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SUMMARY

The major purpose of this work is to investigate the performance of the bridging scale method (BSM),
a multiscale simulation framework for the dynamic, concurrent coupling of atomistics to continua, in
capturing shear-dominant failure. The shear-dominant failure process considered in this work is intersonic
crack propagation along a weak plane in an elastic material, similar to the seminal molecular dynamics
(MD) simulations by Abraham and Gao (Phys. Rev. Lett. 2000; 84(14):3113–3116). We show that the
BSM simulations accurately capture the essential physics of the intersonic crack propagation, including
the formation of a daughter crack and the sudden acceleration of the crack to a velocity exceeding
the material shear wave speed. It is also demonstrated that the non-reflecting boundary condition can
adequately dissipate the strongly localized wave formed by the Mach cone after the crack accelerates
beyond the material shear wave speed. Finally, we provide the algorithm for our implementation of the
BSM, as well as the code used to determine the damping kernels via a newly adopted technique which
is less expensive than previous methods. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade, great effort has been put forth to develop simulation methods which can resolve
material behaviour across the multiple length scales present in many physical systems. The bulk
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of this work has been motivated by new design paradigms that require an understanding of the
phenomena at the continuum level brought on by the underlying micro- or nanoscale physics, for
applications such as MEMS/NEMS devices or novel alloy design. Recently, attention has also
been directed towards biological systems, many of which exhibit a strongly coupled hierarchical
nature. In systems design, the traditional engineering simulation approach has made extensive use
of continuum level modelling via empirical constitutive relations and numerical methods such as
the finite element method (FEM) [1, 2], while atomistic level methods such as molecular dynamics
(MD) [3, 4] have been used to study detailed phenomena such as dislocation nucleation and
propagation or the details of failure mechanisms. Each of these approaches has limitations: in
the case of FEM, the resolution is limited to the size of the continuum element for which the
constitutive relation employed remains valid. For MD, the enormous number of degrees of freedom
required for a continuum level simulation makes its use intractable for system sizes greater than
hundred of nanometers. Thus, it is desirable to seek a method which can be used over large length
scales, but maintain atomistic or near-atomistic resolution in regions of interest.

A number of multiple-scale methods have been proposed to bridge the gap between the disparate
continuum and atomistic length scales. One method, based on an adaptive FEM approach, is
the quasicontinuum method of Tadmor and co-workers [5, 6]. Other approaches have sought to
couple continuum and atomistic simulations directly, such as the bridging domain method [7],
the molecular atomistic ab initio dynamics method (MAAD) [8, 9], the dynamic coupling work
of E and co-workers [10, 11], the multigrid approach of Fish and co-workers [12], and recent
work on finite temperature effects in coupled atomistics/discrete dislocation (CADD) methods
[13, 14]. Efforts are also underway by Oden and co-workers [15] to investigate reliability and error
estimation for multiple-scale methods. Further, work on the consistency of atomic stress definitions
has been performed by Zhou [16, 17] as well as Zimmerman and co-workers [18]. For additional
detail, we refer the interested reader to available reviews on multiple-scale methods including
those by Curtin and Miller [19] and Liu and co-workers [20, 21]. The remainder of this paper,
however, will focus on the bridging scale method (BSM) of Liu and co-workers [22–27], which
was developed as a framework for the dynamic, concurrent coupling of atomistics and continua.

The phenomena under consideration in this paper is the intersonic crack propagation (sometimes
referred to as transonic). Based on continuum fracture mechanics, mode II cracks can propagate in
two regimes based on crack-tip velocity [28]. The first of these regimes corresponds to crack-tip
velocities lower than the Rayleigh wave speed, cR, which is also the maximum velocity for mode I
cracks. The second regime corresponds to crack-tip velocities faster than the material shear wave
speed, cs, but less than the material longitudinal wave speed, cl; this regime is referred to as the
intersonic regime [28, 29]. For velocities between the Rayleigh wave speed and the shear wave
speed, the stress state ahead of the crack tip becomes compressive, and thus the crack cannot
propagate [28]. These velocity regimes are illustrated in Figure 1.

We shall not provide an exhaustive review of the literature with respect to intersonic crack
propagation, as the object of this work is to demonstrate the abilities of the BSM. With this
in mind, the authors feel that it is important to note the experimental studies of Rosakis and
co-workers [30] and acknowledge the continuum simulations which have been performed, such
as those of Liu and co-workers [31–33]. Due to the nature of the present work, the MD and
corresponding continuum analysis by Abraham and co-workers as presented in [34, 35] is also
quite relevant. In their work, they studied the shear dominant fracture of a perfectly elastic body,
in which an initial edge crack propagated along a weak plane of atoms at the centreline of the
material. They performedMD simulations using a nearest neighbour harmonic potential to represent
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Figure 1. Schematic of crack-tip velocity regimes. There exists a ‘forbidden’ velocity region
for Mode II cracks between the Rayleigh wave speed, cR and material shear wave speed, cs.

