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We couple the recently developed self-learning metabasin escape algorithm, which enables efficient exploration
of the potential energy surface (PES), with shear deformation to elucidate strain-rate and temperature effects
on the shear transformation zone (STZ) characteristics in two-dimensional amorphous solids. In doing so, we
report a transition in the STZ characteristics that can be obtained through either increasing the temperature or
decreasing the strain rate. The transition separates regions having two distinct STZ characteristics. Specifically, at
high temperatures and high strain rates, we show that the STZs have characteristics identical to those that emerge
from purely strain-driven, athermal quasistatic atomistic calculations. At lower temperatures and experimentally
relevant strain rates, we use the newly coupled PES + shear deformation method to show that the STZs have
characteristics identical to those that emerge from a purely thermally activated state. The specific changes in
STZ characteristics that occur in moving from the strain-driven to thermally activated STZ regime include a 33%
increase in STZ size, faster spatial decay of the displacement field, a change in the deformation mechanism inside
the STZ from shear to tension, a reduction in the stress needed to nucleate the first STZ, and finally a notable
loss in characteristic quadrupolar symmetry of the surrounding elastic matrix that has previously been seen in
athermal, quasistatic shear studies of STZs.
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I. INTRODUCTION

Because of their unique combination of high strength
and moderate toughness, amorphous solids such as metallic
glasses have been extensively studied in recent years [1,2].
Much of the study has focused on the inelastic deformation
mechanisms that accompany yielding, due to the fact that
most amorphous solids fail in a catastrophic and brittle fashion
without additional strain hardening immediately following
yield.

Perhaps the most important unresolved issue with regard
to the deformation of amorphous solids lies in identifying
the characteristics of the unit inelastic deformation mech-
anism, the shear transformation zone (STZ) [1–11], which
has primarily been done through both athermal quasistatic
shear (AQS) [4–7] and classical molecular dynamics (MD)
simulations [8,9], and more recently potential energy surface
(PES) exploration techniques [10,11].

Despite these many computational studies, a theoretical
framework for characterizing the STZs has until recently
been unresolved. Specifically, researchers have identified that
two-dimensional (2D) STZs behave analogously to a classical
Eshelby inclusion [12] embedded within a matrix, where
the matrix exhibits a quadrupolar deformation symmetry and
where the inclusion represents the size of the STZ [4,13].

These recent studies [4,13] were performed without ac-
counting for strain rate and temperature effects, and therefore
it remains unclear what the structure and characteristics
of STZs are at experimentally relevant temperatures and
experimentally accessible strain rates. We address these issues
in the present work using a combination of shear deformation
and a PES exploration algorithm [14] and report the finding
of two distinct types of STZs in a 2D binary Lennard-Jones
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(BLJ) solid: those that have identical characteristics to those
that emerge from purely strain-driven, athermal quasistatic
atomistic calculations, and those that emerge from a purely
thermally activated state. We further show that the transition
is characterized by changes in the inclusion size, the matrix
deformation symmetry, the localized strain and displacement
fields, the local free volume, the deformation mechanism
inside the STZ, and finally the STZ nucleation stress.

II. NUMERICAL METHODOLOGY

A. Self-learning metabasin escape algorithm

The self-learning metabasin escape (SLME) algorithm [14]
is implemented in this work to explore the PES for two
purposes. First, it corresponds to purely thermal activation
of the amorphous solid in the absence of any applied shear
deformation, as described in detail in this section. Second, it
also explores the PES at each state of strain for any strain rate,
as explained in detail in Sec. II B below.

The SLME algorithm is a self-learning version of the au-
tonomous basin climbing (ABC) algorithm recently developed
by Kushima et al. [15]. The basic ABC algorithm imple-
mentation works in an intuitive manner, sketched briefly in
Fig. 1. Starting from any initial energy minimum configuration,
localized penalty functions φi(r) are successively applied to
assist the system in climbing out of the current local energy
well and exploring other, neighboring energy wells. Physically,
this corresponds to activation of the system due to thermal
effects, and it is how we obtain the characteristics for thermally
activated STZs later in this work. Mathematically, this is
written as

�(r) = E(r) +
p∑

i=1

φi(r), (1)
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FIG. 1. (Color online) Schematic of the autonomous basin
climbing (ABC) potential energy surface exploration technique.
(a) Depiction of how the addition of a penalty function φ1 to the
PES defined by E(r) results in the penalty function modified PES
defined by �(r). (b, c) The addition of more penalty functions results
in the system being pushed out via �(r) of various local minima into
other, neighboring energy basins. Emin and Esad correspond to energy
minima and saddle points, respectively. We emphasize that while the
PES depicted in this figure is one-dimensional, the SLME algorithm
utilized in this work explores the 2N -dimensional PES, where N is
the number of atoms in the simulation.

where �(r) is the augmented potential energy due to the
addition of the penalty functions, E(r) is the original potential
energy function, i.e., the BLJ potential in the present case,
and p is the total number of penalty functions. Although
in principle any type of localized functions (i.e., Gaussians
[15–17]) can be used in Eq. (1), we chose quartic penalty
functions in this work due to their desirable property of
naturally vanishing energy and forces at the penalized subspace
boundaries [14].

