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Surface shear-transformation zones in amorphous solids
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We perform a systematic study of the characteristics of shear transformation zones (STZs) that nucleate at free
surfaces of two-dimensional amorphous solids subject to tensile loading using two different atomistic simulation
methods, the standard athermal, quasistatic (AQ) approach and our recently developed self-learning metabasin
escape (SLME) method, to account for the finite temperature and strain-rate effects. In the AQ, or strain-driven
limit, the nonaffine displacement fields of surface STZs decay exponentially away from their centers at similar
decay rates as their bulk counterparts, though the direction of maximum nonaffine displacement is tilted away
from the tensile axis due to surface effects. Using the SLME method at room temperature and at the high strain
rates that are seen in classical molecular dynamics simulations, the characteristics for both bulk and surface
STZs are found to be identical to those seen in the AQ simulations. However, using the SLME method at room
temperature and experimentally relevant strain rates, we find a transition in the surface STZ characteristics where
a loss in the characteristic angular tensile-compression symmetry is observed. Finally, the thermally activated
surface STZs exhibit a slower decay rate in the nonaffine displacement field than do strain-driven surface STZs,
which is characterized by a larger drop in potential energy resulting from STZ nucleation that is enabled by the
relative compliance of the surface as compared to the bulk.
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I. INTRODUCTION

A significant amount of scientific effort has been made
to characterize the plasticity of amorphous solids in the past
decade [1,2]. Plasticity, and specifically the deformation mech-
anisms leading to yielding, has been extensively studied due to
the fact that most amorphous solids fail in a catastrophic and
brittle fashion without additional strain hardening immediately
following yield.

One of the key unresolved issues with regards to the defor-
mation and plasticity of amorphous solids lies in characterizing
the properties of the unit inelastic deformation mechanism, the
shear transformation zone (STZ) [1–11]. Due to experimental
difficulties in resolving its structure, much of the effort has
occurred using atomistic simulations, i.e., athermal, quasistatic
(AQ) [4–7] simulations that neglect temperature and strain
rate effects, very high strain rate classical molecular dynamics
(MD) simulations [8,9], and more recently, potential energy
surface (PES) exploration techniques [10,11]. There have
also been interesting recent theoretical developments that
have significantly augmented the atomistic simulations. In
particular, researchers have identified that two-dimensional
(2D) STZs behave analogous to a classical Eshelby inclu-
sion [12] embedded within a matrix, where the matrix exhibits
a quadrupolar deformation symmetry, and where the inclusion
represents the size of the STZ [4,13].

In contrast to this extensive theoretical and computational
research on bulk STZs, very little work has been done
on characterizing STZs that nucleate at the surfaces of
amorphous solids, which we term surface STZs in the present
work. Understanding the characteristics of surface STZs is
growing in relevance, particularly within the past five years, as
researchers have begun fabricating [14,15] and mechanically
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characterizing bulk metallic glass nanowires [16–18]. These
experimental studies have revealed enhanced tensile ductility
in smaller, volume-confined samples, though the potential
role of surface STZs in controlling this nanoscale property
has not been investigated. Other researchers have performed
classical MD studies of the deformation and failure of bulk
metallic glass nanowires [19,20]. Importantly, none of these
experimental or computational studies has elucidated the
characteristics of the unit inelastic deformation mechanism, or
surface STZ, at the nanowire surface, particularly as compared
to bulk STZs and considering the effects of different strain
rates.

In analogy with plasticity in surface-dominated crystalline
nanowires, surface STZs are expected to have a substantial
effect on the plasticity of bulk metallic glass nanowires. For
crystalline nanowires, the effects of surfaces on the plasticity
and mechanical properties have been much studied over the
past decade [21,22]. The origin of surface effects in crystalline
solids arises due to the under coordination of the surface
atoms, which leads to yielding occurring from the surfaces
of nanowires, rather than from the bulk [23,24]. In contrast,
the study of surface STZs has not yet commenced. Therefore,
it is the purpose of this work to examine their structure and
characteristics in two dimensions, particularly in comparison
to those previously established for bulk STZs [25,26]. We
further utilize a recently developed atomistic model based
on potential energy surface exploration [25] to elucidate the
characteristics of surface STZs ranging from the artificially
high strain rates seen in classical MD simulations to those that
are experimentally accessible.

