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A B S T R A C T   

Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that 
determines the release of total potential energy of an atomistic system upon variation of the atomistic positions 
relative to the initial atomic configuration. These forces drive energetically favorable irreversible re- 
organizations of the material body, and thus characterize the tendency of crystalline defects to propagate. In 
this work, we provide new expressions for the atomistic configurational forces for two realistic interatomic 
potentials, i.e. the embedded atom potential (EAM) for metals, and second generation reactive bond order 
(REBO-II) potential for hydrocarbons. We present a range of numerical examples involving quasistatic fracture 
for both FCC metals and mono and bi-layer graphene at zero Kelvin that demonstrate the ability to predict defect 
nucleation and evolution using the proposed atomistic configurational mechanics approach. Furthermore, we 
provide the contributions for each potential including two-body stretching, three-body mixed-mode stretching- 
bending, and four-body mixed-mode stretching-bending-twisting terms that make towards defect nucleation and 
propagation.   

1. Introduction 

We use the concept of spatial and material atomistic forces derived 
for various many-body potentials. In a quasi-static setting considered 
here, spatial atomistic forces contribute to the classical deformational 
(equilibrium) problem seeking to minimise the total potential energy of 
an atomistic system when varying the spatial atomistic positions. By 
contrast, material atomistic forces contribute to the configurational (non- 
equilibrium) problem that determines the release of total potential en
ergy of an atomistic system when varying the material (initial) atomistic 
positions. Thereby, material atomistic forces characterise the tendency 
of generic atomistic defects to propagate, i.e., they drive energetically 
favourable re-organisations of the material atomistic configuration. 
Atomistic configurational forces provide a tool to study configurational 
changes which inherently occur during a fracture and failure process. 
Configurational forces are associated with any lattice defect irrespective 
of its type, i.e., point, line and planar defects which can be for example, 
vacancies, interstitials, substitutionals, Stone-Wales, 5-8-5, cracks, dis
locations, twinning, stacking faults, surfaces, grain or twining bound
aries. Taken together, every lattice irregularity results in configurational 
force driving its evolution relative to the material configuration. 

In our prior works [1,2], we established the first principles of 
atomistic configurational mechanics. Therein, the concept of deforma
tional and configurational atomistic pair, triplet and tetrad forces are 
introduced. Configurational pair force accounts for the changes in total 
energy due to the changes in the pair length. Variations in the area 
formed by a triplet of atoms is captured using the notion of configura
tional triplet force. In a similar fashion, the energetic variations asso
ciated with the variations in the tetrad volume defines configurational 
tetrad force. Notably, the proposed theoretical framework in [2] com
pares well to the energy-momentum structure of the Eshelby stress in the 
continuum configurational mechanics [3]. The continuum setting of 
configurational mechanics are presented for example in [4–10] as well 
as our own contributions to configurational mechanics in [11–16]. 
However, to a large extent we have not yet studied computational ex
amples from the realm of atomistic fracture- and 
configurational-mechanics. 

In this work, we initially elaborate on deformational and configu
rational formulations applicable on substantive materials. Next, we 
present a number of diverse numerical examples to demonstrate the 
applicability of the approach to crystalline fracture. We investigate in 
the derivation of energy release during the fracture of crystalline 
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structures. We distinguish between spatial and material settings for two 
major categories of chemical bonds, i.e., metallic, and covalent bonding. 
We provide a novel framework to study the versatility and applicability 
of atomistic configurational forces in pure metals representing metallic 
bonding, and covalently bonded semiconductors. Atomistic configura
tional forces are practically used in [17] as a crack propagation criterion 
using interatomic bond deletions. 

The above-mentioned cases allow us to assess the physical meaning 
of the configurational forces during the rearrangement of interatomic 
bonds i.e., bond dissociation and rotation in the presence of in-/out-of- 
plane externally imposed stretch, shear, bending and torsion. We use 
configurational forces to measure energy release and predict crack paths 
in a mono-/bi-layer graphene as a zero-gap semiconductor as well as in 
FCC structure of pure Copper. Graphene’s exceptional mechanical and 
physical properties have been investigated in a number of studies over 
the decades, as well as authors contributions in [18–22]. By modeling 
graphene using a commonly-used reactive bond order potential [23] 
enables us to examine the contributions of two- (stretching), three- 
(bending), and four- (torsion) body interactions to failure and fracture. 
Similarly, by considering the two-body embedded atom potential for 
metals [24] provides a comparative configurational study between 
metallic and covalent interatomic interactions. In doing so, we show in 
this work that not only bond stretching, but also triplet bending and 
tetrad torsion play a significant role in brittle crack growth and propa
gation in crystalline lattices. 