As can be inferred from Eq. (1), many small penalty
functions are needed in order to push the system out of a
given energy basin. All of these penalty functions must be
kept such that the system does not fall back into an energy
basin that has already been explored. Clearly, the requirement
to store all previous penalty functions becomes prohibitive as
more and more energy basins are explored. Because of this,
the computational expense associated with the ABC method
increases substantially [14], and becomes the bottleneck of the
ABC method, as the PES exploration continues.

This issue was alleviated substantially in the SLME
algorithm developed recently by Cao et al. [14], where a
few self-learning schemes were introduced. The essential
idea is that instead of storing all of the (many) penalty
functions that have been used to boost the system out of the
different energy wells it has explored, the penalty functions are
self-updated in various ways such that, upon exiting a given
energy well, only a few independent ones remain. Specifically,
as the system evolves on the PES, new penalty functions
can be self-generated according to the history without any
preassumed parameters. These newly self-generated penalty
functions and all the previously imposed penalty functions
are then subject to iterative reconstructions to minimize
their (2N + 1)-dimensional spatial overlap in the penalized
configurational subspace, where N is the total number of
atoms in the system. Therefore, redundant penalty functions
can be identified and removed effectively as the system
evolves, so that the total amount of penalty functions can be
reduced to a minimal amount. In addition, such self-learned
reconstructions offer new flexibility to the penalty functions,
so that they can self-adapt to the underlying energy landscape
and their size distributions can naturally reflect the actual sizes
of metabasins. This approach, called the SLME algorithm,
together with the resulting decrease in penalty function storage
requirements was shown to lead to a substantial increase in
computational efficiency as compared to the previous ABC
implementation [14].

Thus, by repeating the alternating sequence of penalty
function addition and augmented energy relaxation, the system
is self-activated to fill up the local energy basin and escape
through the lowest saddle point. By maintaining all the
independent penalty functions imposed during the SLME
trajectory, frequent recrossing of small barriers is eliminated,
which is a significant advantage of such history-penalized
methods [14–16]. We emphasize that while Fig. 1 depicts
the ABC method in one dimension, in actuality for the
present work the SLME approach investigates the entire,
2N -dimensional (2N -D) PES, where N is the total number
of atoms in the system.

There are a few major advantages of using the SLME
method as compared to other PES exploration techniques. For
example, the SLME approach does not need to specify the soft-
est eigenmode searching direction as in hyperdynamics [18] or
dimer methods [19], or to restrict the searching subspace as in
metadynamics [16]. It is also relevant to discuss this approach
in contrast to nudged elastic band (NEB) techniques that have
recently been utilized to study the deformation mechanisms of
nanostructured metals at experimentally relevant time scales
[20]. The NEB approach is particularly well suited for metal
plasticity because it requires a priori knowledge of the final
configuration in order to find the minimum energy pathway.
In the case of metals, it is well known that crystal defects such
as twins, dislocations, and stacking faults are the likely plastic
deformation mechanisms [21]. However, the situation is quite
different for amorphous solids, where the atomic structure of
the equivalent basic deformation mechanism, the STZ, remains
unknown [1,2].

As a brief summary, the SLME approach discussed above
resolves two critical issues with regard to mapping out the
PES of amorphous solids. First, the SLME algorithm [14]
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is the only demonstrated computational approach that can
systematically explore sequential metabasin activation events
on the complete 2N -D PES without a priori knowledge of final
states or order parameters as required for supercooled liquids
and amorphous solids. Second, the computational efficiency
of the SLME approach is critical as it enables us to get access
to a sufficiently large configurational space by infrequent free-
energy activation events over very large activation free-energy
barriers Q∗(T ,γ̇ ) that are needed to access temperatures T well
below the glass transition temperature and at the laboratory
shear strain rates γ̇ . In the following section, we explain how
to incorporate temperature and strain-rate effects.

B. Shear-coupled self-learning metabasin escape algorithm

1. Temperature- and strain-rate-dependent activation
free energy Q∗(T,γ̇ ) formalism

To incorporate the effects of strain rate and temperature, we
begin with the following expression for a single-event shear
strain rate γ̇single, which is derived [20] from the transition state
theory for constant temperature. This gives the most likely
nucleation rate for STZs:

γ̇single = nv0
kBT

μ�
exp

[
−Q(T ) − T Sc

kBT

]
, (2)

where n is the number of independent STZ nucleation sites,
v0 is the attempt frequency, μ is the shear modulus, � is
the activation volume, and Sc is the activation configurational
entropy that is primarily due to anharmonic thermal expansion
and thermal softening effects [22], which are partially captured
during the initial slow quenching stage needed to obtain the
initial configuration by the stress-free NPT (constant number
of particles, and constant pressure and temperature) ensemble.