II. COMPUTATIONAL METHODS

A. Atomic system and preparation of glasses

We consider a 2D system of 1000 atoms that interacts
via the binary Lennard-Jones (bLJ) potential of Falk and
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Langer [9]. This binary system, which is known to be a good
glass former, has been extensively studied [27–30]. The system
contains two types of particles with a large to small particle
ratio of NL/NS = (1 + √

5)/4. Standard length and energy
values are used, where σSS = 2 sin(π/10) and εSS = 0.5,
σLL = 2 sin(π/5) and εLL = 0.5, and σSL = 1.0 and εSL = 1.0.
All of these pair-wise interactions are truncated at the same
cutoff distance of 2.5. Both the large and small particles
have the same mass m = 1, which defines the time unit as
t0 = σSL

√
m/εSL for this bLJ system. The glass transition

temperature is Tg = 0.3. All units in this work are given in
the reduced bLJ form.

To prepare the glass, we equilibrated a 2D bulk liquid at a
high temperature of T = 1.0 = 3.33 Tg for 100 000t0 under a
constant number of particles, volume, and temperature (NVT)
ensemble, where the bulk nature was enforced by applying
periodic boundary conditions in both the x and y directions.
The particle number density (NL + NS)/(LxLy) = 0.98. For
the AQ simulations, the liquid was then quenched to a low
temperature of T = 0.0001 at a cooling rate of 2 × 10−7, while
for the finite temperature SLME simulations the liquid was
quenched to T = 0.33Tg to approximate room temperature.
Following this quenching procedure 20 independent glassy
samples were prepared to study the effects of sample-to-
sample variation. After quenching, these amorphous structures
were fully relaxed to a zero average stress state using an
NPT (constant number of particles, pressure, and temperature)
ensemble. The structures at the conclusion of the NPT portion
of the equilibration were used to study the formation of
bulk STZs, where no free surfaces are present due to the
periodic boundary conditions. Structures having free surfaces
were created using the same procedure, followed by removing
periodicity in the y direction, and a relaxation for 100 000t0 to
release the local residual stress that occurs due to the creation
of the free surfaces.

B. Self-learning metabasin escape algorithm

To characterize surface STZs, we utilize two distinct, but
complementary computational techniques. The first approach
is athermal, quasistatic (AQ) molecular statics, which does
not account for strain rate or temperature effects. To account
for temperature and strain rate effects, with a particular
interest in experimentally accessible strain rates, the second
computational approach we utilize to study surface STZs,
termed the self-learning metabasin escape (SLME) method,
was described by the authors in a previous publication [25], in
which the present authors studied strain rate and temperature
effects on the characteristics of STZs in a bulk 2D bLJ
amorphous solid. Here we present an abbreviated description
of the SLME method, while referring the interested reader to
previous publications for further details [25,26].

Since typical MD simulations can only reach time scales of
a few hundred nanoseconds while the typical STZ nucleation
and catastrophic shear banding events in amorphous solids are
on the order of milliseconds or longer [1], the SLME method
provides a generic computational approach that extends the
timescale limitation of MD simulations to the experimentally
relevant regions. The SLME algorithm is particularly useful
in exploring the slow dynamics in disordered bulk condensed

phases, such as supercooled liquids and amorphous solids,
where intuitive order parameters that govern these slow
dynamics are generally absent.

The SLME method is used in this work as follows. The
2D bLJ glassy sample is first subject to a small tensile
strain increment �ε, followed a conjugate gradient energy
minimization to find a locally stable configuration with the
dimensions of the simulation box held fixed. Starting from
the local minimum configuration, a search of the PES is
then performed using the self-learning approach of Cao
et al. [31], which typically yields a trajectory consisting of
hundreds of local minima and the least energetically costly
saddle points between every local minimum pair. This self-
learning approach is a computationally more efficient version
of the autonomous basin climbing (ABC) method [32–35].
Importantly, the PES is truncated to only allow transitions
among those events with activation energies below a specific
value Q∗ that defines the strain rate ε̇ via transition state
theory as

