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Thin elastic sheets bend easily and, if they are patterned with cuts,

can deform in sophisticated ways. Here we show that carefully

tuning the location and arrangement of cuts within thin sheets

enables the design of mechanical actuators that scale down to

atomically-thin 2D materials. We first show that by understanding

the mechanics of a single non-propagating crack in a sheet, we can

generate four fundamental forms of linear actuation: roll, pitch,

yaw, and lift. Our analytical model shows that these deformations

are only weakly dependent on thickness, which we confirm with

experiments on centimeter-scale objects and molecular dynamics

simulations of graphene and MoS2 nanoscale sheets. We show how

the interactions between non-propagating cracks can enable either

lift or rotation, and we use a combination of experiments, theory,

continuum computational analysis, and molecular dynamics simulations

to provide mechanistic insights into the geometric and topological

design of kirigami actuators.

Deformations that bend a material without stretching involve a
very low amount of stored elastic energy, and therefore present
an opportunity to enable morphing at minimal energetic cost.
The potential to exploit these energetically favorable and soft
modes has recently emerged with kirigami-based thin
sheets,1–4 in which the introduction of cuts has been utilized
to give unique structural properties and non-linear behavior, such
as auxeticity,5–7 significantly enhanced stretchability,8,9 flexible
electronic devices,10 and topologically guided morphings.11–16 In
this work, we present a variety of kirigami actuators whose
dynamical pattern formation is controllable. We develop a novel
form of non-linear control–response relationship in kirigami

geometries through the conversion of the linear displacement
imposed on the boundary of the thin sheet into a range of
predictable motions.

The four fundamental modes depicted in Fig. 1, namely roll
(rotation about the x-axis), pitch (rotation about the y-axis), yaw
(rotation about the z-axis), and lift (the z-axis out-of-plane
displacement), arise from linear actuation, and they may in
principle be combined to generate any motion in 3D space. To
demonstrate this design goal, we create three orthogonal rotations
and a vertical out-of-plane displacement and show the mechanism
for understanding how these emerge from the coupled behavior of
individual cuts. We provide a theory that captures the main large-
scale features in the mechanics of these structures, and demon-
strate that similar actuators can be realized in suspended 2D
materials, such as graphene and MoS2.17,18 Moreover, full
characterization of the out-of-plane displacement that occurs
as a result of a single cut in a thin sheet allows us to derive a
scaling law that shows a robust link between simulation and
experiment on length scales ranging over six orders of magnitude.
Because kirigami actuators are scale-invariant, our findings can
be applied to tailor the microstructure and functionality of
mechanical metamaterials across the technological spectrum
of length scales ranging across the nanoscale (NEMS),17–20 the
microscale (MEMS),21–24 and the macroscale.25–28

The complex behavior of kirigami actuators arises from
functionalizing cracks in thin plates. In other words, when a
material is thin enough, cracks under tension may cause the
system to buckle before failure through crack propagation.29,30

Therefore, a deeper understanding of the mechanics of a single
non-propagating crack on thin sheets is needed. Let us con-
sider a cut of length b centered with respect to the sheet’s
length L and width w, and parallel to the clamped edges of
the sheet (Fig. 2a). The sheet thickness h is small, such that
h { L B w. Applying a uniaxial extension D perpendicular to
the crack causes the sheet to buckle out-of-plane at a critical
force Fc. The typical deflection size is given by a maximum
amplitude d0 centered between the crack tips, and this shape
decays back to nearly flat before reaching the clamped boundaries
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(Fig. 2b). This characteristic shape occurs on each side of the crack,
such that the shape may be symmetric or antisymmetric about
the plane aligned with the crack, normal to the initially flat
surface—these two modes, respectively, correspond to stress
intensity factors of bending and transverse shear.29,31 We shall
here focus our analysis on the symmetric kind, as the typical
size of both out-of-plane deformations must be of the same
order of magnitude. The critical force needed to trigger this
instability is given by Fc, which depends on the ratio of the
crack to sheet width, b/w (Fig. 2c). Since the instability results
from an in-plane compressive zone (Fig. 2a) around the internal
boundary along the crack,30,32 this problem will be approxi-
mated by a beam of length b. Therefore, Fc is shown to collapse
on a single curve (Fig. 2c) when the experimental data and
simulation results are normalized by the characteristic buck-
ling force EhDc, where E is the Young’s modulus of the material.
This will become evident in eqn (5), where we derive Dc � h2/b

as the critical amount of in-plane compression at the buckling
threshold.

