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Abstract
We outline here a model for the initiation of defects in crystals based
upon harmonic transition state theory (hTST). This model combines a
previously developed model for zero-temperature defect initiation with a multi-
dimensional hTST model that is capable of accurately predicting the effects of
temperature and loading rate upon defect initiation. The model has several
features that set it apart from previous efforts along these lines, most notably
a straightforward method of determining the energy barrier between adjacent
equilibrium states that does not depend upon a priori information concerning the
nature of the defect. We apply the model to two examples, triaxial stretching of a
perfect fcc crystal and nanoindentation of a gold substrate. Very good agreement
is found between the predictions of the model and independent molecular
dynamics (MD) simulations. Among other things, the model predicts a strong
dependence of the defect initiation behavior upon the loading parameter. A
very attractive feature of this model is that it is valid for arbitrarily slow loading
rates, in particular loading rates achievable in the laboratory, and suffers from
none of the limitations in this regard inherent in MD simulations.

(Some figures may appear in colour only in the online journal)

1. Introduction

Transition state theory (TST) was originally developed in the field of chemical reaction kinetics,
e.g. Henriksen and Hansen (2008), as a tool to describe the time-dependent process by which
atoms or molecules leave one equilibrium state and transition to another state, the two states
being separated by an intervening energy barrier on a potential energy surface of fairly high
dimension. The process by which atoms break and reform chemical bonds has a good deal in
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common with the process by which defects are initiated in solids. Accordingly there has been
recent interest in using TST to model various defect formation phenomena in crystals, e.g.
Mason et al (2006), Zhu et al (2008), Hara and Li (2010), Jin et al (2010), Ryu et al (2011),
Nguyen et al (2011) and Weinberger et al (2012). TST has a number of attractive features in
this regard, among them the ability to predict the temperature and time dependence of defect
nucleation. Moreover it is valid for arbitrarily slow loading or deformation rates, much lower
than those for which molecular dynamics (MD) simulations are typically feasible.

Key to the development of any TST model is a description of the TST rate factor k, also
known as the nucleation rate. The rate factor includes both a prefactor and an exponential term
involving the energy barrier to defect nucleation. In harmonic transition state theory (hTST),
the prefactor depends upon the curvatures of the potential energy surface at a given equilibrium
position. To date, applications of hTST to the problem of defect nucleation have made use
of one-dimensional models that involve only a single component of curvature to calculate the
prefactor. Various techniques have been used to estimate the energy barrier. Mason et al (2006)
assumed the energy barrier to be linearly dependent upon the product of a scalar stress measure
with an activation volume, this latter quantity being determined from a fit to experimental data.
Later authors (Zhu et al 2008, Hara and Li 2010, Jin et al 2010, Ryu et al 2011, Nguyen
et al 2011 and Weinberger et al 2012) have used a considerably more sophisticated numerical
technique, the nudged elastic band method (Henkelman et al 2000, Zhu et al 2007), to determine
the lowest saddle point adjacent to the equilibrium position on the potential energy surface.

In the present paper, we describe an hTST model that combines hTST with a recently
developed model, called the Wallace criterion for brevity, for zero-temperature defect
nucleation (Delph et al 2009, Delph and Zimmerman 2010, Yun et al 2011). The resulting
formulation differs in several significant respects from previous work. In particular, the energy
barrier appearing in the TST rate factor, a crucial component of the model, is determined in a
rather direct fashion by finding the nearest saddle point along the loading path on the potential
energy surface. The model also uses a relatively large number of curvature components on
the potential energy surface to calculate the prefactor for the hTST rate factor. As judged by
comparisons to MD simulations, the resulting model is capable of making accurate predictions
of the loading rate and temperature dependence of defect nucleation in crystals. However, in
contrast to MD techniques, the model is applicable for arbitrary slow loading rates and times,
in particular for those achievable in the laboratory.

2. The hTST model

In the TST scenario, thermal excitation causes groups of atoms to travel from an equilibrium
position on the potential energy surface for a deformed crystal to an adjacent equilibrium
position that is typically at a lower energy. In doing so, the atoms must transit an energy
barrier on the potential energy surface, usually at a saddle point on the surface where the
energy barrier is lowest. This process leads to the formation of a defect.