ε̇ = ε̇0 exp

[
−Q∗(T )

kBT

]
, (1)

where ε̇0 is a temperature-dependent prefactor [25].
In Eq. (1), the magnitude of the activation barrier threshold

Q∗ effectively imposes an ergodic window for the system to
explore the PES and is also used to control the simulation strain
rate. For high strain-rate MD simulations, the system can only
climb over small energy barriers Q � Q∗

md on the PES due to
the small amount of time between successive strain increments,
where Q∗

md = 1.08 is the maximum energy barrier that can be
crossed between successive loading increments at very high
(MD) strain rates, and where this choice of Q∗

md directly leads
to the strain rate of ε̇ = 10−5 used later. In contrast, at slower,
experimental strain rates, the system has more time between
successive strain increments to explore the PES, and thus can
climb over larger energy barriers Q � Q∗

exp = 4.08, where
Q∗

exp > Q∗
md is the maximum energy barrier that can be crossed

for the larger time increment between successive loading
increments at an experimental strain rate, where this choice
of Q∗

exp directly leads to the experimental strain rate of 10−18

used later. Once a new locally equilibrated configuration within
the ergodic window of the SLME trajectory is chosen at the
instantaneous (NVT) ensemble using a standard Monte Carlo
approach, another strain increment is applied and the algorithm
just described is used to find the next atomic configuration.

While the SLME method enables simulations at strain rates
that are not accessible via classical MD simulations, there is
a computational cost to doing so. For example, running the
AQ simulations for the 1000 atom system until the first STZ
nucleation normally takes less than ten minutes on a single
CPU. In contrast, the SLME simulations for the MD-relevant
strain rate (ε̇ = 1 × 10−5) take about 4–5 h, and the SLME
simulations for the experimentally-relevant strain rate (ε̇ =
1 × 10−18) take about 4–5 days.

III. SURFACE AND BULK STZs UNDER ATHERMAL,
QUASISTATIC LOADING

Once the 2D amorphous structures (both the bulk structures
and those with free surfaces) were obtained after cooling and
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FIG. 1. (Color online) Representative nonaffine displacement
field δu for (a) bulk STZ and (c) surface STZ nucleation. von Mises
local shear strain η for (b) bulk STZ and (d) surface STZ nucleation.
All cases for AQ loading conditions, where the arrows indicate the
direction of tensile loading.

equilibration, they were subject to uniaxial tension in the x

direction with a strain increment of �ε = 10−4. The bulk
structures were also subject to a compressive strain of ν�ε

in the y direction, where ν = 0.39 is the Poisson’s ratio. This
was done to allow relaxation in the direction transverse to
the applied strain. The structures were loaded until formation
of the first STZ, which corresponds to a small energy drop
on the potential energy versus tensile strain curve. Unlike
in centrosymmetric crystalline solids, the forces acting on
atoms in an amorphous solid are not zero after applying
a small strain increment from an equilibrium state, and a
nonaffine displacement δu is necessary to bring the system
to a new equilibrium state. Here, the nonaffine displacement,
which represents the deviation with respect to a homogeneous
deformation field [36], can be defined as

δuαi = Xαi − (δij + εij )X0
αj , (2)

where α denotes different atoms and i,j = 1,2 defines the 2D
Cartesian coordinates. Xαi and X0

αi are the position vectors
for an atom α in the deformed and reference configurations,
respectively, εij is the strain tensor, and δij is the identity
tensor. We also computed the atomic shear strain to measure
local inelastic deformation. The von Mises local shear strain is
defined as η = 1

2 (FFT − I), where the deformation gradient F
is obtained by minimizing the mean-square difference between
bond lengths in the reference and current configurations [9,37].
We note that for both the AQ and finite temperature SLME
simulations, the nonaffine displacements were calculated with
respect to the inherent structures.

Our first results examine the structure of bulk and surface
STZs under the well-known AQ conditions that have been used
in many prior simulations of bulk STZs [4–7]. In presenting
the results in Figs. 1 and 2, we again note that we performed 20
AQ simulations for both the bulk and surface geometries using
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FIG. 2. (Color online) Representative radial (δur ) projection of
the AQ nonaffine displacement field δu for (a) bulk and (c) surface
STZs. Representative tangential (δut ) projection of the AQ nonaffine
displacement field for (b) bulk and (d) surface STZs.

different initial configurations. The nonaffine displacement
fields shown in Figs. 1 and 2 were chosen as representative
of the fields seen in the 20 AQ simulations.