The upper limit is near the material longitudinal wave speed, cl.

the perfectly elastic body, and a nearest neighbour Lennard-Jones potential to represent the weak
plane. They noted that in agreement with analytical studies and experiments, the crack-tip velocity
underwent a transition from the Rayleigh wave speed to the longitudinal wave speed, due to the
formation of a daughter crack ahead of the main crack tip and its subsequent acceleration. They
also discussed that the daughter crack was not an intersonic dislocation as it had a well-defined
opening which was visible during the simulation. Further, while the basic mechanism of fracture,
i.e. the formation of a daughter crack and subsequent acceleration of the main crack, agreed with
the continuum analysis, the MD simulation displayed distinct asymmetry at the crack tip, attributed
to the anharmonic interactions present in the weak plane.

The phenomenon of intersonic crack propagation contains some interesting physical features,
such as the formation of a Mach cone at the leading edge of the crack only after the crack-tip
velocity exceeds the shear wave speed. To the authors’ knowledge, the BSM has not been applied
to a problem that includes shear dominant loading, crack speeds in the intersonic regime or shock-
type wave propagation due to the presence of a Mach cone in the body. Thus, in addition to being
able to further investigate the mechanism of crack-tip acceleration, we seek to study the dissipative
abilities of the BSM interface and the performance of the BSM in shear dominant loading.

The outline of the paper is as follows. We shall first provide a brief overview of the BSM.
The formulation to be discussed is the so-called displacement formulation presented by Park
et al. [36] as well as Tang et al. [23], both of which are based on the work of Wagner and Liu [22].
Next we provide a discussion on the algorithm and methodology of the implementation, including
the newly adopted method for determining the damping kernels. We then provide the problem
description and results for the intersonic fracture simulations we have performed. Finally, we
present in the appendices the algorithm used in the BSM implementation as well as the code used
to determine the damping kernels for the lattice structure and interatomic potential considered in
this work.

2. FORMULATION

The BSM was originally developed as a framework for coupling atomistic and continuum sim-
ulations. In particular, it was developed to dynamically and concurrently couple MD and FEM
simulations. In this section, we will focus on the displacement formulation of Park et al. [36], based
on the work of Wagner and Liu [22]. This presentation will also draw from the mathematically
rigorous derivation presented by Tang et al. [23]. We present only a brief discussion and the final
equations, and refer the interested reader to [22–27] for detailed derivations.
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The derivations in [22, 23] both consider a body similar to that in Figure 2. The derivation has
three key points:

(1) The total displacement u in a domain � may be decomposed into coarse scale (ū) and fine
scale (u′) parts

u= ū + u′ (1)

(2) The total displacement u in � is described by MD. We define a coarse scale basis throughout
� which co-exists with the MD, as illustrated in Figure 2(a). The course scale will be
represented by FEM, with nodal displacements d.

(3) In order to reduce the expense of the simulation, we eliminate the calculations which
contain fine scale information (i.e. the MD) from the subregion �C. This is done through
the application of linear lattice mechanics principles at the interface between subregions
�C and �F.

In the equations to follow, quantities denoted by a subscript C, F, B or G represent the portion
which corresponds to �C, �F, the boundary atom layer B, and the ghost atom (interfacial) layer G,
as labelled in Figure 2. The subscript d indicates that the partial derivatives are with respect to the
FEM nodal displacements d and similarly for u. The atomic mass matrix, MA, is a diagonal matrix
containing the mass of each MD atom. The superposed dots and I have the standard meanings of
time derivative and the identity matrix. The use of the superscript ext refers to external contributions
such as applied loads.

For the derivation we must consider an equation of motion for the total displacement in the
domain � of the following form:

MAü=−∇uU (u) + fext (2)

The first step in the development of BSM is to decompose the total displacement u into its coarse
(ū) and fine (u′) parts. In order to do this, we will first define the coarse part and take the fine part
as the remainder of the total displacement. In order to define the coarse scale part of u, we define
a coarse scale basis N(X�) of size nf × nc, where the variables denote the number of MD atoms

Figure 2. Schematic of domain to be considered for BSM formulation discussion: (a) initial domain, with
coarse scale basis and atomistic information everywhere, used as a starting point and (b) final domain,
for use in BSM. The atomistics have eliminated in subregion �C via linear lattice mechanics principles.
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and FEM nodes, respectively. For the coupling case considered here, the entries in the matrix N
are the FEM shape functions evaluated at the initial atomic positions, X�. We may define the
projection onto the coarse scale basis in many ways, but the most natural is to choose a projection
that minimizes the difference between the total displacement and the coarse scale displacement.
Therefore, we obtain the following:

min[(u − Nd)MA(u − Nd)] → d=M−1NTMAu, M=NTMAN (3)

The coarse and fine scale parts of the displacement are then defined as

Coarse: ū=Nd=N[M−1NTMAu] =Pu (4)

P=N[M−1NTMA] (5)

Fine: u′ = u − ū= (I − P)u=Qu (6)

Q= (I − P) (7)

where P andQ are the coarse and fine scale projection operators, respectively. With these projections
in hand, we can now obtain the equations of motion for the coarse and fine parts of the total
displacement. To obtain these, we apply the projections to (2) and simplify to arrive at

Md̈=NT[−∇uU (u) + fext] = −∇dU (Nd + u′) + NTfext (8)

MAü′ =QT[−∇uU (u) + fext] (9)

Before we move on to restricting the fine scale system to a subregion of the total domain, some
comments on the above system of equations are in order:

1. No empirical ‘mixed Hamiltonian’ or deformation gradient is used to define the equations
of motion as in [6–8, 13]. The coarse and fine projections of the equations of motion lead
to a natural set of coupled equations from the governing equations for the atomistic system.
Thus, the resulting equations contain no ad hoc coupling terms.

