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Abstract
We demonstrate the feasibility of using classical atomistic simulations, i.e. molecular dynamics
and molecular statics, to study the piezoelectric properties of ZnO using core–shell interatomic
potentials. We accomplish this by reporting the piezoelectric constants for ZnO as calculated
using two different classical interatomic core–shell potentials: that originally proposed by
Binks and Grimes (1994 Solid State Commun. 89 921–4), and that proposed by Nyberg et al
(1996 J. Phys. Chem. 100 9054–63). We demonstrate that the classical core–shell potentials are
able to qualitatively reproduce the piezoelectric constants as compared to benchmark ab initio
calculations. We further demonstrate that while the presence of the shell is required to capture
the electron polarization effects that control the clamped ion part of the piezoelectric constant,
the major shortcoming of the classical potentials is a significant underprediction of the clamped
ion term as compared to previous ab initio results. However, the present results suggest that
overall, these classical core–shell potentials are sufficiently accurate to be utilized for large
scale atomistic simulations of the piezoelectric response of ZnO nanostructures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Bulk piezoelectric materials have long been of interest
to scientists and engineers due to their ability to convert
mechanical strain into harvestable electrical energy [3, 4],
where piezoelectricity is known to occur in materials with
non-centrosymmetric crystal structures. However, there has
recently been a significant rise in interest and excitement about
the potential of piezoelectric nanomaterials; this excitement
has taken hold for two key reasons.

First, Wang and co-workers [5–7] recently demonstrated
a technique by which an atomic force microscope (AFM)
could be utilized to harvest electrical energy from bent ZnO
nanowires. Similar findings were reported by other research
groups for GaN nanowires [8] and ZnO nanowires [9], though
other groups [10] were unable to reproduce the experiments of
Wang et al.

Second, both experiments [11] and theory [12–14] have
demonstrated that due to nanoscale surface effects, ZnO
nanostructures have larger piezoelectric constants than are

found in bulk ZnO. The larger piezoelectric constants in
conjunction with the experimental finding that ZnO nanowires
show an increase in their Young’s modulus with decreasing
nanostructure size [15, 16] are important as they collectively
suggest that ZnO nanowires are capable of producing, in
relative terms, more mechanical strain energy that can be
converted through the piezoelectric effect into harvestable
electrical energy than can bulk ZnO [5].

On the theoretical front, researchers have, for about the
past 15 years, successfully utilized computational techniques
to calculate the piezoelectric constants for piezoelectric
materials. In particular, since the development of the
Berry phase approach in the early 1990s [17–19], there has
been extensive work in using various ab initio calculation
techniques, and in particular density functional theory (DFT),
to calculate the bulk piezoelectric constants for various
materials. Examples of such work that specifically address the
piezoelectric constants for ZnO include that of Dal Corso et al
[20], Bernardini et al [21], Hill and Waghmare [22], Noel et al
[23, 24], and Catti et al [25].
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Table 1. Buckingham and core–shell parameters for the Binks et al
[1] and Nyberg et al [2] core–shell potentials for ZnO.

Species A (eV) ρ (Å) C (eV Å
6
)

Binks O2−–O2− 9 547.96 0.219 16 32.0
Zn2+–O2− 529.70 0.358 1 0.0
Zn2+–Zn2+ 0.0 0.0 0.0

Nyberg O2−–O2− 22 764.0 0.149 0 27.88
Zn2+–O2− 499.6 0.359 5 0.0
Zn2+–Zn2+ 0.0 0.0 0.0

Y+ k+ (eV Å
−2

) Y− k− (eV Å
−2

)

Binks 2.00 −2.04 6.3
Nyberg 2.05 8.77 −2.00 15.52

The limitations of ab initio approaches to elucidate
the size-dependent effects on the piezoelectric properties
of nanomaterials are a key motivation for the present
work. The major limitation is the fact that ab initio
calculations, due to computational expense, are typically not
utilized to study nanostructures with dimensions larger than
about 5 nm. This is problematic when considering recent
experimental results [11], which have shown enhancements
in the piezoelectric properties of ZnO nanostructures with
dimensions exceeding 100 nm. Furthermore, ab initio
calculations do not account for finite temperature, or thermal
effects; this precludes them from elucidating the size-
dependent pyroelectric properties of nanostructures.