It can be seen in Eq. (2) that the single-event nucleation
rates γ̇single do not necessarily follow the Arrhenius relation
since the activation energy Q(T ) can be strongly dependent
on temperature, which is one of the well-known phenomena
occurring in many relaxation events of supercooled liquids
and amorphous solids [15–17]. Such strong temperature de-
pendence is inherited directly from the free energy Fi(T ) of the
ith local minimum basin [23] as Qij (T ) = Qij [Fi(T ),Fj (T )].
Namely, the temperature dependence of Qij (T ) has a func-
tional dependence through the temperature-dependent free
energy of the initial and final inherent structures, Fi(T ) and
Fj (T ), respectively. While the SLME trajectories are along
the PES, the detailed balance between any two thermally
equilibrated free-energy basins Fi(T ) and Fj (T ) is enforced at
all times by the standard Monte Carlo method as discussed
below. Therefore, the entire collection of {Fi(T ),Qij (T )}
forms an ergodic system with only Markov chain transitions
being allowed. One may refer to Li et al. [23] and Kushima
et al. [15] for more detailed discussions.

Following this new formalism, we need to extend the single-
event activation energy Q(T ) to the temperature- and strain-
rate-dependent many-event Q∗(T ,γ̇ ), where Q∗(T ,γ̇ ) contains
many (hundreds) of such activation events, as illustrated by
the green box in Fig. 2. Specifically, Q∗(T ,γ̇ ) is the maximal
activation energy with respect to the initial free-energy basin
F (T ), so that Q∗(T ,γ̇ ) truncates the ergodic Markovian system
into an ergodic Markovian subspace and the remainder, the part

that is not accessible at the given strain rate γ̇ . As γ̇ decreases,
the ergodic Markovian subspace increases monotonically, with
the important implication that more and more mechanical
deformation pathways that were not accessible at high strain
rates become accessible assuming that the PES exploration
technique (i.e., the SLME approach) is able to reach and climb
over the corresponding energy barriers on the PES. Because the
SLME approach enables us to efficiently access and calculate
the allowed activated states Q(T ,γ̇ ) � Q∗(T ,γ̇ ) for essentially
arbitrarily large Q∗(T ,γ̇ ), we are able to compute the yield
stress τ (T ,γ̇ ) and activation volume �(T ,γ̇ ) at all relevant
temperatures and shear strain rates γ̇ ranging from MD to
experimentally accessible.

Having established the theoretical basis for extending Q(T )
to Q∗(T ,γ̇ ), we note that, in contrast to the simpler deformation
processes occurring in crystalline materials [20], the coupled
thermomechanical deformation events in amorphous solids
likely consist of multiple sequential activation events.

Therefore, by defining a characteristic prefactor from
Eq. (2) as γ̇0 = kBT nv0

μ�
exp( Sc

kB
) that is known to be weakly

T dependent [24,25], we can rewrite Eq. (2) as

γ̇single = γ̇0 exp

[
−Q(T )

kBT

]
. (3)

Finally, by converting from Q(T ) to Q∗(T ,γ̇ ) based on the
above discussion, we can construct the maximal activation
energy barrier by rearranging Eq. (3) as

Q∗(T ,γ̇ ) = −kBT ln

(
γ̇

γ̇0

)
, (4)

which defines the ergodic Markovian region in the entire
SLME connectivity tree structures at the given strain rate,
for example as shown as the green box in Fig. 2. Within
this ergodic window, all the transitions follow the Markov
chain processes to reach a local equilibrium, so that the
amorphous solid (BLJ) system can relax to the accessible
lowest free-energy configurations.

2. Algorithmic details

We now detail how the SLME method is coupled with
shear deformation and the classical Monte Carlo algorithm to
calculate the stress and equilibrium atomic positions of the
BLJ solid as a function of strain, strain rate, and temperature,
with no change in methodology needed to distinguish between
elastic and plastic strain increments. After obtaining the
initial stress-free glassy structures for a given temperature,
we apply the following algorithm for all loading increments.
Specifically, assume that, as shown in Fig. 2, the system exists
at shear strain γn. We then apply a shear strain increment
�γ = 0.01%, followed by a standard conjugate gradient
energy minimization to find the resulting equilibrium positions
of the atoms, which brings us to the shear strain state γ

cg

n+1
in Fig. 2. It is important to note that the system size and
boundaries are held fixed during the energy minimization such
that the shear strain γ