2. If N goes to I then P goes to I, then d≡u. This physically means that if the coarse scale
points correspond to the atomic locations, then the coarse scale displacement is equivalent to
the total displacement. Thus, if we were to refine the coarse scale mesh down to the atomic
level, the coarse scale displacements would behave as the total displacement and the fine
scale displacements would be zero.

3. The previous two points allow one to consider BSM to be a particle method, as the basis for
the equations is the MD equation of motion (2). The separate equations for each scale are
obtained through a straightforward projection of (2).

2.1. Elimination of fine scale degrees of freedom

Equations (8) and (9) completely define the coarse and fine scale motion across the entire domain
�; however, we wish to restrict the fine scale calculations to a small subdomain of � in order to
reduce the computational expense of the simulation. Further, since the fine scale information is
available in �F but not in �C, we must couple the two regions such that the interface between
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the two allows waves to propagate naturally. Without appropriate interfacial conditions, one can
observe spurious wave reflections as waves try to propagate out of �F, as well as unphysical
energy transfer across the interface [22, 37] between �F and �C. Thus, the final steps are to
restrict the explicit solution of (9) to a subregion of �, and determine an appropriate interfacial
condition.

Following the general idea proposed in the work of Adelman and co-workers [38–40], we
seek an analytical solution for the fine scale motion at the interface between �F and �C which
implicitly accounts for the dynamics of the eliminated fine scale degrees of freedom. As we do
this, it is convenient if we are able to describe the motion of all of the unit cells in the domain
by a single equation. One way to do this is to linearize the interactions between atoms (i.e. the
internal force, −∇uU (u)) and obtain an equation which describes the forces acting on any given
atom in terms of a summation over the atom’s neighbours. For the nearest neighbour hexagonal
lattice used in this work (see Figure 3), we arrive at the following linearized fine scale equation of
motion:

ü′
n,m(t) =

n+2∑
n′=n−2

m+1∑
m′=m−1

M−1
A Kn−n′,m−m′u′

n,m(t) + M−1
A fextn,m(t) (10)

Kn−n′,m−m′ = − �2U
�un′,m′�un,n

∣∣∣∣∣
u=0

(11)

where MA, Kn−n′,m−m′ , U and fextn,m(t) denote the diagonal atomic mass matrix, lattice stiffness
matrices, interatomic potential and the external force vector. The indices n,m are the atom indices
in the unit cell. The lattice stiffness matrices are a generalization of linear spring stiffnesses to

Figure 3. Schematic of hexagonal lattice, including atom indices. Light grey
circles indicate the nearest neighbour atoms for atom n,m.
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multiple dimensions and are analogous to the FEM stiffness matrix [36]. Additionally, the lattice
stiffness matrices are constant for a given lattice type and interatomic potential, and do not vary
as the simulation progresses. The atom indices indicate the position of an atom within the unit
cell basis. For the system illustrated in Figure 3, the centre atom n,m is the origin and the basis
vectors are in the horizontal and vertical directions, with positive being towards the right and top,
respectively.

In this work we choose the ghost atom layer (G in Figure 2(b)) to act as the interface. The ghost
atoms are a layer of atoms adjacent to the boundary of the MD simulation and lie within �C.
These atoms are used to apply the interfacial condition to the ‘real’ atoms in �F. Additionally, the
ghost atoms ensure that the boundary atoms, B in Figure 2(b), as well as the other ‘real’ atoms
are fully co-ordinated as though they were in the bulk. However, as their motion is not determined
explicitly during the MD solution process, we must prescribe their fine scale fluctuations in some
way. This prescription is precisely what the results of this section will provide. For the development
shown here, we shall consider the ghost and boundary atom planes to be parallel to the x-axis,
with the normal along the positive y-axis displayed in Figure 3.

The next step is to realize that the influence of the degrees of freedom to be eliminated on the
remaining atoms can be described by an external force acting only on the interfacial atoms (in this
case, the ghost atoms G in Figure 2(b)). Thus, the external force term in (10) becomes

fextn,m(t) = �m,Gfextn,G(t) (12)

The basic idea of the interfacial condition is to obtain an analytical solution to (10), with the
external force defined in (12), for the displacement of the ghost atoms in terms of the displacement
of the boundary atoms (G and B in Figure 2(b), respectively). In order to do this, we make
use of a Green’s function approach to solve (10). We take the Laplace and discrete Fourier
transform of (10), and solve for the corresponding displacement in mixed Fourier–Laplace space,
Û(p, q, s),

Û(p, q, s) = Ĝ(p, q, s)M−1
A F̂ext

G (p, s) + R̂(p, q, s) (13)

R̂(p, q, s) = Ĝ(p, q, s)[sû(p, q, 0) + s ˆ̇u(p, q, 0)] (14)

Ĝ(p, q, s) = (s2I − Â(p, q))−1 (15)