We organize this contribution as follows: after the introduction, 
Section 2 introduces the notation and elaborates on the kinematics of the 
problem. Thereafter in Sections 3, 4 and 5, we derive the governing 
equations from a deformational and configurational viewpoint. Next in 
Section 6, we derive particularly the deformational and configurational 
forces for an atomistic system modelled via reactive empirical bond- 
order potential and embedded-atom method. For the sake of demon
stration, Section 7 focuses on numerical examples providing insights 
into the detailed analysis of configurational forces whereby the effec
tiveness of the methodology in the fracture of a single and double layers 
graphene as well as FCC lattice of copper are presented. Finally, Section 
8 concludes the paper. 

2. Kinematics 

We assume a system of atoms described by their position Xα occu
pying material (undeformed) configuration and xα denoting spatial 
(deformed) configuration of atomistic systems in ambient space E3. 
They are linked by a discrete, i.e., atom-wise motion with a time-like 
variable S ∈ R+, 

xα = xα(S) with Xα = Xα(0). (1)  

The vector-valued spatial and material pair direction follow as 

nαβ :=
xαβ

xαβ
with Nαβ :=

Xαβ

Xαβ
, (2)  

where spatial and material pair length vectors pointing from atom α to 
atoms β 

xαβ := xβ − xα and Xαβ := Xβ − Xα, (3)  

and the corresponding scalar-valued spatial and material pair lengths as 

xαβ:= |xαβ| and Xαβ :=
⃒
⃒Xαβ

⃒
⃒. (4)  

The introduction of spatial and material triplet angle is motivated by the 
classical concept of rotational spring in terms of angles between adjacent 
atomistic pairs. Here, we reassign triplet angles from the interval [0, π] to 
the interval [+1, − 1] by the cosine map, thus, 

ϕαβγ := nαβ⋅nαγ ≡ nαγ⋅nαβ =: ϕαγβ, (5)  

and, 

Φαβγ := Nαβ⋅Nαγ ≡ Nαγ⋅Nαβ =: Φαγβ.

In a similar fashion, spatial and material tetrad dihedral angle are 
introduced based on the concept of rotational springs in terms of dihe
dral angles between planes spanned by adjacent atomistic triplets. The 
tetrad angles from the interval [0, π] to [+1, − 1] by the cosine map, thus, 

ϕαβγδ := nαβγ ⋅nαβδ ≡ nαβδ⋅nαβγ =: ϕαβδγ (6)  

and, 

Φαβγδ := Nαβγ⋅Nαβδ ≡ Nαβδ⋅Nαβγ =: Φαβδγ.

We introduce spatial and material pair stretches as 

λαβ :=
xαβ

Xαβ
and Λαβ :=

Xαβ

xαβ
(7)  

Note that the objective and parity symmetric spatial and material pair 
stretches associated with each atom belonging to a specific pair are the 
same. 

We also introduce a novel concept of spatial and material triplet twist 
as 

ωαβγ :=
ϕαβγ

Φαβγ
and Ωαβγ :=

Φαβγ

ϕαβγ
, (8)  

importantly, the objective and parity symmetric spatial and material 
triplet twists associated with each atom belonging to a specific atomistic 
triplets are in general distinct. 

We also introduce spatial and material tetrad dihedral twists as 

ωαβγδ :=
ϕαβγδ

Φαβγδ
and Ωαβγδ :=

Φαβγδ

ϕαβγδ
, (9)  

the objective and parity symmetric tetrad dihedral twits associated with 
each atom belonging to a specific tetrad are in general distinct. 

Finally, fully symmetric spatial and material pair projection tensors 
are defined as, 

p⊥
αβ :=

[
i − nαβ ⊗ nαβ

]

xαβ
and P⊥

αβ :=

[
I − Nαβ ⊗ Nαβ

]

Xαβ
, (10)  

similarly, spatial and material projection tensors take the form of 

p⊥
βαγ :=

[
i − nβαγ ⊗ nβαγ

]

xβαγ
and P⊥

βαγ :=

[
I − Nβαγ ⊗ Nβαγ

]

Xβαγ
. (11)  

3. Deformational and configurational mechanics 

In this section, we reiterate briefly the main idea and the compact 
expressions of spatial and material settings proposed by Steinmann et al. 
[2] for two-, three-, and four-body atomistic systems. 