To describe the post-buckled shape, we consider two
regimes: the in-plane stretching dominated response to an
applied extension D normal to the single cut, and the out-of-
plane state, where the buckling threshold is reached in the stress
relief zone and the system becomes bending-dominated. This
loading condition induces a crack opening mode described by
the mode I stress intensity factor, KI, which for a large plate in a

state of uniform uniaxial stress is KI ¼ T
ffiffiffiffiffiffiffiffiffiffi
pb=2

p
, where T is the

tensile stress acting on the edge of the sheet.33 From fracture
mechanics,33 it is established that the stress scales with the radius

of curvature r of the cut: s ¼ KI

� ffiffiffiffiffiffiffi
2pr
p

. To estimate the tension in
the sheet, we note that stresses concentrate near the crack and, in
view of St. Venant’s Principle,34 it approaches an average value at a
distance of about width w away from the crack. This approxi-
mation is also validated from the fact that beyond a sheet length to
width ratio of about L/w E 1, the maximum deflection of the crack
reaches a constant value indicating that, beyond a certain point,
the sheet length does not contribute to the crack deformation.
Therefore, we expect the tension in the sheet to scale as T B ED/w.
In our experiments, we take r B h for the crack radius. Therefore,

Fig. 1 Examples of linear actuators from kirigami cut patterns. Extension,
or applied displacement D, along the x-direction causes (a) rotation about
the y-axis or pitch, (b) rotation about the z-axis or yaw, (c) rotation about
the x-axis or roll, and (d) out-of-plane deflection in the z-direction.

Fig. 2 (a) Single cut’s in-plane state of stress calculated by a Finite
Element Method (FEM). Simulation parameters are set based on the
experiments: h = 0.127 mm, b = 80 mm, w = 100 mm, L = 182 mm,
Young’s modulus E = 3.5 GPa, Poisson’s ratio n = 0.38, and D B h. The
color map shows the normalized sum of the principal stresses. (b) First
mode of deformation where the color map represents the normalized
deflection, d/d 0. (c) Critical force Fc required for buckling near the crack as
a function of b/w. FEM simulation (solid lines) and experimental (disks with
error bars) are shown. (d) Plot of d0

2/b2 as a function of D/w for experiments
with mylar films (circles), FEM simulations (solid lines), and MD simulations of
graphene (squares) and MoS2 (triangles). The scaling from eqn (5) is
represented by the dashed line. Mylar and FEM parameters are set to h =
0.127 mm, L = 182 mm, E = 3.5 GPa, and n = 0.38. MD simulations were
done for a fixed L = 346 Å, we plot data for width w = 114 Å and cut lengths
ranging from b = 38 Å to 76 Å, and for w = 142 Å with cuts ranging from
b = 81 Å to 119 Å. (e) A suspended graphene sheet (b = 76 Å, w = 114 Å,
L = 346 Å, and D = 40 Å), where the color map shows the von Mises stress
scaled by its maximum value.
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the stress in the sheet becomes s B E(D/w)(b/h)1/2. The elastic
strain energy due to stretching scales as Us B h(s2/E)As, where
As = Lw is the area of the sheet, which reduces to

Us � E
D2

w
bL: (1)

If we consider the sheet to be dominated by stretching, i.e. by
initially neglecting the bending energy, the total potential
energy is given as V = Us �W, where W is the work done by
the extension D. Taking the work as the force (Eg(0))As times the
extension D, where g(0) is the lateral strain of the sheet, and
minimizing the total potential energy, (q/qD)[E(D2/w)bL �
Eg(0)LwD] = 0, gives a relation for the lateral contraction,

D> � g(0)w B bD/w. (2)

Note that eqn (2) is effectively a scaling of Poisson’s con-
traction and sets up the base state for the in-plane solution. We
now calculate the next-order contribution by allowing the
stresses in the compressive zone to reduce the total energy
through out-of-plane bending. The calculation is simplified by
treating the problem as a 1D buckling of the free boundary
along the crack (Fig. 2b), where both stretching and bending
energies are required to provide the right balance. This next-
order contribution is obtained as a minimizer of a dimensionally
reduced model, along the arc-length s of the cut, given by

U ¼ bhE

2

ð
ds g2 þ h2d002
� �

; (3)

where the new measure of strain is geometrically non-linear,
g E g(0) + d02/2, and d is the deflection. This yields a classic result
for the maximum amplitude:

d0 �
ffiffiffi
b
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D? � Dc

p
; (4)

where Dc is related to the ratio between bending rigidity, B = h3E,
and stretching rigidity, Y = hE, as follows: Dc/b B B/(b2Y) = (h/b)2.
Inserting the in-plane compression result of eqn (2) into (4) gives
a scaling for the maximum crack deflection,

d0
b

� �2

� D
w
� O

h

b

� �2

: (5)

Eqn (5) shows a higher order dependency on the sheet thickness
to crack length ratio, implying the invariance of these deformations
from the macro- to nanoscale. To confirm this relationship,
experiments were performed with single cuts in mylar films
(biaxially-oriented polyethylene terephthalate—BoPET) to measure
the maximum deflection as a function of extension for a given crack
size and sheet width (see the ESI† for methods). Finite-Element
Method (FEM) simulations with the same material parameters
were also performed (see the ESI† for methods). Additionally, we
carried out Molecular Dynamics (MD) simulations of suspended
graphene monolayers (see the ESI† for methods). Fig. 2d shows the
dimensionless deflection data for the experiments and simulations,
along with the scaling prediction from eqn (5), confirming a very
strong agreement across six orders of magnitude.