Let F(t) be the probability that a defect has not formed during the process, so that F(0) = 1
and F(t → ∞) = 0. The basic equation of TST is

dF

dt
= −k(t)F (t), (1)

where k(t) is the rate at which atoms cross the energy barrier. It has the elementary exact
solution

F = exp

(
−

∫ t

0
k(τ ) dτ

)
. (2)
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The difficulty in applying TST lies in the ability to estimate the rate factor k. A fairly
simple expression for this quantity may be obtained by invoking the well-known harmonic
approximation (Vineyard 1957, Voter and Doll 1984). This makes use of the fact that the
potential energy surface in the neighborhood of an equilibrium position is, to leading order in
the atomic positions, a quadratic well. Hence for a system of N atoms with the coordinate axes
aligned with the principal curvatures of the potential energy surface,

V (r) = V (0) +
1

2

(
κ1r

2
1 + κ2r

2
2 + · · · + κ3Nr2

3N

)
. (3)

Here the origin is taken to be at the equilibrium position, and the ri measure the deviation of
the atomic positions from equilibrium. The κi are simply related to the principal curvatures of
the potential energy surface and hence to the eigenvalues of the Hessian matrix for V (r). A
similar equation can be written at the saddle point rs , where, by definition, one of the principal
curvatures of the surface vanishes. Let the corresponding values of the curvature at the saddle
point be λi and take λ3N = 0. The

V (r) = V (rs) +
1

2

(
λ1r

2
1 + λ2r

2
2 + · · · + λ3N−1r

2
3N−1

)
. (4)

We neglect possible temperature effects upon the potential energy surface, a point about which
we will have more to say later. A somewhat detailed analysis (Vineyard 1957), which we do
not reproduce here, then yields

k = Ns

2π

√
1

m

3N∏
i=1

√
κi

3N−1∏
i=1

√
λi

e−�E/kBT (5)

for a system of identical atoms each having mass m. Here �E is the energy barrier,
�E = V (rs) − V (0), and Ns is the number of equivalent defect nucleation sites.

In order to compute k from equation (5), we require values for the quantities κi and λi ,
as well as for the energy barrier �E. These we obtain from a recently developed criterion for
zero-temperature defect initiation, called the Wallace criterion. This criterion has been shown
to yield accurate predictions of the point (deformation, load, etc) at which defect initiation may
be expected in a variety of circumstances (Delph et al 2009, Delph and Zimmerman 2010,
Yun et al 2011). Because it is important to the development of the present model, we give a
brief description here. The basic assumption underlying the Wallace criterion is that defect
nucleation may be adequately described in terms of the motion of a limited number of atoms
surrounding the nucleation site, without the need to take into account the motion of all the
atoms in the assemblage. Accordingly, the Wallace criterion envisions a region � interior to
a much larger atomic assemblage. This region contains N atoms that are allowed to undergo
arbitrary infinitesimal motions, with the atoms exterior to � being held motionless. The system
is stable when all possible motions of the atoms within � lead to an increase in system energy.
Instability and subsequent defect nucleation is signaled when the change in energy resulting
from a particular pattern of atomic motions is found to be negative. Mathematically, stability
translates into a requirement that all eigenvalues of the Hessian matrix of the potential energy
for the system of N atoms be positive. An instability is indicated when the lowest eigenvalue
passes through zero and becomes negative. Typical values ofN range from several hundred to in
excess of a thousand, depending upon the nature of the loading and the geometric configuration.

At a given equilibrium point, it is simple to show that the eigenvalues obtained from
the Hessian matrix are simply half of the κi values. A similar statement can be made at the
saddle point with regard to the λi values, where, by definition, the lowest eigenvalue of the
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Hessian matrix vanishes. Detailed expressions for the Hessian matrices for two-body and
EAM potentials may be found in Delph et al (2009) and Delph and Zimmerman (2010),
respectively. It is important to point out in this connection that, regardless of the form of
the interatomic potential used, the computation of the Hessian matrix requires a knowledge
of the zero temperature atomic positions of the system of N atoms. In simple situations
involving homogeneous deformation, this may be obtained, for example, from the Cauchy–
Born hypothesis. More complicated situations require detailed numerical computation, such as
the use of molecular statics codes. Besides the curvature values, the Wallace criterion likewise
yields the energy barrier �E as the difference between the potential energy associated with
the N atoms at the saddle point and that at the equilibrium point. Expressions for this quantity
may be found, for two-body and EAM potentials respectively, in Delph et al (2009) and Delph
and Zimmerman (2010).