Â(p, q) =Fn,m→p,q{M−1
A Kn,m} (16)

where the hatted notation refers to mixed Fourier–Laplace transformed quantities, (p, q) corre-
sponds to the spatial indices (n,m), and s is the Laplace variable corresponding to the time t . The
quantity denoted by Ĝ(p, q, s) is the lattice Green’s function, the building block for our solution.
The term R̂(p, q, s) corresponds to the initial conditions which come from the Laplace transform
and will be explained further later in this section. The next step is to take an inverse discrete
Fourier transform of (13) with respect to q (the index in the direction of m). This gives us an
expression for any plane of atoms with a normal in the direction of m, in terms of the lattice
Green’s function (15) and the applied force in Fourier–Laplace space

Ũm(p, s) = G̃m(p, s)M−1
A F̂ext

G (p, s) + R̃m(p, s) (17)
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where the tilde denotes that a partial inverse Fourier transform has been applied. This results in
the following two equations for the ghost plane (denoted by subscript G) and the boundary plane
(denoted by subscript B):

ŨG(p, s) = G̃G(p, s)M−1
A F̂ext

G (p, s) + R̃G(p, s) (18)

ŨB(p, s) = G̃B(p, s)M−1
A F̂ext

G (p, s) + R̃B(p, s) (19)

Solving for F̂ext
G in (19) and substituting the result into (18), we obtain an expression for the

displacement of the ghost atoms in terms of the boundary atoms,

ŨG(p, s) = Q̃(p, s)[ŨB(p, s) − R̃B(p, s)] + R̃G(p, s) (20)

where

Q̃(p, s) = G̃G(p, s)G̃B(p, s)−1 (21)

In order to obtain the real space equation for the fine scale motion of the ghost atoms from (20),
we need to take an inverse discrete Fourier transform with respect to p, and an inverse Laplace
transform. The result, which takes into account the effects of the eliminated degrees of freedom,
is as follows:

u′
n,G =

N/2∑
n′=−N/2

∫ t

0
Hn−n′(t − �)[u′

n′,B(�) − Rn′,B(�)] d� + RG(t) (22)

where H(t) is the so-called time history kernel (THK), the inverse transform of (21). The THK is
a set of matrices that relate the dynamics of adjacent atoms in the system and are the key to the
interfacial condition, as they allow the interfacial atoms to behave as if they were part of a much
larger system. The terms RB(t) and RG(t) are random displacement terms which stem from the
initial conditions present in the Laplace transform of (10). These may be used to account for finite
temperature effects as proposed in [41]. In this work, we take them to be zero, thus exclusively
considering zero temperature dynamic problems.

To compute H(t), we must take an inverse Fourier transform and an inverse Laplace transform
of (21). The inverse discrete Fourier transform is straightforward, and may be computed readily.
However, for the case considered here the inverse Laplace transform cannot to the authors’ know-
ledge be determined analytically, thus a numerical algorithm is required. Previous work by Liu
and co-workers [22–25] made use of the Weeks algorithm [42], which uses Laguerre polynomials
to invert the transform.

In this work, we have moved to a new inverse transform technique based on the work of
Crump [43], which instead uses a Fourier series approach. The advantage of the new approach
lies primarily in the fact that it does not require special functions to be defined, only the ability to
use complex numbers, exponentials and sinusoidal functions. This makes the algorithm easier to
implement in a program such as Matlab, or in high level programming languages such as C + +
or Fortran. Additionally, the technique has also been seen to allow for the use of fewer terms,
resulting in a reduced computational expense (see Figure 4, which illustrates this for a simple 1D
case where an analytic solution exists). The resulting inverse formula for the present case is as
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Figure 4. Mean-squared error between the Weeks and Crump numerical inverse Laplace
transform schemes and analytical solution for a model 1D nearest neighbour harmonic lattice

THK. Note that Crump’s method requires fewer terms for similar accuracy.

follows: first, take the Fourier inverse of (21),

Qn(s)= 1

N

N/2∑
p=1−N/2

Q̃(p, s) e4i�pn/N (23)

then compute the Laplace inverse using the method of Crump [43],

Hn(t) =−2
e−at

tmax

Nmodes∑
�=1

Im{Qn(�)} sin
(

��t

tmax

)
(24)

where N denotes the number of atoms in each direction in the numerical inverse domain, a and
Nmodes are the two inverse parameters, where a must be a small positive number (0<a<1), and
Nmodes is the number of sine modes to use in the inverse. Finally, tmax is the maximum time for
the numerical inverse, typically taken to be slightly longer than the length of time for which the
convolution is to be computed in (22). We take tmax slightly longer to ensure a good solution for
the Laplace inverse over the entire convolution period.

Before continuing onto the next section, several notes are in order:

1. Equation (10) is required to be valid in the vicinity of the THK boundary. This is due to the
fact that we only make use of the linearization in the fine scale equation of motion at the
ghost atom layer, the boundary atom layer, and in the eliminated region. Thus, inside �F
away from the boundary, we may have non-linear behaviour (both geometric and material).
This is the case in the simulations to be discussed in this paper.