3.1. Total potential energy 

The total potential energy E of this atomistic system depends on the 
sets of spatial and material positions xϵ and Xϵ, respectively, of all atoms. 
For the deformational problem, xϵ denote the unknown variables, 
whereas Xϵ serve as a given parameterisation. For the configurational 
problem these roles are reversed, i.e., Xϵ denote the variable, whereas Xϵ 

serve as parameterisation. The total potential energy E consists of an 
internal and external contribution: 

E := Eint + Eext (12)  

The external potential energy, capturing interaction of finite atomistic 
system with external world, depends merely on the spatial atomistic 
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position xϵ of all atoms through the atom-wise external potential energy 
Vα. That is, 

Eext :=
∑

α
Vα(xα) (13)  

The internal potential energy, capturing internal interatomic in
teractions, depends in general on the sets of spatial and material position 
xϵ and Xϵ of all atoms. We shall here consider the assumption that an 
additive expansion into pair, triplet and tetrad potentials is sufficiently 
accurate to approximate the complex energetic landscape dictated by 
underlaying quantum mechanics, thus 

Eint := Epair + Etriplet + Etetrad (14)  

3.2. Equilibrium of spatial atomistic forces 

For a quasi-static process, the equilibrium condition for spatial 
atomistic forces follow from minimising the total potential energy E of 
an atomistic system considered as a function of the spatial atomistic 
positions in xϵ and parameterised in Xϵ. We denote spatial variations of 
the spatial atomistic positions xϵ at fixed material atomistic positions Xϵ 

as Dδxϵ. Thus, the minimum condition for the total potential energy E 
under spatial variations reads 

DδE = 0 ∀ Dδxϵ. (15)  

Consequently, the minimum condition for the total potential energy E of 
an atomistic system is given by 

DδE = −
∑

α

[
kint

α + kext
α
]
⋅Dδxα := −

∑

α

[
kpair

α + ktriplet
α + + ktetrad

α + kext
α
]
⋅Dδxα

= 0.
(16)  

The internal spatial force acting on atom α follow straightforwardly from 
the pair, triplet and tetrad potentials as 

kpair
α := −

∂Epair

∂xα
, ktriplet

α := −
∂Etriplet

∂xα
, ktetrad

α := −
∂Etetrad

∂xα
. (17)  

Likewise, the external spatial force acting on atom α is given by 
explicitly by 

kext
α := −

∂Vext
α

∂xα
. (18)  

From the above atomistic equilibrium condition, we realize that the sum 
of all internal spatial forces kint

α := kpair
α + ktriplet

α + ktetrad
α and external 

spatial forces kext
α acting on atoms α is zero. 

3.3. Non-equilibrium of material atomistic forces 

Here, a re-parameterisation of the total potential energy E of an 
atomistic system as a function of the set of material atomistic positions 
Xϵ, i.e., with Xϵ as the variables and xϵ as the parameterisation. We 
denote material variations of the material atomistic positions Xϵ at fixed 
spatial atomistic positions xϵ as dδXϵ. The material variation of the total 
potential energy E equates with the virtual energy release Rδ that satisfies 
an inequality constraint in accordance with the second law of Thermo
dynamics, that is, 

dδE =: Rδ ≤ 0 ∀ dδXϵ. (19)  

Thereby, the material variation of the total potential energy E (note that 
dδEext ≡ 0) is given by 

dδE = −
∑

α
Kint

α ⋅DδXα = −
∑

α

[
Kpair

α +Ktriplet
α +Ktetrad

α
]
⋅DδXα ∀ dδXϵ (20)  

The internal material force acting on atom α that follow from the pair, 
triplet, and tetrad potentials, respectively, as 

Kpair
α := −

∂Epair

∂Xα
, Ktriplet

α := −
∂Etriplet

∂Xα
, Ktetrad

α := −
∂Etetrad

∂Xα
, (21)  

The external potential energy is due to the interaction with the world 
outside the atomistic system, e.g. due to gravity or contact forces at the 
boundary or electro-magneto fields. Here, it is assumed that the external 
potential energy depends solely on the spatial atomistic positions, i.e., 
Eext(xα), thus there is no configurational force stemming from the vari
ation of the external energy with respect to material changes. 

4. Spatial settings 

4.1. Spatial energy density 

The atomistic pair, triplet and tetrad contributions - Epair, Etriplet and 
Etetrad - to the internal potential energy Eint is expressed in terms of their 
densities - Wαβ

0 , ωαβγ
0 and ωαβγδ

0 - per unit material pair length Xαβ, angle 
Φαβγ and dihedral angle Φαβγδ, respectively. These energy densities are 
parameterised in terms of spatial pair stretch, triplet and tetrad twists, 
λαβ, ωαβγ , ωαβγδ. 