We return to the basic TST equation (2). Under constant-load, equilibrium conditions,
the rate factor is time-independent, and equation (2) becomes

F = exp (−kt) . (6)

However in many circumstances, the crystal is loaded in a time-dependent fashion and in this
case, the rate factor varies with time. Let ς(t) be a characteristic parameter that describes
the loading process, monotonically increasing with t and with ζ(0) = ζo. Various stress
measures have been used in this role, e.g., Mason et al (2006), Zhu et al (2008), but we prefer
to use a more immediately accessible loading parameter, with the choice depending upon the
circumstances. In any case, a simple change of variables in equation (2) gives (Mason et al
2006)

F = exp

(
− 1

ζ̇

∫ ζ

ζo

k(ξ) dξ

)
, (7)

where, as usual, the superposed dot indicates time differentiation. If k(ζ ) is known at points
along the loading path, then the integral in equation (7) may easily be evaluated by numerical
quadrature to determine F(ζ ).

The overall approach to be adopted here is to move upward along the loading path on
the potential energy surface through a succession of equilibrium positions. At each of these
positions, the 3N eigenvalues of the Hessian matrix are calculated. These yield the κi values
required in the numerator of equation (5). The energy associated with the reduced ensemble
of atoms contained within � may be calculated at this position as well. As the point of
zero-temperature defect initiation is approached, the lowest eigenvalue decreases. When this
value goes through zero, the saddle point has been located. The remaining 3N − 1 positive
eigenvalues at this point give the λi’s in the denominator of equation (5). Likewise the energy
associated with the N atoms within � may be calculated to obtain the saddle point energy. The
difference between this latter quantity and the energy at a given equilibrium position yields
�E. From this, the TST rate quantity k may be calculated for any desired number of points
along the loading path. Finally, then, F may be calculated by a numerical quadrature procedure
from equation (7). The variation of this quantity from 1 down to 0 establishes bounds for the
range of the loading parameter over which defect nucleation is predicted to occur.

3. Examples

We reexamine two examples of zero-temperature defect initiation presented in Delph et al
(2009) and Delph and Zimmerman (2010). The zero-temperature defect behavior has been
well established for both of these cases. Our intent here is to show how hTST allows the
inclusion of loading rate and temperature effects upon defect initiation.
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Figure 1. Critical instability stretch for triaxial stretching at T = 0 K versus number of atoms
contained within �.

The first example involves triaxial stretching of a perfect fcc crystal along the principal
crystallographic directions. The interatomic potential in this case was taken to be a Lennard-
Jones potential, modified to yield smooth second derivatives at the cutoff (van der Eerden et al
1992). Let the stretch ratio be δ(t), and identify the loading parameter ζ with the stretch ratio,
so that equation (6) becomes

F = exp

(
−1

δ̇

∫ δ

1
k(ξ) dξ

)
. (8)

As discussed in Delph et al (2009), at a certain critical stretch ratio δc, the crystal lattice
becomes unstable and a defect in the form of a spherical cavity is nucleated. The atomic array
for this example was taken to be an assemblage of 8 × 8 × 8 unit cells containing a total of
2048 atoms subjected to periodic boundary conditions along each face. The region � was a
sphere centered within the assemblage.

The Wallace criterion, and hence the hTST model presented in the previous section, is,
to a certain point, sensitive to the number of atoms N contained within this region. Figure 1
shows the zero temperature critical stretch ratio at which cavitation will occur as computed
from the Wallace criterion for various values of N . It can be seen that for values of N in excess
of about 300, the value of δc is essentially constant, and is, moreover, in good agreement
with independent simulations carried out with the LAMMPS MD code5 (LAMMPS 2012),
the results from which are also shown in the figure. It will be noted, moreover, that a value
of N = 1 yields a value of δc that is approximately 50% in error. Arguing from the zero-
temperature results shown in figure 1, values of N on the order of 300–500 can be expected to
yield accurate results in the hTST model.