Figures 1(a) and 1(c) show the nonaffine displacement for
representative bulk and surface STZs, respectively, while the
corresponding local strain for the bulk and surface STZs is
shown in Figs. 1(b) and 1(d). The nonaffine displacement in the
bulk case in Fig. 1(a) is reasonable as the displacements along
the x direction point outward in the direction of the applied
tensile loading, while the displacements in the y direction point
inward toward the STZ core due to the Poisson effect. The
surface STZ in Fig. 1(c) also exhibits a nonaffine displacement
field with similar characteristics as the bulk STZ in Fig. 1(a),
though one compressive pole in the y direction is missing due
to the presence of the free surface.

We next decompose the nonaffine displacements for both
the bulk and surface STZs in Fig. 1 into their tangential and
radial components. This exposition is typically performed
for two reasons. First, bulk STZs are known to exhibit a
quadrupolar response in the nonaffine displacement field [4],
which is clearly shown in Figs. 2(a) and 2(b). Second,
this decomposition also reflects the matrix response to the
STZ core, which has recently been represented theoreti-
cally as an Eshelby inclusion that is embedded within a
matrix, where the matrix exhibits quadrupolar deformation
symmetry and where the inclusion represents the size of the
STZ [13].

Interestingly, the surface STZ in Figs. 2(c) and 2(d) exhibits
a very similar quadrupolar response as the bulk STZ in
Figs. 2(a) and 2(b), with the obvious difference that again,
one compressive contribution to the STZ is missing due to
the presence of the free surface. We additionally characterize
the size of the bulk and surface STZs in Fig. 2 and find that
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FIG. 3. (Color online) Normalized angle resolved radial [δur (θ )]
projections of the AQS nonaffine displacement field δu for (a) bulk
and (c) surface STZs. Normalized angle-resolved tangential [δut (θ )]
projections of the AQS nonaffine displacement field for (b) bulk and
(d) surface STZs. Filled symbols are raw data of 20 independent
AQ simulations, which were averaged to obtain the bulk and surface
radial and tangential projections.

the plastic cores contain about 25 and 18 atoms for bulk and
surface STZs, respectively, based on a criteria of atoms whose
local strain exceeds 5%. While it is to be expected that the
surface STZ core size is smaller than the bulk due to the
presence of the free surface, we do note that the surface STZ
core size is larger than half of the bulk value.

The results in Figs. 1 and 2 were obtained from a single rep-
resentative AQ simulation. However, as previously mentioned,
we performed 20 such AQ simulations for both the bulk and
surface geometries using different initial configurations for
more accurate statistical sampling and characterization. Thus,
the angle-resolved magnitudes of the radial and tangential
contributions to the nonaffine displacement field for all 40
AQ simulations are shown in Fig. 3. Both the bulk and surface
STZs exhibit symmetry, though the surface symmetry differs
from the bulk due to the presence of the free surface. Figure 3
also demonstrates that the radial projections in the y directions
are smaller than those in the x, or tensile direction. For the bulk
in Fig. 3(a), the magnitudes of the radial projections at θ = 0
and θ = π for the x direction are larger than the y direction
projections at θ = π/2 and θ = 3π/2. This is also observed
for the surface radial projection in Fig. 3(c), though we note
that the angles θ that correspond to the x and y directions are
slightly shifted as compared to the bulk case in Fig. 3(a); this
will be discussed more later.

We also verified that the surface radial and tangential
projections seen in Figs. 3(c) and 3(d) cannot be reproduced
by adding different amounts of y direction compressive strain
to a bulk sample. Furthermore, the average strain value for the
nucleation of the initial STZ for the 20 bulk AQ simulations is
0.034, while the average surface STZ nucleation strain over 20
AQ simulations is slightly lower at 0.029. Overall, we denote
the characteristics of both the bulk and surface STZs that we
have documented in Figs. 1–3 as strain-driven, as these were

PBC 

Bulk STZ 

Surface 

Surface STZ 

a b 

a 
b 

= 0.74 = 0.57 

18.3
°

(a) (b) 

FIG. 4. (Color online) Schematic plots of the ellipsoidal geom-
etry of (a) bulk and (b) surface STZs. Ellipsoidal characteristics
obtained by averaging over the results of 20 independent AQ
simulations.

obtained from AQ simulations in which thermal effects are not
considered.