cg

n+1 = γn + �γ .
From that point, the SLME approach [14,15] is utilized

to explore the PES at the strain γ
cg

n+1, as illustrated via the
potential energy connectivity tree structures [26] shown in
Fig. 2, while again the system size and boundaries are held
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FIG. 2. (Color online) Illustration of how the SLME method [14] is utilized to find the equilibrium configuration after a given strain
increment �γ is applied to the system. Specifically, starting from γn, a shear increment �γ is applied to the system. At that point, a standard
conjugate gradient (CG) energy minimization is performed while keeping the strain fixed, giving the state γ

cg

n+1. Starting from the energy
minimized configuration γ

cg

n+1, the SLME method is used to determine the potential energy tree structure as shown, where the lower end point
of each vertical line specifies an independent local minimum energy configuration, and where every pair of these local minima is connected
by a unique saddle point specifying the lowest activation energy barrier between them. We truncate the tree structure to only enable energy
transitions below Q∗, as shown in the green box. Finally, a classical Monte Carlo algorithm is employed to find, among the hundreds of local
minima in the green box, the most likely equilibrium configuration, which is then denoted γn+1. The same procedure is then utilized to find the
next equilibrium configuration for the strain γn+2, though we note that the PES tree structure is different at the new shear strain γn+2, which
again is mapped out using the SLME method.

fixed. Importantly, we only allow transitions within the SLME
connectivity tree structures below the maximum energy barrier
Q∗ shown in Eq. (4) as highlighted by the green box shown in
Fig. 2. The maximum energy barrier Q∗ is a defined parameter
that specifies the maximum barrier height on the PES that can
be overcome, via thermal assistance, for a given strain rate.

This is because in physical terms, choosing a value of Q∗ is
equivalent, as shown in Eq. (4), to specifying the strain rate
of the simulation for a given temperature. In other words,
for very high strain rates as seen in MD simulations, only
small energetic barriers Q∗ can be crossed for each strain
increment due to the small amount of time given to the system
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to explore other possible, thermally assisted configurations.
In contrast, at slower strain rates, the system has more time
between successive strain increments such that it can explore
many other possible, thermally assisted configurations and
thus potentially climb over larger energy barriers, with the sole
restriction that the thermally assisted barrier crossing must be
smaller than Q∗. It is important to note, however, that we do
not enforce that the maximum barrier height Q∗ is crossed for
each strain increment.

Summarized a different way, the picture of deformation
underlying our work is one that receives contributions due
to both mechanical and thermal work. The mechanical work
dominates the deformation process at high strain rates, when
the time in between strain increments is not sufficient to enable
substantial, thermally assisted atomic motion. Thermal work is
viewed as making a substantial contribution to the deformation
process at slower strain rates, when sufficient time to enable
thermally driven deformation in between successive strain
increments is provided to the system.

As shown in Fig. 2 starting from the specific strain state
γ

cg

n+1, the SLME algorithm typically finds on the order of
a few hundred local minima for each value of shear strain,
which gives on the order of ten thousand local minima for
the entire shear deformation process, as well as all of the
corresponding lowest energy barriers between every pair of
these local minima. In other words, at a given strain rate,
the system can self-explore the PES via the SLME approach
by climbing over all the allowed energy barriers that are
smaller than Q∗, as depicted via the green boxed portion
of the PES connectivity tree structure in Fig. 2. Within this
truncated potential energy subspace, we identify the most
likely free-energy basin, namely the basin with the lowest
free energy at this instantaneous NVT (constant number of
particles, and constant volume and temperature) ensemble at
the given strain state, via the standard Monte Carlo method.
This lowest free-energy basin at strain γn+1 = γ

cg

n+1 = γn +
�γ , as shown by the green circle in Fig. 2, is assigned to
be the initial configuration for the next loading increment.
Furthermore, the atomic configuration corresponding to the
lowest free-energy basin corresponds to the shear strain state
γn+1. The shear stress corresponding to the shear strain γn+1

is then obtained by calculating the virial stress based upon
the atomistic configuration at γn+1. At this point, a new shear
strain increment of 0.01% is applied and the SLME process
as just described is repeated until the yield stress is obtained,
where the yield stress is determined to be the maximum stress
that is reached before the first substantial stress drop signifying
yield is obtained.