Figure 2 shows the hTST results for two different constant stretch rates, δ̇ = 106 s−1 and
δ̇ = 1010 s−1 and for two different values of N, N = 321 and N = 555, at a temperature of
20 K (Tmelt = 72 K for this material). Because cavitation is equally likely to occur anywhere

5 These LAMMPS simulations involved various-sized systems (4000 to 32000 atoms) subjected to quasi-static,
equitriaxial stretches. Each system was equilibrated at a fixed amount of stretch using a conjugate gradient energy
minimization algorithm, with stretch being incrementally increased until cavitation occurred. Like the system analyzed
using the Wallace method, the LAMMPS systems were subjected to periodic boundary conditions in all directions.
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–

Figure 2. hTST predictions for triaxial stretching for stretch rates of 106 and 1010 s−1.

Table 1. Calculated values of prefactor and energy barrier for the triaxial stretching of an fcc crystal
using the Wallace + hTST method for two different values of N .

N = 321 N = 555

δ − 1 Prefactor (s−1) Energy Barrier (eV) Prefactor (s−1) Energy barrier (eV)

0.105 4.091 × 1052 0.320 1.357 × 1062 0.396
0.106 1.568 × 1044 0.251 2.725 × 1047 0.278
0.107 3.265 × 1035 0.183 1.581 × 1032 0.160
0.108 3.396 × 1026 0.115 1.551 × 1016 0.042
0.109 1.411 × 1017 0.047 Instability

within the atomic array, Ns was taken to be 2048. The corresponding values for the prefactor
(defined as the coefficient of the exponential term in equation (5) less the Ns term) and the
energy barrier are given in table 1 for both values of N .

First of all, it can be seen that F varies rapidly from 1 to 0 over a narrow range of stretches,
yielding tight predictions for the range of stretch ratios over which cavitation may be expected.
The effect of the stretching rate upon the cavitation behavior is evident. Independent MD
simulations were conducted for this situation over the stretch rate range 106–1010 s−1 using the
LAMMPS code, and the bars on the figure show the range of predicted cavitation stretches.
These simulations used a slightly larger system of 10×10×10 unit cells (4000 atoms) that is first
equilibrated at 20 K and zero pressure for a period of 100 ps (105 time-steps of 0.001 ps/step)
using a Nosé–Hoover combination thermostat/barostat (NPT) algorithm for the isothermal–
isobaric ensemble. The system is then expanded triaxially at a uniform engineering stretch
rate with a time-integrator corresponding to a microcanonical (NVE) ensemble, a practice
commonly done in molecular simulations. Further details about these algorithms can be found
on the LAMMPS website: http://lammps.sandia.gov.

In general, the LAMMPS results show somewhat more stretch rate sensitivity than does
the hTST model, but the overall agreement between the two is quite good. We note, however,
that the validity of the hTST model at the highest stretch rate is questionable, a point upon
which we expand in the appendix.

6
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Figure 3. Variation of predicted defect nucleation stretch with N .

Figure 3 shows the effect of increasing the value of N upon the results. As we noted earlier
in connection with zero-temperature instabilities, the use of too small a value of N leads to
inaccurate predictions. However, for values of N sufficiently large so that the zero-temperature
instability stretch becomes insensitive to further increases in this quantity, predictions of defect
nucleation likewise become insensitive to increases in N . As figure 3 demonstrates, small
values of N, e.g., N = 13, considerably over-predict the stretch at which nucleation may be
expected. However larger values of N lying on the flattened portion of figure 1 give consistent
predictions that are in good agreement with MD simulations.

We now pass to a considerably more complicated example, that of nanoindentation of a
gold crystal on its (0 0 1) surface. Here the interatomic potential was taken to be an EAM-type
potential (Voter 1993), and the region � a rectangular solid whose upper surface was coincident
with the free surface of the Au crystal and centered upon the indenter. The atomic positions
required to compute the Hessian matrix were taken directly from zero-temperature LAMMPS
simulations, carried out at successive increments of 0.01 Å of indenter depth. The loading
parameter ζ in this case was taken to be the indentation depth d. For sufficiently large
indentation depths d , a V-shaped dislocation structure was nucleated at four to five atomic
planes beneath the indenter. The zero-temperature nucleation behavior in this case is discussed
in more detail by Delph and Zimmerman (2010). However of particular interest is the fact
that, for small indentation depths, the defect was found to be reversible, that is, it disappeared
if the indenter were raised. We discuss this point at greater length in the discussion.