2. As the linearity requirement was only applied to u′ in �C, which has in turn been eliminated
by (22), we have not placed any linearity constraints on ūC. This allows the use of non-linear
material models and geometric non-linearities in �C [24, 25].
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3. Equation (15) describes a simplified lattice Green’s function compared to that derived in
[23]. This simplification was reported in [23] to induce numerical errors at the interface,
however, it is less expensive to compute. An alternative definition of (16) was proposed in
[23] utilizing the fine scale projection Q and the full matrix K for the system,

Â∗(p, q) =Fn,m→p,q{M−1
A QTK} (25)

4. In general, the calculation of (22) can be expensive over long times and for large interfaces.
Thus, as discussed in [27, 36] we truncate the evaluation of the convolution and summations
to some critical region:

u′
n,G =

n+Ncrit∑
n′=n−Ncrit

∫ tcrit

0
Hn−n′(t − �)[u′

n′,B(�) − Rn′,B(�)] d� + RG(t) (26)

2.2. Course/fine coupling

Using the condition given by (26), we no longer have fine scale information in �C. Thus, we need
to adjust (8) to reflect this fact. The resulting coarse scale equation is as follows:

Md̈=NT[−∇uU (ũ)] + NTfext (27)

ũ=
⎡
⎣uF

ūC

⎤
⎦ (28)

where ūC is the course scale part of the displacement in �C, as given by the coarse scale projection
in (4). The term NT

F[−∇uU (uF)] corresponds to a straightforward projection of the interatomic
forces to obtain the FEM internal forces in �F. Meanwhile, for the internal force in �C, i.e.
NT
C[−∇uU (ūC)] we can make use of any constitutive relation which is consistent with the un-

derlying atomistics, such as the Cauchy–Born model [5, 6, 44] or the virtual atom cluster (VAC)
method [45].

As mentioned in the formulation section, we choose to make use of an MD system in �F
whose solution satisfies (2), with boundary conditions for the fine scale motion of the ghost atoms
provided by (26). However, the MD solution is the total displacement, uF, thus it is convenient to
also write (26) in terms of the total displacement. We can do this by recalling (1), which when
combined with (26), allows us to easily obtain a non-reflecting boundary condition to be applied
to the MD simulation,

un,G = ūn,G +
n+Ncrit∑

n′=n−Ncrit

∫ tcrit

0
Hn−n′(t − �)[un′,B(�) − ūn′,B(�)] d� (29)

where ūG and ūB are obtained by interpolating the FEM displacements to the ghost and boundary
atoms based on their initial positions as follows:

ūG =N(XG)d (30)

ūB =N(XB)d (31)
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2.3. Summary of BSM

To summarize, the coarse scale equation (27) represents a standard FEM system which obtains its
constitutive model differently from two distinct material regions. The first material region is in �F
(see Figure 2(b)), where the nodal internal forces are determined by a projection of the interatomic
forces, i.e. NT

F[−∇uU (uF)]. The second is the continuum-only region, �C (see Figure 2(b)) where
the internal force, NT

C[−∇uU (ūC)], is determined by a constitutive law based on the underlying
atomic structure. In the numerical examples to be shown in this work, we use the Cauchy–Born
material model [5, 6, 44]; however, a model such as the VAC [45] may also be used and may be
preferable in general due to its projection-based nature. The MD equation is simply the standard
MD equation of motion (2). The ghost atom equation, (29), acts as a boundary condition to the MD
simulation and allows short wavelengths generated within the MD region that cannot be resolved
by the FEM to dissipate naturally. The coupling provided by the NT

F[−∇uU (uF)] term in the FEM
equations for the �F material region provides the ability for coarse scale waves to propagate from
�C to �F and vice versa (Table I).

Due to the different length scales present in the MD and FEM regions, we make use of a
staggered time integration scheme to integrate the MD and FE equations of motion; details can
be found in Liu and co-workers [22–25]. Specifically, we utilize a central difference (or velocity
Verlet) scheme for both the FEM and MD. In the simulations presented here we utilized a 10:1
MD:FEM timestep ratio. It is important to note that we made use of the central difference scheme
for ease; however, there are no points in the BSM formulation which would restrict the use of
higher-order time integration schemes. The full algorithm as implemented in the Sandia National
Laboratories open source simulation code, Tahoe [46] as well as the THK code used are given in
Appendix A.

Table I. Summary of BSM equations.

Remarks Equations

Displacement
decomposition u= ū + u′

Course scale
projection

P = NM−1NTMA
ū = Pd

Fine scale
projection

Q = I − P
u′ = Qu

Course scale
(FEM in �)

Md̈ = NT[−∇uU (ũ)] + NTfext

ũ =
[
uF
ūC

]

Fine scale
(MD in �F)

MA,FüF = −∇uU (uF) + fextF

Fine scale
interface
condition

un,G = ūn,G +
∑n+Ncrit

n′=n−Ncrit

∫ tcrit

0
Hn−n′(t − �)[un′,B(�) − ūn′,B(�)] d�

Hn(t) = L−1F−1
p→n{G̃G(p, s)G̃B(p, s)−1}

ūG = N(XG)d, ūB =N(XB)d
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3. APPLICATION OF BSM TO INTERSONIC CRACKS

In this section we will present two sets of data: one set will be the benchmark MD solution, the
other will be the BSM result. Here, the MD solution is obtained using the same integration method
and parameters as the MD part of the BSM. All of the simulations discussed in this paper were
performed with the Sandia National Laboratories open source simulation code Tahoe [46]. We seek
to further test the abilities of BSM, particularly the wave dissipation abilities and the applicability
of BSM to shear dominant fracture scenarios. Note that all times and units used in the remainder
of the text are normalized to be consistent with the potential parameters used thus unit names will
not be given. All simulations were performed using these normalized parameters.