III. RESULTS

The 2D BLJ solid of Falk and Langer [9] we considered in
this work contained N = 1000 particles of the same unit mass
under periodic boundary conditions. The material contained
two types of particles, with a large-to-small particle ratio of
447:553. The glass was prepared by quenching from a liquid
state [9] to well below the glass transition temperature Tg =
0.3 in a constant volume ensemble with a cooling rate of 2 ×
10−7. After quenching, the amorphous structures were relaxed
to zero average stress states using an NPT ensemble. For the

BLJ potential σSL and εSL have units of length and energy,
respectively, while the mass of all particles is m = 1. With
these defined, the reduced time is written as t0 = σSL

√
m/εSL,

the shear modulus is εSL/σ 2
SL, while the strain rate γ̇ units are

(σSL

√
m/εSL)−1. All units in this paper are given in reduced

LJ form, where a comprehensive description of LJ reduced
units is given in Appendix B of Ref. [27]. Finally, we should
also emphasize that our choice of studying a 2D and not 3D
amorphous solid using the aforementioned BLJ potential does
not preclude the formation and propagation of localization
instabilities in two dimensions such as shear bands [4,5,9].

A. Defining the characteristics of two-dimensional strain-driven
and thermally activated shear transformation zones

Before assessing the coupled effects of strain rate and
temperature on the STZ characteristics, we first discuss and
define the STZ characteristics for two limiting cases. In the first
case, the system was first quenched to a temperature of T =
0.001Tg . Shear strain increments of 0.01% were subsequently
applied to the quenched structure followed by conjugate gra-
dient energy minimization, where this scenario corresponds to
the limiting case of purely shear strain (γ )-driven deformation
at very low, or effectively zero, temperature. This scenario
is typically called athermal quasistatic shear (AQS) in the
literature [4,13], and we keep that nomenclature here.

The second case corresponds to purely thermal activation
of the system in the absence of any shear deformation using the
previously discussed SLME algorithm [14]. Specifically, the
initial stress-free configuration after quenching is activated
by imposing (2N + 1)-D history-based penalty functions
followed by energy minimization. A series of activation and
relaxation steps can make the system escape from the current
basin and move to a neighboring energy well. The SLME
trajectories consist of free energies of all the inherent structures
Fi(T ) = F (Si ; T ) that have been visited, where Si are the
2N -D position vectors of local minima, as well as the activation
free energies Qij (T ) between all pairs. Following these
trajectories, we can activate the system to cross sufficiently
large energy barriers that cause strain localization [10] via
pure thermal activation, in the absence of any applied shear
deformation.

We focus in this work on the first plastic event, i.e., the
development of the initial STZ, rather than on the structure
of the STZ at yield or on the nature of STZ interactions
leading to failure via shear banding. This first plastic event
is identified by a small drop in the potential energy versus
strain curve and occurs in the AQS simulation at 3.1% shear
strain, which is well below the yield strain of 7.1%. Unlike in
centrosymmetric crystalline solids, the forces acting on atoms
in an amorphous solid are nonzero after a small homogeneous
strain increment from an equilibrium state due to the lack
of crystalline symmetry, and a nonaffine displacement δu is
necessary to bring the system to a local energy minimum.
Here δu is defined as

δu = u − uborn, (5)

where u is the displacement and the Born term uborn corre-
sponds to the homogeneous contribution to the displacement
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u. Similarly, we can define a nonaffine local strain δη as

δη = η − ηborn, (6)

where the von Mises strain η is obtained following Falk and
Langer [9] and ηborn is the applied strain on the simulation
box. Thus, while the von Mises strain η is always positive, the
nonaffine local strain δη can be negative as the strain applied to
the simulation box can be larger than the strain on an individual
atom.

Figures 3(a) and 3(c) show the total nonaffine displacement
field for AQS and thermal activation (calculated using SLME
[14]), respectively, at the formation of the first STZ, with the
background colored by the local shear modulus μm [28,29].
μm was calculated by partitioning the simulation box into
small squares of length L/10, with L being the simulation
box length. The angularly averaged nonaffine displacement
magnitudes 〈|δu|〉θ are plotted in Fig. 3(e) as a function of the

−10 0 10

−10

0

10

 

 

 

 

−10 0 10

−10

0

10

0 5 10 15
0

0.25

0.5

0.75

1

d

δu
θ

 

 

20 25 30

AQS
Eshelby
Thermal

(a)

(c)

(e)

μm

 

 

0 4 8 12

0

0.2

0.4

0.6

0.8

1

 

 

d

δη
θ

−10 0 10

−10

0

10

 

 

10 0 10

10

0

10

 

 

0 0.05 0.1 0.15

AQS
Thermal

(b)

(d)

(f)

η

FIG. 3. (Color online) Nonaffine displacement δu at STZ nu-
cleation and T = 0.001Tg computed by (a) AQS and (c) purely
thermal activation, with the background colored by the local shear
modulus [28,29] μm. Von Mises local shear strain η at STZ nucleation
and T = 0.001Tg for (b) AQS and (d) purely thermal activation.
Angularly averaged nonaffine (e) displacement magnitude 〈|δu|〉θ and
(f) local strain 〈δη〉θ as a function of distance d from the center of the
STZ. Both black (upper) and red solid lines in (e) decay exponentially,
while the black and red lines (upper) in (f) follow Eqs. (7) and (8),
respectively.