Due to the uniaxial tensile deformation that is applied, both
the bulk and surface STZs can be represented geometrically
by an ellipse, as shown in Fig. 4, where the ellipsoidal
characteristics are obtained by averaging over the results of
20 independent AQ simulations. However, the STZs differ in
the exact ellipsoidal shape they take. The bulk STZs have a
minor to major axis ratio of b/a = 0.74, while the surface
STZs are more elongated, having a minor to major axis ratio
of b/a = 0.57. The ratio for the surface STZ is smaller than the
bulk due to the fact that the free surface contracts to enforce the
kinematic constraint that there should be zero stress normal to
the surface [38]. Other fundamental differences between the
bulk and surface STZs can be gleaned by comparing their
principle angles as in Table I. Specifically, the x-direction
principle angle for bulk STZs is 1.5◦ while the y-direction
principle angle is 1.4◦, which implies that the direction of
nonaffine displacement essentially coincides with the x and y

axes, respectively, as would be expected for uniaxial tension.
In contrast, the principle angles for the surface STZ are

different. In particular, the x-direction principle angle is
18.3◦, meaning that the direction of maximum nonaffine
displacement does not coincide with the tensile axis, and is
instead rotated by nearly 20◦ with respect to it. The rotation
of the principle angle for the surface STZ can be intuitively
understood if the diagram in Fig. 4(b) is interpreted similar
to a free body diagram. In that sense, the forces that result
along the principal, or tensile directions require a y-direction
component to balance out the compressive y-direction force
from the material bulk, which would otherwise be unbalanced
due to presence of the free surface.

TABLE I. Comparison of bulk and surface STZs under AQ tensile
loading. Values in parenthesis are the standard deviations from 20
independent AQ simulations.

Principle angle (X) Principle angle (Y) Ratio (b/a)

Bulk STZ 1.5◦(±9.8◦) 1.4◦(±8.7◦) 0.74(±0.27)
Surface STZ 18.3◦(±6.7◦) 2.1◦(±4.6◦) 0.57(±0.14)
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FIG. 5. (Color online) Angularly averaged nonaffine displace-
ment magnitudes 〈|δu|〉θ as a function of distance d from the STZ
center for both bulk and surface STZs. Gray filled and open symbols
are raw data of 20 independent AQ simulations, which were averaged
to obtain the bulk and surface STZ curves.

Figure 5 shows the angularly averaged nonaffine displace-
ment magnitudes 〈|δu|〉θ as a function of distance d from the
center of both bulk and surface STZs due to AQ tensile loading.
The averaged magnitudes over ten cases were fitted to the expo-
nential decay function 〈|δu|〉θ = (1 − δub) exp(−kd) + δub,
where for bulk and surface the exponential decay constants,
which have units of inverse length, are k = 0.26 ± 0.07
and 0.23 ± 0.06, respectively, while the boundary nonaffine
displacement plateau δub = 0.055 ± 0.022 and 0.037 ± 0.033
for bulk and surface, respectively; the boundary nonaffine
displacements are nonzero due to the finite size of the
simulation box. Overall, this implies that the decay rate
of the displacement field is essentially the same for bulk
and surface STZs that arise due to AQ loading. We note
that we also considered additional ways of examining the
nonaffine displacement magnitude decay, for example, along
the direction of maximum nonaffine displacement in the case
of the surface STZ. However, changing the directionality of
the plotting did not impact the main results shown in Fig. 5,
and thus we show only the angularly averaged nonaffine
displacement.