In contrast, classical atomistic simulations, i.e. molecular
dynamics (MD), are inherently able to circumvent some of
the length scale and temperature issues associated with ab
initio calculations. For example, MD simulations are routinely
utilized to study nanowires with cross sectional sizes greater
than 30 nm [26], and to study nanostructures containing
millions of atoms [27]. Furthermore, MD techniques are well
developed to study changes in the lattice constants due to
variations in both the pressure [28] and the temperature [29].
Therefore, as classical atomistic simulations are well
positioned to help bridge the length scale and temperature
gap between modeling and experiments to elucidate the size-
dependent piezoelectric properties of ZnO nanostructures, it
is necessary to develop a fundamental understanding as to
the capabilities and shortcomings of classical interatomic
potentials in representing the piezoelectric response of ZnO.

However, in contrast to the extensive literature regarding
ab initio calculations of the piezoelectric constants of ZnO, we
have found that there are few such reports on the piezoelectric
constants for ZnO calculated using classical interatomic
potentials for ZnO, where the interatomic potentials for ZnO
are typically based upon the core–shell model originally
proposed by Dick and Overhauser [30] in which a massive core
is surrounded by a massless, polarizable shell. While these
core–shell potentials are limited by the approximation that the
charge on the shell remains constant and independent of the
state of deformation, it is the polarizable shell that enables
these classical potentials to capture polarization in ZnO and
other ionic materials.

Table 2. Optimized lattice constants for the Binks et al [1] and
Nyberg et al [2] core–shell potentials for ZnO.

Constant Binks Nyberg

a (Å) 3.265 3.2303
c (Å) 5.155 5.0767
u 0.3882 0.389

While classical potentials have not been utilized to
study the piezoelectric properties of ZnO, they have recently
been utilized to study the electromechanical properties of
other materials. For example, Zhang et al recently
utilized classical core–shell potentials to calculate the size-
dependent polarization [31, 32] in BaTiO3 nanowires, while
Sharma et al have used polarizable charge-based force fields
to calculate the size-dependent piezoelectric constants for
BaTiO3 nanowires [33]; Sharma et al [34] have also utilized
core–shell potentials to calculate the flexoelectric constants for
various crystalline dielectrics [34], though not ZnO.

It is therefore the objective of the present work to
report the piezoelectric constants for ZnO as calculated using
two different classical interatomic core–shell potentials, that
originally proposed by Binks et al [1], and that proposed by
Nyberg et al [2]. Importantly, the piezoelectric constants were
calculated using the same methodology as has been employed
in the numerous ab initio calculations of piezoelectric
constants [20–25]. We demonstrate that the classical potentials
are able to qualitatively reproduce the piezoelectric constants
as compared to benchmark ab initio calculations. We further
demonstrate that the presence of the shell is required to capture
the electron polarization that controls the clamped ion portion
of the piezoelectric constant. The present results suggest that
these classical core–shell potentials are sufficiently accurate
as to be utilized for large scale atomistic simulations of the
piezoelectric response of ZnO nanostructures.

2. Method

The core–shell potentials for ZnO that we consider in the
present work take a Buckingham-type form

U(ri j) = qi q j

ri j
+ A exp

(−ri j

ρ

)
− C

r 6
i j

, (1)

where the first term on the right-hand side of equation (1)
is the long-ranged Coulombic energy, while the second and
third terms represent the short-range repulsion and attraction,
respectively. We consider two classical core–shell potentials,
that of Binks et al [1], and that of Nyberg et al [2]; we
note that the Nyberg et al potential is based upon the original
potential of Lewis and Catlow [35]. The potential parameters
for both potentials are shown in table 1 while the optimum
lattice constants for both potentials are shown in table 2; we
note that the optimum lattice constants for the Binks potential
were found in the work of Hu et al [36].