The system under consideration is shown in Figure 5. The body is modelled as a perfectly
elastic 2D hexagonal lattice with nearest neighbour interactions that are described by the following
harmonic potential:

Uharmonic = 1
2 k(ri j − r0)

2 (32)

where k is the stiffness constant, r0 is the equilibrium separation distance while ri j is the centre
to centre distance between atoms i and j . Harmonic bodies have an infinite fracture strength
as there is no bond softening or breaking accounted for by the potential, i.e. no transition from
positive to negative concavity. Thus, some modifications to the system are required if bond breaking

Figure 5. Schematic of 2D edge crack system. BSM simulations were performed at the
following ratios: (La/L ≈ 1

6 ); (La/L ≈ 1
3 ) and (La/L ≈ 1

2 ).
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and fracture processes are to be considered. In order to allow fracture to occur as well as to constrain
the crack so that it does not branch and reduce the velocity of the main crack tip, we introduce
a ‘weak’ plane of atoms with a finite fracture toughness. This ‘weak’ plane is defined by two
rows of atoms along the centreline (dotted lines in Figure 5) with nearest neighbour interactions
described by the following Lennard-Jones potential:

ULJ = 4�

[(
�

ri j

)12

−
(

�

ri j

)6
]

(33)

where � and � are the scaling parameter for the ‘depth’ of the potential well and the potential
shape parameter, respectively.

We also prescribe an edge pre-crack in order to facilitate crack initiation. The pre-crack is
defined as two partial rows of non-interacting atoms at the left side of the weak plane (solid line in
Figure 5). The Lennard-Jones potential contains bond softening, as the potential transitions from
positive concavity to negative past a certain critical bond length (i.e. the inflection point where
d2ULJ/dr2i j = 0). During the simulation, the only neighbouring atoms which do not interact are
those in the precrack which only interact with neighbours on the same side of the centreline.

The parameters for the Lennard-Jones potential were � = �=mass= 1.0 in scaled units (some-
times referred to as Lennard-Jonesium). The harmonic potential used parameters consistent with the

Lennard-Jones potential linearized about equilibrium, i.e. mass= 1, k = 72
2
1/3

and both
potentials used an equilibrium separation of r0 = 21/6 [35]. For the coarse scale model in the
BSM simulations, we utilized a Cauchy–Born material model in the continuum-only region based
on the parameters for the harmonic potential, while the internal forces at the FEM nodes in the
overlap region were obtained based on the projection of the interatomic forces as mentioned in
the BSM summary.

For the simulations, we created an MD model with a total height L of 600 atoms, and an x :y
aspect ratio of 1:2. The precrack size Lpc was fixed at 100 atoms (50 in upper row, 50 in lower).
For the BSM models, we maintained the same outer dimensions for the FEM system as the full
MD system; however, in order to demonstrate the atomistic region size effects on the results we
varied the height of the atomistic section, La to 103, 203 and 303 atoms. These sizes correspond
to (La/L ≈ 1

6 ), (La/L ≈ 1
3 ) and (La/L ≈ 1

2 ), respectively. The numbers following the letters BSM
in the figures to follow denote the number of rows of atoms in the fine scale region. For the
BSM, the FEM mesh consisted of 30× 60 bilinear quadrilateral elements, with roughly 102 atoms
per element. The system was loaded via velocity boundary conditions on the top and bottom
surfaces, with a horizontal strain rate of �̇x = 0.00086, and a vertical strain rate of �̇y = 0.00017
which correspond to the applied velocities, vx = 0.25 and vy = 0.05 applied to the upper and lower
faces. This loading condition represents a situation in which we may observe a shear-dominant
mixed-mode crack, rather than pure mode-II crack development; this allows for a clearer definition
of the crack opening.

3.1. Results

We first ran the full MD model in order to establish a benchmark to compare with the BSM
models. For all of the simulations discussed in this paper, the MD is taken as the analytic solution
to which the BSM simulation results will be compared.
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By examining the crack-tip position as a function of time (Figure 6), we can see four distinct
regions. The first region (I) is simply zero displacement, as it is prior to crack initiation. This
region leads into the first phase of crack propagation (II), in which the crack propagates at a
sub-Rayleigh velocity. The slope of the MD plot in this region is roughly 2.74 (compared to the
Rayleigh velocity, cR ≈ 4.83 [34, 35]) and the BSM slopes differ from the MD by a maximum of
roughly 2.6%. An abrupt transition is visible at around time 80 (III), when the crack enters the
intersonic regime (faster than the shear wave speed, cs = 5.2, but slower than the longitudinal wave
speed, cl = 9 [34, 35]). In this third region, the MD crack-tip velocity is roughly 7.4 (compared to
8.97 from [34, 35]) and the BSM differ from the MD by a maximum of roughly 12%. Note that the
biggest differences between crack-tip positions begin to appear late in this phase of propagation.
Finally, at roughly time= 100 (IV) the body fractures fully, and the results with the exception
of 103 agree with this time, while 203 differs by roughly 3%. These findings are in general
agreement as to the trends demonstrated by the work of Gao and co-workers [34, 35]. However,
the magnitudes of the crack-tip velocities are reduced as compared to their simulations, due to the
smaller domain size considered in this work.