Epair :=
1
2!
∑

α,β
Wαβ

0
(
λαβ
)
Xαβ (22)  

Etriplet :=
1
3!
∑

α,β,γ

[
ωαβγ

0 Φαβγ +ωβγα
0 Φβγα +ωγαβ

0 Φγαβ
]

Etetrad : =
1
4!
∑

α,β,γ,δ

[
ωαδβγ

0
(
ωαδβγ

)
Φαδβγ +ωαβγδ

0
(
ωαβγδ

)
Φαβγδ +ωαγδβ

0
(
ωαγδβ

)
Φαγδβ

+ωβαδγ
0
(
ωβαδγ

)
Φβαδγ +ωβδγα

0
(
ωβδγα

)
Φβδγα +ωβγαδ

0
(
ωβγαδ

)
Φβγαδ

+ωγβδα
0
(
ωγβδα

)
Φγβδα +ωγδαβ

0
(
ωγδαβ

)
Φγδαβ +ωγαβδ

0
(
ωγαβδ

)
Φγαβδ

+ωδγβα
0
(
ωδγβα

)
Φδγβα +ωδβαγ

0
(
ωδβαγ

)
Φδβαγ +ωδαγβ

0
(
ωδαγβ

)
Φδαγβ]

(23)  

4.2. Spatial interaction force 

The stretch-based parameterisation of pair potential and twist-based 
parameterisation of the triplet and tetrad potentials lead to the corre
sponding spatial atomistic force expand as sums of corresponding spatial 
interaction forces 

kpair
α =

1
1!
∑

β
kpair

αβ , ktriplet
α =

1
2!
∑

β,γ
ktriplet

αβγ , ktetrad
α =

1
3!
∑

β,γ,δ
ktetrad

αβγδ . (24)  

The stretch-based spatial pair interaction force and twist-based spatial 
triplet and tetrad interaction forces are given by 

kpair
αβ := −

∂Wαβ
0

∂xα
Xαβ (25)  

ktriplet
αβγ := −

∂ωαβγ
0

∂xα
Φαβγ −

∂ωβγα
0

∂xα
Φβγα −

∂ωγαβ
0

∂xα
Φγαβ  
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ktetrad
αβγδ : = −

∂ωαδβγ
0

∂xα
Φαδβγ −

∂ωαβγδ
0

∂xα
Φαβγδ −

∂ωαγδβ
0

∂xα
Φαγδβ

−
∂ωβαδγ

0

∂xα
Φβαδγ −

∂ωβδγα
0

∂xα
Φβδγα −

∂ωβγαδ
0

∂xα
Φβγαδ

−
∂ωγβδα

0

∂xα
Φγβδα −

∂ωγδαβ
0

∂xα
Φγδαβ −

∂ωγαβδ
0

∂xα
Φγαβδ

−
∂ωδγβα

0

∂xα
Φδγβα −

∂ωδβαγ
0

∂xα
Φδβαγ −

∂ωδαβγ
0

∂xα
Φδαβγ .

These interaction forces can be stated in terms of the stretch-based 
spatial pair, twist-based triplet and tetrad interaction force generator 
gpair

αβ , gtriplet
αβ and gtetrad

αβγ in the compact format as 

kpair
αβ = gpair

αβ , (26)  

ktriplet
αβγ := 2

[
gtriplet
[αβ] + gtriplet

[αγ]

]
, (27)  

ktetrad
αβγδ : = 2

[
xβγ ×

[
gtetrad
[αβ]γ + gtetrad

[γα]β + gtetrad
[βγ]α

]

+ xγδ ×
[
gtetrad
[αγ]δ + gtetrad

[δα]γ + gtetrad
[γδ]α

]

+ xδβ ×
[
gtetrad
[αγ]β + gtetrad

[βα]δ + gtetrad
[δβ]α

]
]

(28)  

We define stretch-based spatial pair interaction force generator as the 
pair-wise sensitivities of the stretch-based pair potential. Thus, 

gpair
αβ :=

∂Wαβ
0

∂xαβ
Xαβ =: kpair

αβ nαβ. (29)  

Similarly, we define twist-based spatial triplet and tetrad interaction 
force generators as pair- and triplet-wise sensitivities of twist-based 
triplet and tetrad potentials. In the following, we present two exam
ples of such generators (for complete list see Appendix B.2 of [2]). Thus, 

gtriplet
αβ :=

∂ωαβγ
0

∂xαβ
Φαβγ =: ktriplet

αβγ p⊥
αβ⋅nαγ , (30)  

and, 

gtetrad
αβγ :=

∂ωαβγδ
0

∂xαβγ
Φαβγδ =: ktetrad

αβγδ p⊥
αβγ ⋅nαβδ. (31)  