Before leaving this section, we would like to comment on
the choice of using an exponential decay function to fit the data
shown in Fig. 5, where our primary interest lies in representing
the nonaffine displacement decay of the STZ core, rather than
the long-ranged elastic medium response, which is known to
follow a 1/r relationship [4,12]. This choice is justified by the
fact that an exponential decay is known to accurately represent
other topological defects [39,40], including dislocations in
crystalline solids [41] and topological solitons in conducting
polymers [42,43]. Due to the limited size of our simulation
supercells, Fig. 5 can only accurately capture the plastic
STZ core contributions, but not the slow-decaying elastic
medium response. This gives rise to the nonzero nonaffine
displacements at the supercell boundary δub as shown in
Fig. 5. Although it is difficult based on the simulation data
presented in this work to estimate the exact distance at which

the exponential decay of the plastic core will switch over to
the power law decay, it is reasonable to expect that both the
exponential decay of the plastic STZ core and the far field
elastic power-law decay may be captured if a much larger
supercell could be simulated.

IV. STRAIN RATE AND TEMPERATURE EFFECTS
ON BULK AND SURFACE STZs

The previous section focused on comparing the char-
acteristics of strain-driven bulk and surface STZs under
AQ conditions, i.e., neglecting temperature and strain rate
effects. Because of this, we now utilize the SLME method
to characterize the nature of surface STZs under tensile
deformation at finite temperature and for a range of strain rates
from MD-accessible to experimentally relevant. Specifically,
we chose two characteristics strain rates, MD-relevant (ε̇ =
1 × 10−5) and experimentally relevant (ε̇ = 1 × 10−18), which
is slightly more than 10 orders of magnitude smaller than
MD, and a temperature T = 0.33Tg , which approximates room
temperature.

For these SLME simulations at the MD strain rate of ε̇ =
1 × 10−5, the average yield strain for a bulk STZ is 0.031,
while for a surface STZ it is 0.025. For the SLME simulations
at the experimental strain rate of ε̇ = 1 × 10−18, the average
bulk STZ yield strain is 0.019, while the average surface STZ
yield strain is 0.016. In all cases, the surface yield strain is
smaller than the bulk, as expected. Furthermore, at the slower
strain rate, the bulk yield strain decreases. This is because at the
slower strain rate, the system has more time between loading
increments to climb over higher energy barriers, which can
lead to yielding at a lower strain value.

Figures 6(a) and 6(c) show the total nonaffine displacement
field at a strain rate 1 × 10−5 for bulk and surface STZs,
respectively, where again all simulation results in this section
were obtained using the SLME method. As can be seen, the
quadrupolar symmetry still exists at the high, MD-relevant
loading rate which agrees with the AQ, or strain-driven STZs
shown in Figs. 1(a) and 1(c), and which suggests that the
STZ geometry both within the bulk and at free surfaces is not
impacted by very high strain rate loading.

However, as we decrease the strain rate, due to the
substantially larger amount of time the system has to explore
the PES in between loading increments, the possibility that
thermal fluctuations will enable the system to cross over larger
energy barriers on the PES increases, which may impact the
resulting STZ structure. The importance of the thermal effects
is illustrated in Figs. 6(b) and 6(d), in which both bulk and
surface STZs appear to lose quadrupolar symmetry when the
strain rate decreases to ε̇ = 1 × 10−18. As a consequence, we
shall refer to these as thermally activated bulk and surface
STZs. In addition to the nonaffine displacement field, we also
show the Mises local shear strain for representative bulk and
surface STZs at different strain rates is shown in Fig. 7. The
strain field appears for the surface STZs in Figs. 7(c) and 7(d)
to extend further into the bulk region for the slower strain rate
case in Fig. 7(d). Again, we emphasize that the results in Figs. 6
and 7 were chosen as they are representative of the nonaffine
displacement fields and shear strains seen in analyzing the
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and (d) surface STZ nucleation at a strain rate of ε̇ = 1 × 10−18.

results of the 20 independent SLME simulations that were
done for both strain rates.