In order to better understand what is happening in the region near the crack plane, we examine
the total energy in the system in Figure 7. The plot is for the centre 99 rows of atoms with the
crack plane in the middle (La/L ≈ 1

6 ), as this allows us to compare the results for all of the systems
on equal ground because we sample the energy from the same spatial region in each case. From
Figure 7, we see that in region I, prior to crack opening, we have very good agreement between
the MD and BSM systems. However, after the crack begins to propagate, the BSM systems have a
slight difference in energy transmission at the onset of fracture (region II), but the rate of energy
transmission remains roughly the same. Late in region II, it becomes clear that the BSM solution
is dependent on the number or rows of atoms in the fine scale region. The 103 row simulation

Figure 6. Crack-tip position during the simulation. Displacement determined by ver-
tical separation of crack path layers. Note four distinct regions—no crack (I), initial
(sub-Rayleigh) crack (II), accelerated (intersonic) crack (III) and complete fracture

(IV). Simulation time is in units consistent with the potential as noted in the text.
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Figure 7. Total energy plus work in vicinity of crack plane. The four regions discussed
in the crack-tip plot are labelled here by Roman numerals. Simulation time is in units

consistent with the potential as noted in the text.

clearly is not realistic from an energetic standpoint, as the behaviour appears divergent, similar to
the observations of Park and co-workers [24] for small system sizes under tensile loading. The
energy plots for the 203 and 303 cases are more akin to the MD response, though each begins
to differ as the point of final fracture approaches. The final energy is similar, indicating that the
energy dissipation at the interface is sufficient to not affect the physics of the problem.

To further explore the deviation of the BSM results as the system approaches complete fracture,
we may examine Figure 8. This figure illustrates the size of the Mach cone in the MD simulation
at time 96, just prior to full fracture. The labelled lines denote the boundaries of �F for each of
the BSM cases at this same time. We hypothesize that the system energy in Figure 7 for the BSM
103 and 203 systems grows due to the dimensions of the Mach cone, which eventually exceeds
�F for both cases. Note that the 203 case loses accuracy later, at time 90 in Figure 7 as compared
to the 103 case which diverges at time 75 in the same figure; this occurs due to the increased size
of the 203 region which accommodates a longer period of Mach cone growth. The results for the
303 case are relatively unaffected for the simulation duration, as full fracture occurs prior to the
Mach cone passing over the boundary of �F. As this work is ongoing, a detailed mathematical
analysis of this phenomenon is left for future work.

In the simulations performed, we observed the formation of a daughter crack as reported in
[34, 35] as well as the resulting crack-tip acceleration into the intersonic regime and the formation
of a Mach cone, though in the 103 case it is not as clearly defined due to reflections at the interface.
Figure 9 shows two images of the Mach cone formation, one with the partially formed cone (a) and
the second with the propagating cone (b). We also observe that as the crack propagates, a small
opening appears and propagates away from the main crack, i.e. the daughter crack (Figure 10(a)
and (b)). The daughter crack leaves a zone of material in its wake in which the upper plane of
crack path atoms is almost in line with the lower crackpath atoms (Figure 10(c)). As this perturbed
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Figure 8. Illustration of Mach cone in MD simulation at time = 96, just prior to full fracture. The labelled
lines illustrate the boundaries of �F for the different BSM cases. Note that for the BSM 103 and 203
cases, the Mach cone extends beyond the boundary of �F. Full fracture occurs prior to the Mach cone

affecting the BSM 303 case. Colouration is kinetic energy.

Figure 9. Detail of BSM 303 Mach cone formation: (a) daughter crack has begun to
accelerate, Mach cone partially formed at time 80 and (b) time 85, Mach cone has

clearly formed. Colouration is kinetic energy.
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Figure 10. Detail of BSM 303 crack tip: (a) daughter crack forms directly ahead of main crack;
(b) daughter crack accelerates away from main crack; (c) daughter crack leaves perturbed
region in wake (see inset); and (d) due to weaker perturbed region in (c), main crack propagates

more quickly, joins with daughter crack. Colouration is kinetic energy.

Figure 11. Detail of BSM 303 crack tip after daughter crack formation. Note the distinct asymmetry at
the main crack tip (in the circled region). Colouration is kinetic energy.

lattice has a reduced energy barrier to separation, the crack may propagate more quickly and join
with the daughter crack. These findings are in agreement with those presented by Abraham and
Gao [34] and Gao et al. [35], though they did not discuss in detail the mechanism which resulted
in the merging of the daughter and main crack. Further, we also note asymmetry of the crack tip
as reported in [34, 35] as demonstrated in Figure 11.
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The energy plot presented earlier (Figure 7) indicates that the energy propagation out of the
overlap region is similar to that of the pure MD calculation during the time the Mach cone is
present (region III in Figure 7) but loses accuracy just prior to full fracture. This leads to the
conclusion that the Mach cone reacts in the BSM as it does in the pure MD calculation prior to
full fracture. By inspection of Figure 12 we see that this is indeed the case, as the coarse scale
part propagates and we see no fine scale reflections, with the exception of the BSM 103 case, as
seen in Figure 13.

