of Fig. 9(b) at iterations 10, 20, 30

and 40 are related to re-initialization in optimization process. For this example
kopt

eff

kini
eff

= 2.47 which shows again the

impact of topology optimization on enhancing electromechanical behavior of dielectric solids possessing flexoelectric
effect.

6. Concluding remarks

We have presented a computational framework for topology optimization of flexoelectric micro and nanostructures
to enhance their energy conversion efficiency. Our methodology is based on a combination of isogeometric analysis
(IGA), level set and point wise density mapping techniques. The smoothness of the IGA basis functions is used
to discretize the fourth order partial differential equations of flexoelectricity, while the level set provides clear
boundaries and gives stable convergence. The point wise density mapping is directly used in the weak form of
the governing equations and its derivative can be consistently derived. The nodal level set values on control points
and the inverse of the electromechanical coupling coefficient are defined as design variables and objective function,
respectively. The numerical results demonstrate that B-spline elements can successfully model the flexoelectric
effect in dielectrics. For a cantilever beam with constant length, it is shown that when the thickness of the beam
decreases, the electromechanical response increases. The topology optimization is also able to noticeably increase
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Fig. 9. The optimized topology (a) considering 70% of the solid truncated pyramid volume as design constraint. The normalized objective function
versus iterations is plotted in (b) and the volume history is shown in (c). The pyramid is made of non-piezoelectric material under a 10 µN point
load at mid of the top edge. The other design parameters are listed in Tables 1 and 2. The boundary conditions are shown in Fig. 5.

the electromechanical coupling coefficient, with substantial enhancements observed for higher aspect ratios. Overall,
the presented computational methodology should contribute towards the design of micro and nano-scale flexoelectric
devices with optimized electromechanical conversion efficiency.
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