distance d from the center of the STZ. It is clear that the purely
strain-driven AQS results (black squares) agree well with the
analytic solution based on the Eshelby inclusion (blue pluses)
as expected [13]. They both follow the same exponential
decay function 〈|δu|〉θ = (1 − δu∞) exp(−kd) + δu∞, where
for AQS the decay exponent k = 0.29 and the far-field
nonaffine displacement plateau δu∞ = 0.13. In contrast, the
nonaffine displacement field for the purely thermally activated
STZ (red triangles) not only decays significantly faster with
k = 0.66, but also decays to a much smaller far-field plateau
δu∞ = 0.068. This substantially lower far-field nonaffine
deformation is related to the fact that systems containing
thermally activated STZs are able to reduce the strain energy
throughout the amorphous system by localizing the plastic
deformation more effectively than in the AQS cases.

In addition, the local von Mises shear strain η offers a com-
plementary view of these self-localized STZs, as summarized
in Figs. 3(b) and 3(d) for the AQS and purely thermal cases,
respectively. The angularly averaged nonaffine local strain
〈δη〉θ as a function of distance d from the STZ center is plotted
in Fig. 3(f). Interestingly, the AQS strain field [Fig. 3(f), black
squares] does not decay monotonically as the AQS nonaffine
displacement field [Fig. 3(e)]. Instead, it contains nontrivial
oscillations within the overall exponential decay profile as

〈δη〉θ = cos(kod) exp(−kdd), (7)

where the oscillative wave vector ko = 0.49 and the decay
exponent kd = 0.47. Furthermore, we define the strain-driven
STZ core size as dc = π/2ko = 3.2, indicating the matrix
relaxation immediately surrounding the STZ.

In sharp contrast, the local strain field of the purely
thermally activated configuration [Fig. 3(f), red triangles]
has a random-walk Gaussian core overlapped by a far-field
exponentially decaying tail:

〈δη〉θ =
{

exp(−d2/2σ 2), d � dc,

exp
[ − k(d − dc) − d2

c

/
2σ 2

]
, d � dc,

(8)

where the Gaussian variance σ = 1.89, the exponential decay
rate k = 0.34, and the STZ core distance dc = 4.3. This purely
thermal STZ core contains about 56 atoms, as compared to 31
atoms for the AQS case. As a summary of Figs. 5(a)–5(f), we
note that the thermally activated STZs have significantly larger
core areas and faster exponential decay rates than the purely
strain-driven STZs.

Having established the two distinct STZ characteristics, it is
important to address why the two types of STZs have different
decay lengths in the strain and displacement fields, and why
the thermally assisted STZs are larger than the strain-driven
STZs. This is because the thermally assisted STZs are able to
grow in size in comparison to strain-driven STZs by diffusive
processes. Furthermore, this also provides a mechanism for
the matrix surrounding the STZ to reach lower-energy, less
strained configurations than for the matrix surrounding the
STZ in the strain-driven case. Finally, this explains why the
decay rate for the displacement fields surrounding thermally
assisted STZs is much faster than for the displacement fields
surrounding the purely strain-driven STZs.

In Figs. 4(a) and 4(b), we show the radial (δur) and
tangential (δut) components of the nonaffine displacement
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FIG. 4. (Color online) (a) Radial (δur) and (b) tangential (δut)
projections of the AQS nonaffine displacement field δu [Fig. 3(a)]
at STZ nucleation and T = 0.001Tg . (a, b) The black circles are
dc = 3.2. (c, d) The normalized angle-resolved |δur(θ )| and |δut(θ )|
shown at d � 9 (red circles), 12 (green squares), and 15 (purple
triangles), respectively. (e–h) The purely thermal activation [Fig. 3(c)]
results, in the same order as (a–d). The black circles in (e) and (f) are
dc = 4.3. Black lines in (c) and (d) are the Eshelby inclusion results
at d = 15.

field outside of the AQS core radius dc = 3.2, and their angle-
resolved magnitudes in Figs. 4(c) and 4(d). It is important to
emphasize that the nonaffine displacements in Figs. 4(a) and
4(b) correspond to the deformation of the matrix surrounding
the STZ (inclusion) which has been centered in the middle of
the image, where an empty hole of radius dc = 3.2 has been
drawn to represent the STZ core as previously discussed. The
quadrupolar deformation of the matrix surrounding the central
STZ core region is clearly present in these AQS results, which
agrees well with the analytic Eshelby solutions [13] [Figs. 4(c)
and 4(d), black lines]. By fitting to our numerical results to
Eq. (8) of Ref. [13], we obtain the inclusion radius a = 3.2,
shear eigenstrain ε∗ = 8.0%, and Poisson’s ratio ν = 0.32.
However, our thermal activation simulation results in Figs. 4(e)

and 4(f) do not exhibit quadrupolar symmetry, which is in
agreement with other recent PES results [10]. For this purely
thermal activation study using the SLME method, more than
200 sequential activated events were sampled, and 90% in
absence of quadrupolar symmetry. The snapshots in Figs. 4(e)
and 4(f) correspond to the minimum energy state obtained
following the crossing of the highest saddle point, which
results in a large local strain in the STZ core exceeding 10%.