In order to generate simple actuators that can become the
building blocks for more complex structures, such as mechanical

metamaterials, we must quantify how multiple cracks will inter-
act to generate motion of points on the sheet. Since the behavior
of a single crack is well described by eqn (5), the simplest
extension is two parallel cracks of length b separated by distance
ls. When ls/L is small, these cracks interact to generate vertical
lift of the sheet between them (Fig. 3a-i and ii). However, the
deflection of the center point of the sheet drops off quickly as the
spacing between the cracks is increased, making it difficult to lift
a large amount of surface area (Fig. 3b). Keeping ls/L small while
increasing the area of the sheet that is lifted can be accomplished
by extending a portion of each crack towards the clamped
boundaries (Fig. 3a-iii). This relies on the same buckling
mechanism that governs the single crack behavior, producing
nearly the same amount of lift as the two parallel cracks
(Fig. 3c). These additional cuts also introduce wrinkles on the
sheet, which can be avoided by introducing cuts that provide
room for the in-plane compression (Fig. 3a-iv). With this
arrangement of cuts, we demonstrate how these parallel cracks
can become building blocks for generating lift of a large
localized area.

We note that the four crack tips of the two parallel cracks in
Fig. 3a-i form a rectangular unit cell (convex polygon) and
generate lift in the sheet. This rudimentary shape is identified
quantitatively by following the lines of tension that connect two
neighboring cracks, and the convexity of the unit cell signifies
how much stretching within the sheet can be transferred into a
crack opening displacement. Convex shapes constrain the
sheet to induce vertical lift, while concave shapes have the
freedom to rotate. To illustrate this idea, we focus on the pitch
mode. We performed a post-buckling analysis through FEM
simulations for the geometry in Fig. 4a, while varying the crack
length Lc, thus allowing us to scan unit cell shapes from convex
to concave. Denoting L8 as the cut length parallel to the
clamped boundary, we refer to the ratio (2Lc + L8)/w as a
measure of convexity. The target shape strongly depends on

Fig. 3 (a) FEM simulations using two cuts as the basis for generating lift.
(b) Increasing the spacing between two cuts causes the lift of the center of
the sheet to significantly drop. (c) By using additional cuts in (iii) and (iv), we
can generate the same lift as with (ii) while lifting a much larger area.
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this parameter’s transition: lift of the outer portion of the sheet
occurs when the unit cell is convex, i.e. (2Lc + L8)/w o 1, while
rotation about the y-axis occurs when it is concave, i.e. (2Lc +
L8)/w \ 1 (Fig. 4b). Generating rotation about the z and x axes
follows the same principle—concave unit cells enable rotation
(Fig. 4c). In these more complex configurations, there is cou-
pling between two unit cells within the sheet. While an intricate
model of the coupling between multiple unit cells is beyond the
scope of this work, it is clear from the schematics and post-
buckled shapes that the concave unit cells locally enable
rotation about the z and x axes.

Fig. 4 indicates that the convexity of the unit cell formed by
the locally interacting crack tips can generate either lift or
rotation. We provide further insight through quantifying the
magnitude of these kirigami-based motions by measuring the
lift or rotation as a function of relative strain D/L (Fig. 5). Here
we show that a portion of the sheet can be lifted vertically by an
amount nearly 50 times the sheet thickness. Since there is no
plastic deformation and the cracks do not propagate, these
deformations are reversible. The stiffness of the sheets
designed to provide rotation varies widely. Rotations about
the y (pitch) and x (roll) axes reach about 60 degrees after a
moderate amount of extension, while the in-plane rotation
about the z-axis requires a significant amount of extension to
reach 30 degrees of rotation. Fig. 5a shows good agreement

between the experimental measurements for the macroscale
designs of lift (diamonds for d0) and rotation (triangles for yx,
disks for yy, and squares for yz) and the FEM simulations
(dashed line for d0, orange for yx, red for yy, and blue for yz).