It is apparent that the comparisons between the MD benchmark simulation and the BSM
simulations are reasonable, indicating that the BSM is able to perform as well as an equivalent
MD model for this scenario. Further, due to the projection used in the BSM for the FEM internal
forces in the overlap region, we can capture the physics of fracture without resorting to specialized
elements or mesh refinement as in standard FEM or quasicontinuum methods [5]. Figure 14 shows
the distortion of the FEM mesh in the BSM simulations due to the presence of the crack in the
MD region. Note that we need not refine the mesh, destroy or create elements, nor use special
fracture elements. This property is one of the unique strengths of BSM, and is a direct result of
the projection of the interatomic forces in (27) used to obtain the FEM constitutive relation in
�F. This projection avoids the computation of the deformation gradient or Jacobian for the finite

Figure 12. Illustration of wave propagation for BSM 203 case. Centre region with high
resolution contains MD, lower resolution region denotes FEM only region. Note that
the waves propagate naturally within the overlap region, however, at the THK interface,

the fine scale part is dissipated and the coarse scale propagates.
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Figure 13. Illustration of wave reflection/propagation for BSM 103 case. Centre region with high resolution
contains MD, lower resolution region denotes FEM only region. Note that the waves tend to remain in

the overlap region, with incomplete damping and propagation compared to the 203 and 303 cases.

Figure 14. FEM mesh and MD region for BSM 303 simulation after complete fracture. The MD region
has been moved to right so that it does not overlap the FEM region, for clarity.
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elements in �F, thus allowing mesh distortions which would not be possible in a standard FEM
simulation.

4. CONCLUSIONS

We have performed MD and BSM simulations of intersonic crack propagation along a weak plane
in an elastic solid with a newly adopted technique for finding the damping kernel functions. By
comparing the results of the BSM simulations for differing overlap region sizes to a benchmark
MD solution, we have found that the simulations all show favourable agreement over time in
system energy and crack-tip position/crack velocities. While agreement between BSM and MD
simulations was shown to improve by increasing the size of the fine scale region in the BSM,
accurate results using the BSM were obtained with fine scale system sizes that are considerably
smaller than the size of the full MD system.

We have also demonstrated that the BSM interfacial condition can dissipate the strong localized
waves and Mach cones generated by the crack tip, as the BSM and MD system energies were shown
to match well during the later stages of the crack propagation. Additionally, we have observed
the nucleation and acceleration of a daughter crack away from the main crack, in agreement with
previous work of Abraham and co-workers [34, 35]. Further, we have observed the mechanism by
which the main crack is able to join with the daughter crack, i.e. the daughter crack first develops
ahead of the main crack tip, and accelerates away leaving a trail of weakened material in its wake.
This trail allows the main crack to propagate faster and eventually join with the daughter crack.
Finally, we have explicitly provided in the Appendices the details of our BSM implementation and
a code for determining the THKs used in this work.

APPENDIX A: BSM ALGORITHM AS IMPLEMENTED IN TAHOE

Implementation by Farrell, Klein based on Park, Klein

1. Initial conditions given, applied.

(a) Set up ghost and boundary atom arrays.
(b) Determine THK table for required time period.

Represented in Hn(t) =−(2/tmax)e−at ∑Nmodes
j=1 Im{Qn( j)} sin( j�t/tmax) form (from

Crump).
(c) Set up interpolation matrix N.
(d) Initialize MD, then project onto FEM in overlap region and initialize continuum only

part of FEM.
ūG and ūB determined from initial conditions.

(e) Store ghost, boundary displacement history.

2. For each FEM timestep

(a) For each of the MD subcycle timesteps

i. Update ūG and ūB to current MD time using time integration scheme (central
difference method).
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ii. Update uG using THK convolution, ūG and ūB

A. Determine new u′
G from

u′
n,G = ∑n+Ncrit

n′=n−Ncrit

∫ tcrit
0 Hn−n′(t − �)[un′,B − ūn′,B] d�

B. Obtain uG from uG = ūG + u′
G .

C. Apply uG as BC to MD region, update any other BCs on MD.

iii. Solve MD equations i.e. MA,DüF = −∇uU (uF) + fextD .
iv. Output data (if specified) and continue.

(b) Calculate internal force for FEM

i. In overlap region, fintD =NT[−∇uU (uF)], i.e. project MD internal forces between real
atoms (ghost atom bonds not included).

ii. In FEM only region, fintC =NT[−∇uU (uC)] =NT[−∇uU (ūC)] i.e. u′
C ≡ 0[−∇uU

(ūC)] determined by CB rule.

(c) Solve FEM equations in entire domain i.e. Md̈= fint + fext.
(d) Interpolate FEM displacements, velocities, accelerations to ghost and boundary atoms,

i.e. determine new ūG and ūB .
(e) Output data (if specified) and continue.

APPENDIX B: MATLAB TIME HISTORY KERNEL CODE

The code used to determine the THK for the nearest neighbour hexagonal lattice considered here
is available as a Matlab m-file from [47] called THKcode.m.

The code is set up to determine the THK for a k =m = 1 harmonic system, but the result can
be scaled to fit any system, so long as the frequency � = √

k/m for the system linearized about
equilibrium is known. The inputs to the code are defined in the comments, but it should be noted
that the matrix inverse of the Laplace–Fourier image of the lattice Green’s function (15) has been
pre-computed and hard coded to save time and memory. The output is a series of matrices which
are the coefficients A� in a modified sine series for the top and bottom planes in the system used
here, based upon (24),

Hn(t) = �e−a�t
Nmodes∑
�=1

A� sin

(
���t

tmax

)
(B1)

A� = −2

tmax
Im{Qn(�)} (B2)
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