We introduce the signed magnitude of the stretch-based spatial pair and 
twist-based spatial triplet and tetrad interaction force generators as 

kpair
αβ :=

∂Wαβ
0

∂λαβ
, ktriplet

αβγ :=
∂ωαβγ

0

∂ωαβγ
, ktetrad

αβγδ :=
∂ωαβγδ

0

∂ωαβγδ
. (32)  

Note that, the stretch-based spatial pair interaction force kpair
αβ is the force 

exerted on atom α due to its interaction with atom β. It is oriented along 
the line connecting the pair α, β. The twist-based spatial triplet inter
action force ktriplet

αβγ is the force on atom α due to its interaction with atom 

β and γ. It lies in the plane spanned by the triplet α, β and γ with gtriplet
[αβ]

and gtriplet
[αγ] oriented perpendicular to the lines connecting the pairs α, β 

and α, γ, respectively. The twist-based spatial tetrad interaction force 
ktetrad

αβγδ is the force exerted on atom α due to its interaction with atoms β, γ 
and δ. It is assembled from contributions oriented perpendicular to the 
three planes spanned by the triplets α, β, γ and α, δ, γ as well as α, δ, β. 

5. Material settings 

5.1. Material energy density 

For the material setting, we consider the atomistic pair, triplet and 
tetrad contributions -Epair, Etriplet and Etetrad- to the internal potential 
energy Eint expanded in terms of their densities - Wαβ

t , ωαβγ
t and ωαβγδ

t - per 
unit spatial length xαβ, angle ϕαβγ and dihedral angle ϕαβγδ, respectively. 

Epair :=
1
2!
∑

α,β
Wαβ

t

(
Λαβ
)
xαβ, (33)  

Etriplet :=
1
3!
∑

α,β,γ

[
ωαβγ

t

(
Ωαβγ

)
ϕαβγ +ωβγα

t

(
Ωαβγ

)
ϕβγα +ωγαβ

t

(
Ωαβγ

)
ϕγαβ

]
,

Etetrad : =
1
4!
∑

α,β,γ,δ

[
ωαδβγ

t

(
Ωαδβγ

)
ϕαδβγ +ωαβγδ

t

(
Ωαβγδ

)
ϕαβγδ +ωαγδβ

t

(
Ωαγδβ

)
ϕαγδβ

+ωβαδγ
t

(
Ωβαδγ

)
ϕβαδγ +ωβδγα

t

(
Ωβδγα

)
ϕβδγα +ωβγαδ

t

(
Ωβγαδ

)
ϕβγαδ

+ωγβδα
t

(
Ωγβδα

)
ϕγβδα +ωγδαβ

t

(
Ωγδαβ

)
ϕγδαβ +ωγαβδ

t

(
Ωγαβδ

)
ϕγαβδ

+ωδγβα
t

(
Ωδγβα

)
ϕδγβα +ωδβαγ

t

(
Ωδβαγ

)
ϕδβαγ +ωδαγβ

t

(
Ωδαγβ

)
ϕδαγβ]

Observe that the spatial and material potential energy densities relate, 
for example, as 

Wαβ
t = ΛαβWαβ

0 , ωαβγ
t = Ωαβγωαβγ

0 , ωαβγδ
t = Ωαβγδωαβγδ

0 . (34)  

whereby the material pair-stretch, triplet- and tetrad-twists Λαβ, Ωαβγ 

and Ωαβγδ, respectively, serve to transform spatial into material densities. 
The internal energy described in this work includes the interatomic 
potentials suitable for studying zero Kelvin lattices in Molecular Statics 
(MS). However, an extension to finite temperature lattices in the context 
of MS can be provided by incorporating the atomistic frequency 
capturing the fluctuations occurring at non-zero temperatures. Through 
changing the variables in the definition of an empirical potential, we can 
study the effect of the atomistic frequency. A detailed explanation 
regarding the introduction of effective empirical potentials can be found 
in [25]. 