By further analyzing the results of the 20 independent
SLME simulations at both strain rates (ε̇ = 1 × 10−5 and ε̇ =
1 × 10−18), for the MD-relevant strain rate of ε̇ = 1 × 10−5,
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FIG. 7. (Color online) Representative Mises local shear strain η

for bulk STZ at strain rates of (a) ε̇ = 1 × 10−5 and (b) ε̇ = 1 × 10−18.
Representative von Mises local shear strain η for surface STZ at strain
rates of (c) ε̇ = 1 × 10−5 and (d) ε̇ = 1 × 10−18.
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FIG. 8. (Color online) Nonaffine displacement magnitude decay
rate for bulk STZs at a strain rate of (a) 1 × 10−5; (b) 1 × 10−18 (right)
at T = 0.33Tg . Open symbols are raw data of 20 independent SLME
simulations while the filled symbols are the average values. The solid
lines represent fitting functions.

we found that all 20 bulk STZs showed quadrupolar symmetry,
as illustrated in Fig. 6(a). Therefore, in Fig. 8(a), we compare
the average magnitude of the nonaffine displacement (black
filled circles) with the previous AQ fitting function used in
Fig. 5 (blue solid line) for bulk STZs, and find that they overlap,
which demonstrates that high strain rates do not impact the
geometry or decay length for strain-driven bulk STZs.

However, the structure of the bulk STZs changes when
the strain rate is decreased to the experimentally relevant
value of 1 × 10−18. In this case, 11 of 20 bulk STZs were
found to lose symmetry, as illustrated in Fig. 6(b), where the
thermally activated bulk STZs were found to have a core size
containing 31 atoms, which is larger than the strain-driven bulk
STZ core size of 25 atoms. Thus, in Fig. 8(b), the averaged
nonaffine displacement for the 11 thermally activated cases
in which symmetry is lost were also fitted to an exponential
decay function, where the exponential decay constant is
k = 0.44 ± 0.08 and the boundary nonaffine displacement
plateau is δub = 0.051 ± 0.022. Comparing to the previous
bulk STZ decay rate for the AQ simulations of k = 0.26
implies that thermally activated bulk STZs at slower strain
rates under uniaxial tension exhibit a higher decay rate of the
displacement field, which is in agreement with our previous
results for shear-driven bulk STZs [25].

Similar to the bulk STZs, surface STZs also keep their AQ
symmetry at the high, MD-relevant strain rate of 1 × 10−5,
where the average nonaffine displacement for 20 independent
SLME simulations falls exactly on the AQ fitting curve previ-
ously derived in Fig. 5, as shown in Fig. 9(a). For the surface
STZs, once the strain rate is decreased to 1 × 10−18, 15 of the
20 independent simulations were found to lose quadrupolar
symmetry, and thus their strain-driven characteristics. As an
example, the thermally activated surface STZs were found
to have a core size of 28 atoms, in comparison with the
15 atom core size found for the strain-driven surface STZs.
The average of these 15 simulations, in which the surface
STZs are thermally activated, are plotted in Fig. 9(b) and
fitted to an exponential function with k = 0.16 ± 0.05 and
δu∞ = 0.028 ± 0.02. The other five simulations, in which
symmetry remained in the surface STZ, were labeled as
strain driven. The average value of the nonaffine displacement
magnitude is slightly smaller than for the strain-driven case,
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FIG. 9. (Color online) Nonaffine displacement magnitude decay
rate for surface STZs at a strain rate of (a) 1 × 10−5; (b) 1 × 10−18

(right) at T = 0.33Tg . Open symbols are raw data of 20 independent
SLME simulations while the filled symbols are the average values.
The solid lines represent fitting functions.

which is likely due to the fact that only two simulations were
used to generate the average value.

In comparing the bulk and surface STZ characteristics at the
two different strain rates, Figs. 8(a) and 9(a) make clear that
at the high, MD-relevant strain rate of ε̇ = 10−5, the bulk and
surface STZs show similar decay characteristics. However, in
contrast at the slower, experimentally relevant strain rate of
ε̇ = 10−18, the decay characteristics change. Specifically, as
shown in Fig. 8(b) for the bulk, the thermally activated bulk
STZs decay faster than the strain-driven bulk STZs. This trend
is reversed for the surface STZs at experimental strain rates
as shown in Fig. 9(b). Also of interest, we note that as seen
in Figs. 8(b) and 9(b) for both thermally activated bulk and
surface STZs, respectively, the magnitude of the atomic motion
within the STZ core increases substantially as compared to the
strain-driven bulk and surface STZs in Figs. 8(a) and 9(a).
Furthermore, while the magnitude of the atomic motion inside
the STZs increases, it is evident that in comparing Figs. 6(c)
and 6(d) that the size of the thermally activated STZ also
increases as compared to the strain-driven case.