We also note that both the Binks and Nyberg potentials
can be represented as either a traditional core-only (rigid ion)
potential, or a core–shell potential, in which each point ion
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consists of a core of charge X and a shell of charge Y such
that the sum of the core and shell charges (X + Y ) equals
the formal charge of the ion [37, 38]. The key idea behind
introducing the additional shell degree of freedom is to enable
the ion to polarize in response to an electric field due to the
surrounding ions. Note that there is no electrostatic interaction
between the core and shell of the same ion, and that the shell
model reproduces the ion polarizability α, i.e.

α = Y 2

K
, (2)

where Y is the charge on the shell, which is harmonically
coupled to the core through the spring constant K ; these core–
shell parameters are shown in table 1 for both the Binks and
Nyberg potentials.

Both the Binks and Nyberg potentials have been utilized
extensively in studies of the mechanical or elastic properties
of ZnO nanostructures. For example, the Binks potential
was utilized by Kulkarni et al [39, 40] to study novel
phase transformations in ZnO nanowires; a similar phase
transformation was later found using DFT calculations by
Alahmed and Fu [41]. The Binks potential was similarly
utilized by Agrawal et al [16] and Hu et al [36, 42] to study
the elastic properties of ZnO nanowires, while the properties of
the Nyberg potential in capturing the relaxation and structure
of ZnO surfaces was extensively studied by Nyberg et al
[2]. We note that the studies using the Binks potential
predicted an increase in the effective nanowire Young’s
modulus with decreasing nanowire diameter, which is in
agreement with recent experiments on ZnO nanowires [15, 16].
However, it is critical to note that in the majority of
these simulations, particularly those involving the Binks
potential [16, 36, 39, 40, 42], the effects of the core–shell
interactions were not considered.

3. Piezoelectric constants

In previous ab initio work [20–25], the piezoelectric constants
e33, e31, and e15, were calculated according to the following
relationship [25]:

ei j = e(0)

i j + eint
i j , (3)

e(0)

i j = ∂ Pi

∂ε j

∣∣∣∣
u

, (4)

eint
i j = ∂ Pi

∂u

∣∣∣∣
ε j

du

dε j
. (5)

In equations (3)–(5), e(0)
i j is the clamped ion term, which

in ab initio calculations represents the influence of electron
delocalization on the piezoelectric properties, while eint

i j is
called the internal strain term, and represents the contribution
of the change in atomic fractional coordinates u to the
piezoelectric properties [25].

To calculate the piezoelectric constants using the classical
core–shell potentials described in the present work, we first
define the polarization P3 as

P3 = P3 (u(ε3), ε3) = Pelec
3 (ε3) + Pdis

3 (u(ε3)) , (6)

from which the piezoelectric constants, for example e33, can be
calculated as

e33 = ∂ P3

∂ε3
= ∂ Pelec

3 (ε3)

∂ε3
+ ∂ Pdis

3 (u(ε3))

∂ε3
,

= ∂ Pelec
3 (ε3)

∂ε3
+ ∂ Pdis

3 (u(ε3))

∂u(ε3)

du(ε3)

dε3
,

= ∂ P3

∂ε3

∣∣∣∣
u

+ ∂ P3

∂u(ε3)

∣∣∣∣
ε3

du(ε3)

dε3
,

= e(0)

33 + eint
33 , (7)

where Pdis
3 (u(ε3)) represents the displacement-based polar-

ization due to changes in the fractional atomic coordinate u,
i.e. due to the relative displacement between the zinc and
oxygen atoms, Pelec

3 is the polarization that occurs due to the
relative separation between the core and the shell, and where
in our molecular statics calculations, the polarization P3 is
calculated as:

P3 = e31ε1 + e32ε2 + e33ε3,

=
∑

i �ri qi

Vcell
= −4qu√

3a2
0(1 + ε1)(1 + ε2)

, (8)

where e31 = e32, ε1 = ε2 = ε = (a−a0)/a0, ε3 = (c−c0)/c0.
The classical decomposition in equations (6) and (7) was

chosen such that a direct correlation between the terms in
the ab initio decomposition in equation (3) and the classical
decomposition could be made. First, it can be seen that the
second term on the right-hand side of equation (7) directly
corresponds to the internal strain terms in the ab initio
expression in equation (3). Second, we can clearly see that
the classical analog to the electron delocalization effect, which
is the basis for the clamped ion term e(0)

33 in equation (3), is
the electron polarization which arises entirely from the relative
separation between the core and shell. Furthermore, it can be
seen in equation (7) that if the shell is not considered in the
classical theory, i.e. the rigid ion approximation is used, then
the clamped ion term e(0)

33 = 0 as there can be no polarization
between the core and the shell [25].