Computations were carried out for two different indentation rates, ḋ = 109 Å s−1 and
ḋ = 1011 Å s−1, and for two different values of N = 486 and N = 845, values that were found
to yield accurate results for the zero-temperature dislocation nucleation behavior (Delph and
Zimmerman 2010). It was assumed that dislocation nucleation could occur in any one of a
3×3×3 block of unit cells underneath the indenter, leading to a value of Ns = 108. Values for
the prefactor and the energy barrier are given in table 2 for both values of N . Figures 4 and 5
show, respectively, the results obtained from the hTST model at two different temperatures,
T = 100 K and T = 300 K.

The range of indentation depths over which dislocation nucleation occurs in independent
LAMMPS simulations is indicated on both figures. These simulations are performed on
a system approximately 50 × 50 × 30 unit cells (30 0000 atoms) for which the bottom
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Table 2. Calculated values of prefactor and energy barrier for the indentation of an fcc crystal by
a 40 Å radius spherical indenter using the Wallace + hTST method for two different values of N .

N = 486 N = 845

d (Å) Prefactor (s−1) Energy barrier (eV) Prefactor (s−1) Energy barrier (eV)

2.83 8.137 × 1010 0.396 2.930 × 1010 0.378
2.84 7.186 × 1010 0.340 2.478 × 1010 0.281
2.85 3.969 × 1010 0.284 6.304 × 109 0.183
2.86 3.770 × 1010 0.222 4.586 × 109 0.077
2.87 1.813 × 1010 0.167 Instability
2.88 1.735 × 1010 0.107
2.89 1.478 × 1010 0.048

˚

Å
Å

I

Figure 4. hTST predictions for nanoindentation at T = 100 K.

20 000 atoms are held fixed and the remaining atoms are equilibrated to temperature (100 or
300 K) within 30 ps (30 000 time-steps of 0.001 ps/step). Indentation was done by prescribing
a quadratic force-field from the center of a rigid sphere of radius 40 Å that moves downward,
penetrating the top layer of the system at one of the rates given above. Details about
the algorithm for performing dynamic indentation can be found on the LAMMPS website:
http://lammps.sandia.gov.

Regarding both figures 4 and 5, we take note of the fact that the F versus d curves are, on the
scale of the horizontal axis, computed rather coarsely because the zero-temperature LAMMPS
results from which the Hessian matrix was computed were available only at intervals of
0.01 Å. Nevertheless, the overall trends are clear. As was the case with the stretching example
considered previously, the hTST predictions yield tight bounds for the range of indentation
depths over which dislocation nucleation is to be expected. These are in very good accord with
the LAMMPS results. Once again, however, the LAMMPS results demonstrate somewhat
greater rate sensitivity than is the case with those obtained from the hTST model, especially
at the higher value of N .

A major advantage of the TST approach to defect nucleation is that it is not limited to
the high rates typical of MD simulations. Figure 6 illustrates this feature, showing hTST
predictions ranging from ḋ = 1011 Å s−1 down to ḋ = 100 Å s−1, a factor of 109 variation in

8
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Å

Å

I

Figure 5. TST predictions for nanoindentation at T = 300 K.

Å

Å

Å

Å

I

Figure 6. TST predictions for nanoindentation at T = 300 K with N = 486, with indentation rates
varying from MD-scale down to laboratory scale.

indentation rates. The lowest of these values is typical of those achievable in the laboratory.
The rate sensitivity of the dislocation nucleation process is evident.

Finally, we consider the situation in which the indentation depth is held at a constant value.
It has been observed experimentally in these cases that, after some period of time, dislocation
nucleation may occur spontaneously underneath the indenter (Ngan et al 2006). Here F may
be computed very simply from equation (6), given the rate factor k at a given indentation depth
d. Figure 7 shows the variation of the time required to reach a value of F = 0.5 for various
values of indentation depth at T = 300 K and for N = 486, which is roughly a measure of the
average time required for dislocation nucleation. It can be seen that a variation in indentation
depth of just 0.1 Å produces a variation in average dislocation nucleation time of over 10 orders
of magnitude.
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I

Figure 7. Time required to reach a value of F = 0.5 under constant indentation depth.