This change in decay characteristics for thermally activated
surface as compared to bulk STZs can directly be tied to the
geometry. Specifically, for bulk STZs as shown in Figs. 6(a)
and 6(b), as the strain-rate decreases and thermal activation
plays a larger role, the nonaffine displacements decay more
rapidly due to the fact that the deformation becomes more
localized, i.e., fewer atoms move, but the magnitude of the
motion increases due to the contribution of thermal energy.
In contrast, while the magnitude of the atomic motion also
increases for the surface atoms that comprise the thermally
activated surface STZs, this also forces atoms near the surface
to exhibit larger amplitude motions such that the zero stress
state normal to the surface can be enforced.

This can also be quantified by calculating the average drop
in potential energy corresponding to the formation of the first
STZ, where a representative energy versus tensile strain curve
for the surface STZ at high and slow strain rates is shown in
Fig. 10(a). Before discussing the magnitude of the energy drop
due to surface STZ formation, we note that the surface STZ
nucleation strain is clearly smaller at the slower strain rate,
which occurs because at the slower strain rate, the system has
more time between loading increments to explore and cross
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FIG. 10. (Color online) Representative potential energy versus
tensile strain curves for (a) strain-driven and thermally activated
surface STZs and (b) thermally activated bulk and surface STZs.

over higher energy barriers on the PES, which implies that
STZ nucleation can occur for lower tensile strains.

By calculating the average energy drop for both strain-
driven and thermally activated surface STZs, we find that the
average potential energy drop is 0.39εSL for the strain-driven
surface STZs, while the thermally activated surface STZs
showed an average energy drop of 0.57εSL. On a normalized
basis, the strain-driven surface STZs recover only about 1%
of the strain energy upon STZ nucleation, while the thermally
activated surface STZs recover about 7% of the strain energy,
where a representative comparison is shown in Fig. 10(a).
Thus, the larger energy drop for the thermally activated surface
STZs results in a larger nonaffine displacement relaxation
and slower nonaffine displacement field decay rate. Finally,
Fig. 10(b) demonstrates that the energy drop is larger for
thermally activated surface than bulk STZs, which is consistent
with what is seen in Figs. 6(d) and 9(b), and is consistent with
the notion of a more compliant surface as discussed above.
While we have not shown a figure doing so, this explanation
comparing the energy drop can also be used to explain why for
the bulk, as shown in Fig. 8(b), the strain-driven STZs decay
slower than the thermally activated ones.
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We have already noted that 15 of 20 independent SLME
simulations resulted in thermally activated surface STZs,
whereas 11 of 20 independent SLME simulations resulted
in thermally activated bulk STZs. This suggests, perhaps not
surprisingly, that the activation energy barrier for thermally
activated surface STZs is smaller than that required for bulk
STZs.

Finally, an important and unresolved issue to consider in
the future is the effect of the surface STZ type on the resulting
failure, or shearbanding characteristics that occur in surface-
dominated amorphous solids. In particular, it is possible that
the difference between thermally activated and strain-driven
surface STZs will lead to differences in the resulting shearband
that forms, both in terms of the nucleation stress and strain,
but also perhaps in terms of shearband orientation and size.

V. CONCLUSION

We have performed athermal, quasistatic atomistic cal-
culations in conjunction with time-scale bridging atomistic

calculations at both MD and experimentally relevant strain
rates to elucidate the structure and characteristics of surface
STZs. In the athermal, quasistatic limit, which neglects
temperature and strain rate, surface STZs exhibit similar decay
rates to bulk STZs, though the direction of maximum nonaffine
displacement is rotated away from the tensile loading direction.
Greater differences between bulk and surface STZs are found
at room temperature and experimentally relevant strain rates.
In particular, surface STZs exhibit a smaller decay rate of the
nonaffine displacement field and also show a greater tendency
to exhibit thermally activated behavior that is only observed
at experimental strain rates, in contrast to bulk STZs, which
show both thermally activated and strain driven behavior at
experimental strain rates.
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