We also note that the approach delineated in equations (3)–
(7) does not work for all polarizable core–shell potentials.
For example, we consider the core–shell potential for GaN
developed by Zapol et al [38]. In that potential, the effective
charges on the Ga and N ions are taken to be ±2e, to account
for the partially covalent and partially ionic nature of the
bonding. However, the actual effective charges as calculated by
ab initio calculations are about ±2.7e [21]. The problem with
this charge reduction is that it results in a polarization P3 that
is about 33% smaller than it should be as compared to an ab
initio calculation simply because the value of the polarization
depends on the effective charge q , as seen in equation (8).
This issue does not arise for ZnO because the effective
charges as calculated using ab initio are about ±2.05e [20],
which are nearly identical to the classical values seen in
table 1. Therefore, the ab initio methodology of calculating
the piezoelectric constants described in equations (3)–(7) will
not work for the particular potential of Zapol et al [38] without
a modification to the effective charges of the Ga and N ions.

To calculate these piezoelectric constants using classical
atomistic simulations, it is important to distinguish between

3
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Table 3. Summary of piezoelectric constants e33 calculated using classical interatomic potentials, both with and without the shell, as
compared with the DFT results summarized in tables 2 and 5 of Noel et al [23]; Peq is the spontaneous polarization, in units of C m−2.

Method No shell No shell Shell Shell DFT

Potential Binks Nyberg Binks Nyberg

Peq −0.092 −0.099 −0.092 −0.099 −0.029 → −0.057
du/dε3 −0.182 −0.182 −0.217 −0.211 −0.21 → −0.254
∂ P3/∂u −6.94 −7.09 −6.94 −7.09 −7.10 → −7.60

e(0)

33 0 0 −0.26 −0.22 −0.45 → −0.73

e(0)

33 /eint
33 0 0 −0.173 −0.147 −0.272 → −0.353

ẽ33 = e33 1.27 1.29 1.25 1.27 0.89 → 1.31

the proper and improper piezoelectric constants [25, 43]. As
noted by Vanderbilt [43], the improper piezoelectric tensor is
calculated as

ei jk = ∂ Pi

∂ε jk
, (9)

where we note that throughout this work, we have used
Voigt’s notation for the piezoelectric constants. The issue
with the improper piezoelectric constants is that they do
not account for the fact that the polarization is a multi-
valued function that depends upon the position in the crystal
lattice where it is evaluated; this point is articulated in
detail by Vanderbilt [43]. Therefore, in order to calculate
proper, or invariant piezoelectric constants, we utilized the
expression [43]

ẽi jk = ei jk + δ jk Pi − δi j Pk . (10)

The three proper piezoelectric constants that we will calculate
in the present work are defined as:

ẽ33 = e33, ẽ31 = e31 + P3, ẽ15 = e15 − P3. (11)

where the clamped ion term should also be calculated using the
proper definition [44]:

ẽ(0)

i jk = e(0)

i jk + δ jk Pelec
i − δi j Pelec

k . (12)

The piezoelectric constants were calculated by considering a
wurtzite ZnO nanostructure with 10 × 10 × 10 unit cells in
each dimension for a total of 4000 atoms; periodic boundary
conditions were imposed in all three coordinate directions
to mimic a bulk ZnO crystal. The size of the periodic
nanostructure was slightly different between the Binks and
Nyberg potentials owing to the different lattice constants
a and c seen in table 2; the sizes were 3.265 nm ×
2.828 nm × 5.155 nm for the Binks potential and 3.230 nm ×
2.798 nm × 5.077 nm for the Nyberg potential. All
classical atomistic simulations were performed using the
general purpose molecular simulation code Gromacs [45],
where the long-range Coulombic forces and energies were
calculated using the Ewald summation technique.