4. Discussion

We have presented here a harmonic transition state (hTST) theory model for defect initiation
in crystals that differs in several significant respects from earlier work, most notably in the
manner in which the prefactor and the energy barrier in equation (5) are calculated. It draws
upon a recently developed model for zero-temperature defect initiation known as the Wallace
criterion (Delph et al 2009, Delph and Zimmerman 2010, Yun et al 2011). The Wallace
criterion has shown itself to be quite accurate in making predictions of defect nucleation in
the low-temperature regime for which temperature and rate effects are absent. The ability
to do this at zero temperature is, of course, a very desirable feature in a model that seeks
to predict temperature and temperature-associated effects. The Wallace criterion has several
other marked advantages with regard to hTST.

One is that it produces directly the potential energy surface curvatures for the hTST rate
factor in equation (5). Several previous TST models have made use of one-dimensional models
in which the hTST rate factor contains a single constant curvature component. Equation (5), on
the other hand, makes use of a considerably more accurate expression in which the prefactor
involves a fairly large number of curvature components. These curvature components, in
addition, vary from point to point along the loading path. At least with regard to the indentation
example presented, the use of just a single constant curvature component can underestimate the
prefactor in equation (5) by as much as 70%, as compared to the more accurate model presented
here. However in practice, the hTST rate factor was found to be relatively insensitive to the
value of the prefactor, as the rate factor was dominated by the exponential energy barrier term.

Here the Wallace criterion yields the energy barrier to defect nucleation in a direct fashion
as the difference between the saddle point energy associated with the group of N atoms and
that at a given point along the loading path. The saddle point is located in straightforward
fashion by moving sequentially upward along the loading path on the potential energy surface
until reaching the point at which the lowest eigenvalue of the Hessian matrix vanishes. This is
coincident with the zero-temperature instability point (Delph et al 2009, Delph and Zimmerman
2010, Yun et al 2011). This procedure, of course, implicitly assumes that the loading path
is the transition path along which defect nucleation proceeds. Previous work in this area has

10
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made use of variations on the nudged elastic band (NEB) technique to determine the energy
barrier. The goal of the NEB technique is to determine the so-called minimum energy path
between an initial undefected state and a final defected shape, which is the transition path of
greatest statistical significance. The technique employed here to determine the energy barrier
is hence of a somewhat ad hoc nature, since the path between the current state and the saddle
point state is not necessarily the minimum energy path between current and defected state, and
therefore may overestimate to some extent the actual size of the energy barrier. We justify this
method by the fact that the results are in good agreement with the results of MD simulations
for two very different situations. Moreover, the values of the energy barriers obtained by this
method (tables 1 and 2) are in very reasonable agreement with NEB-obtained values reported
by other investigators, e.g., Nguyen et al (2011).

In any case, the NEB method is of questionable applicability to the example problems
considered in the manuscript. The reason for this is that the NEB method, at least as it is
currently implemented, requires that the external load or deformation be the same for both
the initial undefected and the final defected states. Physically, this is a result of the implicit
assumption that the thermal processes leading to defect nucleation are much faster than the
loading/deformation process, a point which we address in the appendix in another context.
This requirement is predicated on the condition that the final defected state be stable under the
same loading/deformation condition. Alternatively, this condition can be expressed as one of
irreversibility, i.e. the defect must persist when the system is brought to the load/deformation
level for the initial state. Our analysis of the nanoindentation example indicates that this
requirement is not satisfied by the initially formed defect, which was found to disappear as the
indenter was raised incrementally to return to its position at the initial state. Such reversible
defect behavior is not uncommon in atomistic simulations, e.g. Zimmerman et al (2009). Our
example problem of cavitation is also difficult to treat with the NEB method, as the final,
equilibrated state is quite ‘far’ in the potential energy landscape from the point at which the
instability begins.

Moreover, the NEB method requires an a priori assumption as to the nature of the nucleated
defect in order to define the end state for the NEB calculation. The value of the energy barrier
thus computed may be expected to be sensitive, to a greater or lesser extent, to the accuracy
of this assumption. The method used here, by contrast, requires no such advance knowledge.