The results from Fig. 2d suggest that these actuator designs
should scale down to 2D materials. From a MoS2 monolayer, we
tested the simplest nanoactuator requiring only one unit cell
for rotation about the y-axis, i.e. the pitch mode shown at the
bottom in Fig. 5b. We obtained a rigid rotation due to its higher
bending modulus than that of graphene.35 We applied an
extension perpendicular to the crack and measured the rotation
of the inner ribbon about the y-axis (Fig. 5a, red x’s). At small
D/L, there is good agreement between the macroscale results
and the nanoscale simulations, and eventually the three actuators
achieve nearly the same maximum value of yy. While the behavior
is qualitatively similar across several orders of magnitude in sheet
thickness, it is clear that the agreement for the 2D kirigami is
qualitative rather than quantitative. Specifically, the fact that the
rotation that is observed in the 2D kirigami is smaller for the same
strains than the bulk system suggests that the 2D system may
undergo more stretching than the bulk system, a point also made

Fig. 4 (a) Schematics illustrating how the polygon formed by crack tips
will generate rotation. (b) As the polygon formed by the edge crack tip and
the internal crack tips changes from convex to concave, we can see the
emergence of rotation about the y-axis. (c) The coupling of multiple
concave polygons formed by the crack tips can enable rotation about
the x- or z-axis as well.

Fig. 5 (a) A plot of the lift of the center d0 (black) and the three rotations
as functions of D/L, D being the applied displacement in the x-direction.
The experimental data are represented by black diamonds for the lift,
orange triangles for the roll (rotation about the x-axis), red disks for the
pitch (rotation about the y-axis), and blue squares for the yaw (rotation
about the z-axis). FEM for the respective modes of deformation, using the
same parameters of the experiments, are shown in dashed and solid
curves. The red x’s show the results of the molecular dynamics simulations.
(b) Images of the experiments for the cut patterns and the sequence of
deformation as D/L is increased as well as two snapshots of the molecular
dynamics simulation. In the case of MoS2, the geometric parameters are:
length L = 460 Å and width w = 152 Å of the sheet; crack length Lc = 47.5 Å;
and a 240 Å length and a 82 Å width (L8) of the inner rotating ribbon.
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recently by Grosso and Mele.36 Therefore, additional analysis of
the 2D material kirigami actuators is necessary to quantitatively
replicate the macroscale actuator designs.

Finally, we return to the actuators in Fig. 1. Through
replicating the mechanism in Fig. 4a, we can see the rotation
about the y-axis of all cells (Fig. 1a). This indicates that building
blocks can go beyond mechanism design towards the development
of mechanical metamaterials. Furthermore, the interactions
between multiple cuts can enable portions of a thin sheet to rotate
one complete revolution about the x-axis, the extension axis
(Fig. 1c), while coupling unit cells that cause rotation and lift
generate sheets that first rotate about the y-axis and subsequently
lift in the z direction (Fig. 1d). What remains is to better under-
stand how building blocks can be combined to generate targeted
behaviors—an inverse problem that can we can begin to approach
by considering the simple geometric model we present here.

We have addressed two fundamental problems that are
pivotal to connecting kirigami actuators to practical designs for
engineering applications: scale-invariant behavior and a robust
geometric mechanism for actuator design. While the kirigami
mechanics has been unified over six orders of magnitude in sheet
thickness, the shape of a unit cell formed by locally interacting
crack tips provides a geometric mechanism to induce either lift or
rotation. What we present has the potential to offer rational design
tools for dynamical assembling of complex geometries,10,28 and we
hope that this spontaneous generation of shapes emerging from
quasi-static actuation comes to complement inverse design algo-
rithms that have been proposed for lattice-based kirigami.14,15 As
previously mentioned, the cracks do not propagate in the experi-
ments performed here, thus the process remains entirely rever-
sible. In order to maintain this reversibility in systems utilizing
materials with lower yield stress, cracks can be made with a larger
crack tip radius r, thus lowering the stress intensity factor, KI. The
scaling found here is robust under such a modification since a
few multiples of r only yield a pre-factor in front of eqn (5), thus
preserving the same power-law. It should also be noted that the
propagation of interacting cracks can be manipulated by their
initial geometry,37,38 such interactions could be utilized to
increase the functionality of the kirigrami structures and/or
give a predictable response to strain beyond that which causes
crack propagation. There may also be significant scientific
benefits to demonstrating kirigami actuation in 2D materials.
From a basic science perspective, kirigami provides an ideal
platform to study the localization of electronic states or the
coupling of 2D quantum dots.39 Alternatively, these structures
offer significant opportunities for flexible, lightweight band-gap
engineered optoelectronic materials whose performance can be
reversibly changed and manipulated over a wide range of the
optical spectrum by locally varying the strain.40–47
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