Small strains between −1 and 1% were applied
using the strain states defined below to calculate the
piezoelectric constants. Specifically, the strain applied to
calculate e33 was prescribed as, following Catti et al [25],
[ 0 0 ε 0 0 0 ], giving:

ẽ33 = ∂ P3

∂ε3
= e33 = −4q√

3a2
0

du

dε3
. (13)

For e31, the applied strain was [ ε ε 0 0 0 0 ], giving:

ẽ31 = ∂ P3

∂ε1
+P3 = e31+P3 = a0

2

∂ P3

∂a
+P3 = −2q√

3a2
0

du

dε
. (14)

For e15, the strain was [ 0 0 0 2ε 2
√

3ε 0 ], giving:

ẽ15 = e15 − P3 = ∂ P1

∂ε5
− P3 = 1

2
√

3

dP1

dε
− P3. (15)

We emphasize that the expressions on the right-hand sides
of equations (13)–(15) correspond to the values that can
be obtained analytically for a classical rigid ion model
(i.e. neglecting the effects of the shell) as described by
Catti et al [25], which corresponds to considering the
displacement polarization only in equation (6). In particular,
because the classical rigid ion model cannot capture electron
polarization due to the relative core–shell displacements, the
factor multiplying the du/dε term on the right-hand sides of
equations (13) and (14) corresponds to the ∂ P3/∂u part of the
piezoelectric constant in equation (7).

4. Numerical results

The results for the piezoelectric constant ẽ33 calculated using
the two classical potentials are summarized in table 3. There,
all terms, including the clamped ion term e(0)

33 , and the two
terms comprising the internal strain term, along with the
proper and improper piezoelectric constants are tabulated and
compared to the range of DFT values given in tables 2
and 5 of Noel et al [23]. The plots resulting from the
atomistic simulations from which the values in table 3 were
generated are shown in figure 1; we note that the values in
table 3 were obtained by performing linear fits to the data in
figure 1. We note that the no shell values in table 3, which
correspond to evaluating only the displacement polarization
Pdis

3 in equation (6), can also be obtained directly by evaluating
equation (13).

The first thing we observe is that, regardless of whether
the shell is utilized or ignored, the piezoelectric constant e33 =
ẽ33 for both potentials falls within the range of previously
published DFT values [23]. We note that the term ∂ P3/∂u can
be calculated analytically as shown in equation (13) from the
expression

∂ P3

∂u

∣∣∣∣
ε3

= − 4q√
3a2

0

. (16)
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Figure 1. Plots utilized to calculate the piezoelectric constant e33.
Top: equilibrium fractional coordinate u as a function of the strain
ε3. Bottom: polarization P3 as a function of the strain ε3.

It is clear from equation (16) that ∂ P3/∂u depends only upon
the lattice constant a0, which is potential dependent; this
explains why the Binks and Nyberg potentials in table 3 have
slightly different values for this term.

We also list values for the spontaneous polarization Peq in
table 3, where Peq is defined as the difference in polarization P3

between the ideal wurtzite crystal state (i.e. when u = 0.375),
and the minimum energy configuration for the ZnO crystal,
which occurs at values of u = 0.3882 and 0.389 for the
two potentials we have considered. This difference in lattice
constants also explains why the spontaneous polarization Peq

that is calculated using the Binks (−0.092) and Nyberg
(−0.099) potentials is about a factor of two to three times
larger than the values ranging from about −0.03 to −0.06 that
have been reported using DFT calculations [23]. Specifically,
because the minimum energy configurations for both potentials
occur for the lattice ratio u = 0.3882 or u = 0.389 in
table 2, both of which are larger than the value of u = 0.382
that was reported in the previous DFT calculations [23], the
spontaneous polarization that is predicted by the classical
potentials is correspondingly larger.

However, if the individual terms comprising the
piezoelectric constant, i.e. the clamped ion and internal strain
terms, are considered, the importance of considering the
shell becomes apparent. First, table 3 demonstrates that

when the shell is considered, for both the Nyberg and Binks
potentials, the du/dε3 term becomes more negative due to
increased relaxation effects, and thus becomes more accurate
as compared to the DFT results which range between −0.21
and −0.254. More importantly, table 3 demonstrates that when
the shell is neglected, the clamped ion term e(0)

33 = 0, which is
obviously incorrect physically. This result is consistent with
the result given by Catti et al [25], who noted that any rigid ion
model will give a zero clamped ion term for a periodic system.