As was found to be the case at zero temperature (Delph et al 2009, Delph and Zimmerman
2010, Yun et al 2011), moderately large values of N are required to obtain accurate results
with the present model. Physically, this is a reflection of the fact that defect initiation involves
the coordinated motion of a fairly large number of atoms (Miller and Rodney 2008). We
have not attempted here to carry out formal convergence studies of the predictions of our
model as a function of N. However, we feel that the results shown here demonstrate reasonable
convergence, given the trends shown in figure 3 and the fact that a near doubling of the value
of N in figures 4 and 5 shifts the curves by only about 0.04 Å.

We have neglected the effects of temperature upon the potential energy surface itself.
We feel that this represents a reasonable approximation at moderate temperatures, as the
results presented here demonstrate. At higher temperatures, however, such effects may well
be important, and have been a source of concern in the recent literature, e.g. Zhu et al (2008),
Warner and Curtin (2009), Hara and Li (2010), Ryu et al (2011). In order to account at least
to some extent for these temperature effects, Ryu et al (2011) have introduced a formulation
in which the TST energy barrier is given in terms of a free energy barrier, and which contains,
by consequence, an entropic term. We note that the present TST model may also be posed
in this fashion if one adopts the harmonic approximation for the entropy (Vineyard 1957). In
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particular, if we write equation (5) as

k = ν∗e−�E/kT , (9)

then Vineyard (1957) showed that one may also write

k = ν̃e−�F/kT , (10)

where �F is the Helmholtz free energy barrier, with

ν∗ = ν̃e�S/k. (11)

Using the harmonic approximation for the entropy, one may represent the entropic factor
in equation (11) entirely in terms of quantities defined upon the potential energy surface.
This yields a formulation identical to that presented here. See also Weiner (2002) in this
connection. Thus, although they do not appear explicitly, the model presented here considers
entropic effects within the context of the harmonic approximation (sometimes also known
as the vibrational contribution to the entropy). One may, however, question the accuracy of
the harmonic approximation to the entropy, as Ryu et al (2011) have done. These authors
have pointed to configurational effects such as increases in the lattice constant with increasing
temperature that will act to affect the potential energy surface. Moreover the lattice itself
will become increasingly disordered as the melting temperature is approached. On the other
hand, the very good agreement between the hTST model predictions and MD simulations for
the examples presented here seems to indicate that such contributions to the entropy are not
particularly significant for these cases.

In terms of the physics of the defect initiation process, the present results indicate
that defect nucleation is very sensitive to the loading parameter. For example, for the
nanoindentation example presented here, defect initiation occurs over a range of indenter
depths on the order of just several hundredths of an angstrom. Moreover under static loading,
a variation in indenter depth of as little as 0.1 Å results in a variation in mean indentation time
of over 10 orders of magnitude.

Previous work with TST models have involved scenarios in which the initial, pre-defected
state was one of uniform deformation, either uniaxial tension, compression, or simple shear.
The nanoindentation example treated here is, by contrast, much more complicated than earlier
efforts along these lines. This was accomplished in part by the use of large-scale molecular
statics codes to determine the zero-temperature interatomic spacings, a technique that is
generally valid for complex inhomogeneous deformation states. This, of course, requires
a not-inconsiderable numerical effort. This effort may be mitigated to some extent by the use
of hybrid continuum-atomistic techniques, such as the quasi-continuum method, e.g. Miller
and Tadmor (2002), for especially large systems, but may still be substantial. Such an effort
would not be justified were it not for the fact that TST models have the ability to reach much
slower loading rates and much longer time scales than are accessible to molecular dynamics
codes.

At the opposite end of the scale, it is worth pointing out that TST models are of questionable
validity at very high loading rates or on very short time scales, including some of the highest
rates presented here. Because comparisons between MD simulations and TST models have
been frequent in the literature, we discuss this issue in somewhat more detail in the appendix.