5.2. Material interaction force 

The material atomistic forces corresponding to the stretch-based 
pair, twist-based triplet and tetrad interaction forces given by 

Kpair
αβ := −

∂Wαβ
t

∂Xα
xαβ, (35)  

Ktriplet
αβγ := −

∂ωαβγ
t

∂Xα
ϕαβγ −

∂ωβαγ
t

∂Xα
ϕβαγ −

∂ωγαβ
t

∂Xα
ϕγαβ, (36)  

Ktetrad
αβγδ : = −

∂ωαδβγ
t

∂Xα
ϕαδβγ −

∂ωαβγδ
t

∂Xα
ϕαβγδ −

∂ωαγδβ
t

∂Xα
ϕαγδβ

−
∂ωβαδγ

t

∂Xα
ϕβαδγ −

∂ωβδγα
t

∂Xα
ϕβδγα −

∂ωβγαδ
t

∂Xα
ϕβγαδ

−
∂ωγβδα

t

∂Xα
ϕγβδα −

∂ωγδαβ
t

∂Xα
ϕγδαβ −

∂ωγαβδ
t

∂Xα
ϕγαβδ

−
∂ωδγβα

t

∂Xα
ϕδγβα −

∂ωδβαγ
t

∂Xα
ϕδβαγ −

∂ωδαβγ
t

∂Xα
ϕδαβγ .

Stretch-based material pair and twist-based material triplet and tetrad 
interaction force generators Gpair

αβ , Gtriplet
αβ and Gtetrad

αβγ as, 

S.E. Birang O et al.                                                                                                                                                                                                                             



Forces in Mechanics 4 (2021) 100044

5

Kpair
αβ := Gpair

αβ , (37)  

Ktriplet
αβγ := 2

[
Gtriplet

[αβ] +Gtriplet
[αγ]

]
(38)  

Ktetrad
αβγδ : = 2

[
Xβγ ×

[
Gtetrad

[αβ]γ + Gtetrad
[γα]β + Gtetrad

[βγ]α

]

+Xγδ ×
[
Gtetrad

[αγ]δ + Gtetrad
[δα]γ + Gtetrad

[γδ]α

]

+Xδβ ×
[
Gtetrad

[αγ]β + Gtetrad
[βα]δ + Gtetrad

[δβ]α

]]
(39)  

Gpair
αβ :=

∂Wαβ
t

∂Xαβ
xαβ =: Kpair

αβ Nαβ, (40)  

Gtriplet
αβ :=

∂ωαβγ
t

∂Xαβ
ϕαβγ =: Ktriplet

αβγ P⊥
αβ⋅Nαγ , (41)  

Gtetrad
αβγ :=

∂ωαβγδ
t

∂Xαβγ
ϕαβγδ =: Ktetrad

αβγδ P⊥
αβγ ⋅Nαβδ. (42)  

We also introduce the signend magnitudes of the stretch-based material 
pair and the twist-based material triplet and tetrad interaction force 
generators, 

Kpair
αβ :=

∂Wαβ
t

∂λαβ
, Ktriplet

αβγ :=
∂ωαβγ

t

∂Ωαβγ
, Ktetrad

αβγδ :=
∂ωαβγδ

t

∂Ωαβγδ
. (43)  

It should also be noted that, for a finite temperature lattice, a further 
term denoted as thermal configurational force captures the influence of 
atomistic fluctuations in the variation of the total energy, however it is 
outside the scope of this study. 

6. Many-body potential energy 

In the following, we use the proposed theoretical framework to 
derive deformational and configurational settings of empirical many- 
body potentials. Embedded-atom method and reactive bond order 
model enable to assess configurational forces in the fracture of crystal
line lattices e.g., copper and graphene, composed of the two- to four- 
body atomistic systems. 

6.1. Embedded-atom method 

Functional forms of many-body potentials such as pair functional, e. 
g., embedded-atom method, have been developed to study materials e. 
g., metals, with better computational performance and higher accuracy 
in comparison with cluster potentials e.g., classical Morse potential. 
Generally, they take the form 

E =
1
2!
∑

α∈IC

∑

β∈IN α

ϕαβ xαβ
)
+
∑

α∈IC

F α

(
ρα

)
(

(44)  

We consider embedded-atom method [24], thus ϕαβ is a pair potential 
described by a Morse potential function [26] 

ϕαβ
(
xαβ
)

=
[
A1M

(
xαβ, b1, a1

)
+ A2M

(
xαβ, b2, a2

)
+ δ

]
ψ
(xαβ − rc

h

)

−
∑3

n=1

H
(
rs(n) − xαβ

)
Sn
[
rs(n) − xαβ

]4,

(45)  

where 

M
(
xαβ
)
= exp

(
− 2 a1

[
xαβ − b1

])
− 2exp

(
− a1

[
xαβ − b1

])
(46)  

is a Morse function and H(xαβ) is a unit step function. Equation (45) 
includes a cutoff function ψ(xαβ) defined as 