However, when the core–shell interactions are accounted
for, the clamped ion term e(0)

33 for the Binks and Nyberg
potentials take values of −0.26 and −0.22, respectively. While
these values have the correct sign, they are about 50% smaller
than the lower bound DFT value of −0.45. Furthermore, the
underprediction of the clamped ion term has a strong effect
on the expected ratio between the clamped ion and internal
strain contributions to the piezoelectric constant (e(0)

33 /eint
33 ) seen

in table 3. Specifically, that ratio as calculated using both
classical core–shell potentials is also at least 50% smaller than
the expected ratio from previous DFT calculations. Both of
these results are likely due to the fact that while the core–
shell spring constant in equation (2) was fit to reproduce the
ion polarizability [1, 2, 35], it was not fit to reproduce the
piezoelectric constants, i.e. a softer spring connecting the core
and the shell would lead to a larger electron polarization.

Overall, the classical potentials qualitatively capture the
tendency found in DFT calculations of the piezoelectric
constants of ZnO that the clamped ion contribution e(0)

33 to the
total piezoelectric constant ẽ33 is relatively small as compared
to other tetrahedrally bonded semiconductors such as ZnS [20],
which indicates that the core–shell potentials capture the
importance of strain-induced internal relaxation between anion
and cation sublattices for the piezoelectric response of ZnO.

The results for the piezoelectric constant ẽ31 calculated
using the two classical potentials are summarized in table 4.
There, all terms, including the clamped ion term e(0)

31 , and the
two terms comprising the internal strain term, along with the
proper and improper piezoelectric constants are tabulated and
compared to the range of DFT values given in table 5 of Noel
et al [23]. We also show in table 4 the value of the polarization
P3 that is needed to evaluate the proper piezoelectric constant
ẽ31 in equation (14), where P3 is the value of the polarization
that is calculated assuming the equilibrium, zero strain lattice
constants for each potential that are given in table 2.

The plots resulting from the atomistic simulations from
which the values in table 4 were generated are shown in
figure 2. We note that the biaxial nature of the strain that is
needed to calculate e31 is written as

du

dε12
= du

d(ε1 + ε2)
= 1

2

du

dε
, (17)

while

e31 = ∂ P3

∂ε1
= 1

2

∂ P3

∂ε
. (18)

As can be seen in table 4, the terms comprising the
piezoelectric constant e31 that were calculated using the
classical potentials again show reasonable agreement with
those obtained from DFT, with similar trends and shortcomings

5
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Table 4. Summary of the proper (ẽ31) and improper (e31) piezoelectric constants calculated using classical interatomic potentials, both with
and without the shell, as compared with the DFT results summarized in table 5 of Noel et al [23].

Method No shell No shell Shell Shell DFT

Potential Binks Nyberg Binks Nyberg

du/dε 0.078 0.069 0.095 0.084 0.108 → 0.131
∂ P3/∂u −6.94 −7.09 −6.94 −7.09 −7.10 → −7.60
P3 −2.695 −2.759 −2.695 −2.759

e(0)

31 0 0 0.13 0.11 0.22 → 0.38

e(0)
31 /eint

31 0 0 0.199 0.185 0.287 → 0.343
ẽ31 −0.54 −0.49 −0.53 −0.48 −0.51 → −0.69
e31 2.15 2.27 2.16 2.28

Figure 2. Plots utilized to calculate the piezoelectric constant e31.
Top: equilibrium fractional coordinate u as a function of the biaxial
strain ε. Bottom: polarization P3 as a function of the biaxial strain ε.

as observed previously in table 3 for e33. Specifically, the value
for du/dε, while positive for e31 rather than negative, increases
and becomes more accurate as compared to the DFT results
when the shell is included. Similarly, the clamped ion term e(0)

31
is zero when the shell is ignored, but takes on a finite, positive
value when the shell is considered.