Based upon the very good agreement with independent molecular dynamics simulations,
we believe the hTST model described here to be capable of making reliable predictions of
temperature and rate effects upon defect nucleation. For reasons that are yet unclear, the
hTST results show somewhat less rate dependence than do the numerical simulations. This
may indicate a deficiency in the hTST approximation. However, the overall agreement is still
very satisfactory. Accordingly we feel that this model represents a promising tool for defect
prediction at non-zero temperatures and at laboratory loading rates and time scales.
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Appendix

We address here the question of the upper limit of validity of TST models at high loading rates
or short time scales by means of a simple, order-of-magnitude argument. The basic picture
underlying TST is that a group of atoms oscillating in a potential energy well. Randomly, and
after a sufficient number of oscillations, the atoms acquire sufficient kinetic energy to make
the jump into an adjacent potential energy well. One means by which loading or deformation
rate could affect this picture would be if the deformation rate were to change the nature of
the atomic configuration, and hence the underlying potential energy surface, on a considerably
shorter time scale than would be required for the atoms to leave that configuration and transition
to another. Put slightly differently, TST assumes that the potential energy surface is static,
but if this were not the case and if the potential energy surface were changing on a time scale
faster than the period of atomic oscillation, then the validity of TST would be questionable.
An estimate of the limits of validity of TST under high deformation rate may then be obtained
by comparing the time required to ‘significantly’ change the atomic configuration to that of
the period of atomic oscillation.

We focus on the uniform stretching example set forth previously for which the stretch rates
ranged from δ̇ = 106 − 1010 s−1. Similar, although necessarily more complicated, estimates
can be made for the nanoindentation example, although we do not attempt them here. In any
case, the increment in stretch over a given time increment �t is simply �δ = δ̇�t. Assume as
a reasonable estimate that a 1% increase in stretch is the greatest stretch that could be sustained
without ‘appreciably’ changing the nature of the potential energy surface. Then at the highest
stretch rate of δ̇ = 1010 s−1,

�tmin ∼ 0.01

1010
= 10−12 s. (A1)

Now we need to calculate the period of atomic oscillation. The minimum positive
eigenvalue extracted from the Hessian matrix at the point of hTST defect nucleation is
approximately kmin = 0.2 in nondimensional units, or in dimensional units (van der Eerden et al
(1992)), kmin = 3.0 × 10−3 J m−2. The potential energy well corresponding to this eigenvalue
is U = 1

2kminx
2. Given the mass of the argon atom as 6.635 × 10−26 kg, the minimum period

of atomic oscillation is therefore

Tmin = 2π

√
m

kmin
= 3.0 x 10−11 s. (A2)

Thus, we conclude that a stretch rate of 1010 s−1 strains the limits of validity of TST. For rates
that are 109 s−1 and lower, the condition �tmin < Tmin is satisfied and TST should be valid.

Support for this conclusion can be gained by a careful examination of accompanying
MD simulations for this situation. Figure A1 shows the variation of hydrostatic stress with
increasing stretch for the triaxial stretching example, while figure A2 shows the variation
of temperature. The simulations performed here used a system of 4000 atoms initially at a
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Figure A1. Variation of hydrostatic stress with stretch for stretch rates varying from 106 to 1010 s−1.
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temperature of T = 20 K. The simulation is not run isothermally; rather, the equations of
motion for a microcanonical (NVE) ensemble are used in conjunction with the application
of a uniform stretch rate that expands the system over time. As a result and as shown in
figure A2, the system experiences adiabatic cooling in the elastic regime followed by rapid
heating during the initiation of defects and onset of plastic deformation. This same behavior
was noticed by Seppälä et al (2004). Simulations were also performed for significantly larger
systems (108 000 atoms), which produced similar graphs with the same trends as shown in
figures A1 and A2.

Figures A1 and A2 clearly show that for stretch rates from 109 s−1 down to 106 s−1, the
system follows essentially the same trajectory in the evolution of temperature and stress with
increasing stretch, at least up to the instability point of defect initiation. We do notice some
dependence of the stretch associated with this instability point on the loading rate, but this
difference is minor for the three lowest rates and appears to be converging as rate decreases.
In contrast to rates �109 s−1, we observe that the system follows a decidedly different path
at a stretch rate of 1010 s−1, even in the elastic regime, with the instability point much less
clearly defined. These stress and temperature curves support the hypothesis that at the highest
rate (1010 s−1) the potential energy surface is changing as fast as the atomic oscillations allow
exploration of that surface, whereas at lower rates (109 s−1 and below) the surface is static
relative to the speed of this exploration.
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