ψ
(
xαβ
)
=

⎧
⎨

⎩

x4

1 + x4 x < 0

0 x ≥ 0.
(47)  

The last term in Eq. (45) controls the strength of pairwise repulsion 
between atoms at short distances. The second term in Eq. (44), F (ρα), 
denotes the electronic energy, that is an embedding energy associated 
with placing an atom α in its electronic cloud, parameterized by an 
intermediary function ρα. That is, 

F

(
ρα

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 +
1
2
F2

(
ρα − 1

)
2 +

∑4

n=1
qn

(
ρα − 1

)
n+2 ρα < 1

F0 +
1
2
F2

(
ρα − 1

)
2 + q1

(
ρα − 1

)
3 + Q1

(
ρα − 1

)
4

1 + Q2

(
ρα − 1

)
3

ρα > 1,

(48)  

the homogenous electron gas density, ρα, is determined using the con
tributions from the neighbouring atoms as a linear superposition of 
electron density from every neighbour through the function ρβ, 

ρα =
∑

β∈IN α

ρβ
(
xαβ
)
. (49)  

The electron density ρβ is a function of distance and represents a 
spherically-averaged electron density field around an isolated atom β, 

ρβ

(
xαβ
)

=
[
c exp

(
− B1

[
xαβ − a3

]2
)

+ exp
(

− B2
[
xαβ − a4

])]
ψ
(xαβ − rc

h

)
(50)  

Embedded-atom method in total requires 20 material parameters and 
coefficients to fit a potential function using experimental data. 

6.1.1. Spatial setting of embedded-atom method 
The total potential energy E of an atomistic system is determined as a 

function of the spatial atomistic positions. Here W0
αβ denotes the internal 

bond potential density per unit length of the material bond vector. 
Considering the same unit for energy density, deformational embedding 
energy density D0 is defined. It is parameterized in terms of deforma
tional electron density Lα

0. The external potential energies within the 
domain and at the boundary are denoted as VC

α and V∂C
α , respectively, 

E
( {

xγ
}
;
{

Xγ
})

=
1
2!
∑

α∈IC

∑

β∈IN α

W0
αβ

(
λαβ
)
Xαβ

+
∑

α∈IC
D0
(
Lα

0

)
Xαβ +

∑

α∈IC

VC
α (xα) +

∑

α∈I∂C

V∂C
α (xα).

(51)  

Pair potential density is parameterized using spatial stretch λαβ, that is, 

W0
αβ

(
λαβ
)

=
[
A0

1M0
(
λαβ, b0

1, a0
1

)
+ A0

2M0
(
λαβ, b0

2, a0
2

)
+ δ0]ψ

(
λαβ − r0

c

h0

)

−
∑3

n=1

H

⎛

⎝Xαβ
[
r0

s(n)
− λαβ

]

⎞

⎟
⎠ S0

n

[
r0

s(n)
− λαβ

]4,

(52)  

whereby deformational Morse potential density is described as 

M0
(
λαβ , b , a

)
= exp

(
− 2a0[λαβ − b0]) − 2exp

(
− a0[λαβ − b0]). (53)  

Deformational electron density, Lα
0, per unit material pair distance is 
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defined as the linear sum of deformational electron densities in inter
action with the neighboring atoms, 

Lα
0 =

∑

β∈IN α

L0
(
λαβ
)
, (54)  

L0
(
λαβ
)

=

[

c0 exp
(
− B0

1

[
λαβ − a0

3

]2) + d0 exp
(

− B0
2

[
λαβ − a0

4

])
]

ψ
(

λαβ − r0
c

h0

)

(55)  

Finally the deformational embedding energy density is described by, 

D0
(
Lα

0

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 +
1
2
F2
[
Lα

0 − 1
]2 +

∑4

n=1
qn
[
Lα

0 − 1
]n+2 Lα

0 < 1

F0 +
1
2
F2
[
Lα

0 − 1
]2 + q1

[
Lα

0 − 1
]3 + Q1

[
Lα

0 − 1
]4

1 + Q2
[
Lα

0 − 1
]3 =

A0

B0
Lα

0 > 1.