B. Strain-rate and temperature effects
on two-dimensional STZ characteristics

Having established the two distinct STZ types (strain driven
and thermally activated) above, we now utilize the SLME
algorithm coupled with shear deformation to study the coupled
effects of temperature and strain rate on the characteristics
of 2D STZs, where the results are summarized in Fig. 5.
Specifically, as shown in Fig. 5(a), there are effectively two
regions, the thermally activated region for high T and slow γ̇

(yellow area), and the strain-driven region for low T and high
γ̇ (green area).

Before discussing the nature of the transition between
strain-driven and thermally activated STZs at slow (experi-
mentally relevant) strain rates that is summarized in Fig. 5(a),
it is important to first establish as one means of validating
the SLME approach that this universal transition over broad
temperature and strain-rate ranges that is captured by the
SLME approach can also be observed in actual MD simu-
lations. Therefore, we performed classical MD simulations at
a strain rate of γ̇ = 1 × 10−5, for a range of temperatures
from 0.17Tg to 0.58Tg . As shown in Fig. 5(a), according
to the MD simulations the STZ characteristics change from
strain driven (black pluses) to thermally activated (red crosses)
around 0.5Tg , as shown in Fig. 5(a), matching the predictions
of the SLME approach. Furthermore, the sharp transition at
about 0.5Tg is characterized, as seen in Figs. 5(b) and 5(c),
by transitions in both the displacement and the strain fields
that were previously shown to be due to the transition in STZ
characteristics from strain driven to thermally activated.

Having established that MD and SLME agree for high strain
rates, we now use the SLME approach to access those strain
rates (i.e., ten or more orders of magnitude smaller than MD)
that can be considered to be experimentally accessible. In
doing so, we find that at an experimentally relevant temperature
T = 0.33Tg , Fig. 5(d) indicates that all the curves for γ̇ �
1.0 × 10−9 coincide with the AQS (and Eshelby) results, and
all the curves for γ̇ � 7.4 × 10−12 coincide with the purely
thermal results. This indicates that the characteristics of the
STZ are strain dominated for the former and thermally assisted
for the latter. These results are important because the strain
rate at which the transition from strain-dominated to thermally
dominated STZ nucleation occurs corresponds to one that
occurs at the strain rates that are experimentally relevant
(γ̇ = 1 × 10−14), i.e., about ten orders of magnitude smaller
than the MD strain rate (γ̇ = 1 × 10−5). This carries the
important implication that if the STZ quadrupolar symmetry
is broken at experimental strain rates, there may be an effect
on the resulting shear band formation that occurs due to the
STZ interactions that would be not be captured in artificially
high strain rate MD simulations.
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FIG. 5. (Color online) (a) Summary of transition from strain-
driven to thermally activated STZ nucleation as a function of strain
rate and temperature, while also showing the dependence on the STZ
nucleation stress, and the change in STZ area �S as computed using
a Voronoi decomposition. The black dashed line is the fitting function
log10(γ̇ ) = −42.17 exp(−4.53T/Tg). Normalized 〈|δu|〉θ and 〈δη〉θ

versus d for various (b, c) temperatures at γ̇ = 1 × 10−5 via classical
MD simulations, (d, e) strain rates at T = 0.33Tg by SLME, and
(f, g) temperatures at γ̇ = 2.2 × 10−18 by SLME. The black and red
(light gray) lines in (b–g) correspond to the AQS and purely thermal
results, respectively.

Thus, while Figs. 5(d) and 5(e) demonstrate the transition
in STZ characteristics that occurs due to reducing the strain
rate from MD to experimental, Figs. 5(f) and 5(g) demon-
strate that the same transition in STZ characteristics can be
achieved by keeping a constant strain rate but increasing the
temperature. As a summary of all the results demonstrated
in Figs. 5(b)–5(g) and Fig. 5(a) indicates that the transition
from strain-dominated (Eshelby, or AQS) STZ nucleation to
thermally dominated can be observed for strain rates ranging
from MD (γ̇ = 1 × 10−5) to experimental (γ̇ = 1 × 10−15)
by increasing the temperature, or by reducing the strain rate at
constant temperature. Moreover, the stress needed to nucleate
the initial STZ decreases with increasing temperature, or
equivalently with decreasing strain rate.