We also note that due to the opposite signs that are
observed for du/dε and ∂ P3/∂u in table 4, the internal
strain term eint

31 is negative. This is important as it means

Table 5. Summary of the proper (ẽ15) and improper (e15)
piezoelectric constants calculated using classical interatomic
potentials, both with and without the shell, compared with the DFT
results summarized in table 3 of Catti et al [25].

Method No shell No shell Shell Shell DFT

Potential Binks Nyberg Binks Nyberg

dP1/dε −11.013 −11.162 −11.003 −11.150
P3 −2.693 −2.752 −2.693 −2.752

e(0)

15 0 0 0.0426 0.0413 0.22
ẽ15 −0.486 −0.470 −0.483 −0.466 −0.46
e15 −3.179 −3.222 −3.176 −3.219

that the classical core–shell potentials are able to capture,
in a qualitative manner, the fact that the biaxial strain state
described in equation (17) produces inner ionic relaxations that
oppose the strain directions, as is expected from previous DFT
calculations [25].

Similar to the clamped ion term e(0)

33 , the value of
the clamped ion term e(0)

31 is at least 50% smaller than
the corresponding DFT value. This underprediction of the
clamped ion term also manifests itself in the ratio between
the clamped ion and internal strain contributions to the
piezoelectric constant ẽ31 in table 4. Specifically, the e(0)

31 /eint
31

ratio as calculated using the classical core–shell potentials is
again about 40–50% smaller than the expected ratios from
previous DFT calculations.

Table 4 also demonstrates the necessity of calculating the
proper piezoelectric constant ẽ31 using equation (10) rather
than the improper piezoelectric constant e31. Specifically, the
improper piezoelectric constant e31 takes on a large, positive
value. However, when the polarization P3 is added back to e31,
small negative values of ẽ31 are obtained that are in line with
previous DFT calculations.

Lastly we discuss the final piezoelectric constant of
interest e15; the calculated values using both core–shell
potentials is shown in table 5, while the plot of the polarization
versus the strain from which the piezoelectric constants were
obtained is shown in figure 3. We note first that following from
equation (11), the proper (ẽ15) and improper (e15) values of
the piezoelectric constant should be different, as is observed in
table 5. Second, we note that the polarization P1 vanishes for
ZnO at zero strain; this is due to the symmetry of the wurtzite
crystal that exists in the plane of the crystal.
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Figure 3. Polarization P1 versus strain ε plot that was utilized to
calculate the piezoelectric constant e15.

The trends are similar as for the previously calculated
piezoelectric constants ẽ33 and ẽ31. Specifically, the clamped
ion term in this case is significantly smaller, by nearly an order
of magnitude, as compared to the DFT calculation; however, it
does have the correct sign. However, similar to what was found
for the other piezoelectric constants ẽ33 and ẽ31, the calculated
value for ẽ15 is found to be comparable to the reported DFT
value.

One possible reason for the very small value of the
clamped ion term for e15 arises due to the isotropic nature of the
spring force that describes the core–shell interactions [1, 2, 35].
Specifically, because the shear strains that are needed to
calculate e15 result in smaller changes in bond lengths than
either the uniaxial or biaxial tension that is applied to calculate
e33 or e31, a smaller force is generated to separate the core and
shell in shear, thus leading to a smaller electron polarization.
It therefore seems possible that e15 could be improved by
utilizing an anisotropic spring force between the core and the
shell, for example as described by van Maaren and Spoel [46].

5. Conclusions

We have demonstrated that classical polarizable core–
shell interatomic potentials are able to qualitatively capture
the piezoelectric properties of bulk ZnO as compared
to benchmark DFT calculations. Specifically, we have
demonstrated that when the effects of the polarizable shell are
accounted for, the core–shell potentials are able to qualitatively
capture the effects of the clamped ion contribution to the
piezoelectric constants.

The main shortcoming of the classical potentials is that
they significantly underpredict the value of the clamped ion
contribution e(0)

i j to each of the piezoelectric constants, though
it may be possible to improve this by directly fitting the core–
shell parameters to reproduce the piezoelectric constants for
the material of interest. Despite this shortcoming, the present
results suggest that classical polarizable core–shell interatomic
potentials should be sufficiently accurate to be useful in
analyzing the piezoelectric properties of ZnO nanostructures
via large scale atomistic simulations.
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