It is also relevant to consider the effects of system size on
the present results. This is important because previous studies,
such as done by Lerner and Procaccia [30], have demonstrated
that the yield stress and the stress drop after yield, among
other interesting quantities, are indeed system size dependent,
where the system size refers to a system of N atoms having
periodic boundary conditions such that surface effects are
not considered. For our results in Fig. 5, the STZ transition
mechanism we observed from strain driven to thermally
assisted does not change. However, what will change with the
system size is the position of the transition curve in Fig. 5(a).

Before moving on, it is relevant to discuss here the
effects of dimensionality on the results reported here, i.e.,
whether this sharp transition in STZ characteristics would
be seen in three-dimensional (3D) amorphous solids. Some
skepticism as to whether such a finding would hold in three
dimensions arises from recent results by Olsson and Teitel
[31], Guan et al. [32], and Langer and Egami [33], where
stress-density, stress-temperature, and stress-viscosity scaling
relations, respectively, were observed. It is at present unclear
whether the sharp transition in STZ characteristics that we
have observed here in two dimensions would be observed in
three dimensions, and it is an important issue we will consider
in future work.

We address the transition in the deformation mechanism
inside the STZ that occurs in transitioning from strain-induced
to thermally activated STZ formation. Figure 6 shows the
change in Voronoi area �S within the STZ core at T = 0.33Tg

for shear strain rates of 2.4 × 10−5 (left) and 5.0 × 10−14

(right). We find that the Voronoi area for the STZ at the faster,
MD-relevant strain rate of 2.4 × 10−5 is about 0.21, whereas a
much larger increase of 0.93 is found for the experimental
strain rate of 5.0 × 10−14. These values are representative
of the average change in Voronoi area that we calculate
across the range of different strain rates and temperatures we
considered as shown in Fig. 5(a), where the average �S for
strain-driven STZ nucleation is about 0.18, while the average
�S for thermally activated STZ nucleation is about 0.98.
Furthermore, the significantly faster decay of the nonaffine
displacement field at the experimental strain rate that was
previously quantified in Fig. 5 is seen clearly in comparing
Fig. 6(b) to Fig. 6(a).

Most interestingly, the deformation inside the STZ changes
from shear dominated at elevated strain rates, which corre-
sponds well to the relatively small change in STZ Voronoi
area as illustrated in Fig. 6(a), to tensile once the deformation
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FIG. 6. (Color online) Change in Voronoi area �S of each
atom between the undeformed configuration and STZ nucleation at
T = 0.33Tg for strain rates of (a) 2.4 × 10−5 and (b) 5.0 × 10−14.

is thermally activated as shown in Fig. 6(b), which also
agrees well with the larger change in STZ Voronoi area.
Furthermore, we can observe that the feature that coincides
with the shear-to-tensile deformation change inside the STZ
is the breaking of the quadrupolar symmetry that is seen
in Fig. 6(a), where in Fig. 6(b) the compressive portion of
the quadrupolar deformation is significantly reduced, whereas
the tensile portion remains largely intact. This suppression of
the compressive portion of the quadrupole renders the STZ de-
formation largely tensile at slower strain rates, resulting in the
larger STZ area changes, whereas the largely shear-dominated
STZ deformation results in very small area changes, which
is consistent with a shear (volume-preserving) deformation
mechanism.

As a final, but important, comment, we note that no
comparison of the strain-driven or thermally activated STZs to

experimental results have been made in this work. This fact is
not particular to this simulation study, but is in fact a general
theme of all atomistic simulation studies of STZs in amorphous
solid due to the fact that the atomic scale structure of an
individual STZ has yet to be resolved experimentally [1,2]. In
contrast, current experimental studies are able to back out the
STZ size by using activation energy arguments [34,35]. Thus,
it is hoped that the theoretical results of STZ characteristics
obtained in this work may prove beneficial to theorists and
experimentalists alike in the future.

IV. CONCLUSION

In conclusion, we have coupled a recent PES exploration
technique with shear deformation to study the characteristics of
STZs in a two-dimensional binary Lennard-Jones amorphous
solid. Specifically, we report a transition in the STZ character-
istics where the transition can occur either by increasing the
temperature or by decreasing the strain rate. The transition
occurs between STZs that have characteristics identical to
those that are found in purely strain-driven, AQS calculations,
and those that emerge from a purely thermally activated state.
The specific changes in STZ characteristics that occur in
moving from the strain-driven to the thermally activated STZ
regime include a 33% increase in STZ size, faster spatial decay
of the displacement field, a change in deformation mechanism
inside the STZ from shear to tension, a reduction in the stress
needed to nucleate the first STZ, and finally a notable loss in the
characteristic quadrupolar symmetry of the surrounding elastic
matrix that has previously been seen in athermal, quasistatic
shear studies of STZs.
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