(56)  

To derive the unit of energy per material pair distance (eV/Å), we 
redefine the fitting coefficients as presented (Table 1), 

Next, we derive pair deformational force kαβ oriented via the spatial 
pair direction resulting from the variations of pair and embedding en
ergies due to the changes in spatial pair stretch, thus, 

kpair
αβ = −

[
∂W0

αβ

∂λαβ
+

∂D
∂Lα

0

∂Lα
0

∂L0

∂L0

∂λαβ

]

nαβ, (57)  

subsequent functions derivatives to derive pair deformational force are 

Table 1 
Function fitting parameters for deformational embedded-atom potential density 
of copper.  

a0 = aXαβ  b0 =
b

Xαβ  
r0
c =

rc

Xαβ  

h0 =
h

Xαβ  
δ =

δ0

Xαβ  

S0
n = S [Xαβ ]

3  

A0
1 =

A1

Xαβ  
A0

2 =
A2

Xαβ  
r0
s(n) =

rs(n)

Xαβ  
B0

1 = B1Xαβ  a0
3 =

a3

Xαβ  

B0
2 = B2 Xαβ  

a0
4 =

a4

Xαβ  
c0 =

c
Xαβ  

d0 =
1

Xαβ   

Table 2 
Fitting coefficient required to derive configurational embedded-atom potential 
density of copper.  

ct =
c

xαβ  
dt =

1
xαβ  

St
n = S[Xαβ ]

2   

Table 3 
Coefficients for REBO-II potential for solid-state carbon-based structures given 
in [23], which also include the parameters for the fifth-order polynomial spline 
function gβαγ .  

A = 10953.544162170 eV  B1 = 12388.79197798 eV  

B2 = 17.56740646509 eV  B3 = 30.71493208065 eV  
α = 4.7465390606595  1/Å  λ1 = 4.7204523127  1/Å  
λ2 = 1.4332132499 1/Å  λ3 = 1.3826912506  1/Å  
Q = 0.3134602960833 Å  R = 2.0  Å  
D = 1.7 Å  T0 = .00809675  
β0 = 0.7073  β1 = 5.6774  
β2 = 24.0970  β3 = 57.5918  
β4 = 71.8829  β5 = 36.2789   

Fig. 1. Flowchart of deformation and subsequent changes in the material of a 
crystalline lattice. 

Fig. 2. Illustration of copper structure. A finite lattice is assumed, such that its 
x component has length of 68.685 Å, in y-direction is 14.46 Å  and in z-direction 
has length of 68.685 Å. A screening crack is introduced to the left edge of lattice 
depicted by yellow and blue atoms. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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presented in Appendix A.1. Finally, net deformational forces acting on 
an individual atom is derived as the cluster sum of pair deformational 
forces. That is, 

kpair
α =

1
1!
∑

β∈IN α

kpair
αβ . (58)  

6.1.2. Material setting of embedded-atom method 
The total potential energy in the material setting is defined as the 

combination of internal and external energy densities, 

E
( {

Xγ
}
;
{

xγ
})

=
∑

α∈IC

∑

β∈IN α

Wt
αβ

(
Λαβ
)
xαβ

+
∑

α∈IC
Dt
(
Lα

t

)
xαβ +

∑

α∈IC

VC
α (xα) +

∑

α∈I∂C

V∂C
α (xα)

(59)  

Configurational pair potential density is parameterized using material 
stretch Λαβ, that is, 

Wt
αβ

(
Λαβ
)

=
[
At

1Mt
(
Λαβ, b0

1, a0
1

)
+ At

2Mt
(
Λαβ, b0

2, a
0
2

)
+ δt]ψ

(
1 − Λαβr0

c

Λαβh0

)

−
∑3

n=1
H
(

Xαβ

[Λαβr0
s(n) − 1
Λαβ

])

St
n

(Λαβr∘
s(n) − 1
Λαβ

)
4Λαβ,

(60)  

where configurational Morse potential density is redefined based on 

material unit of density and corresponding pair stretch, that is, 

Mt
(
Λαβ, b0, a0) = exp

(

− 2a0
[

1 − b0Λαβ

Λαβ

])

− 2exp
(

− a0
[

1 − b0Λαβ

Λαβ

])

(61)  

The configurational embedding energy takes the form of, 

Dt
(
Lα

t

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Fo +
1
2
F2
(
Lα

t − 1
)2 +

∑4

n=1
qn
[
Lα

t − 1
]n+2 Lα

t < 1

Fo +
1
2
F2
[
Lα

t − 1
]2 + q1

[
Lα

t − 1
]3 + Q1

[
Lα

t − 1
]4

1 + Q2
[
Lα

t − 1
]3 =

At

Bt
Lα

t > 1,

(62)  

where local configurational electron density is defined based on its 
linear summation of pair configurational electron density, such that, 

Lα
t =

∑

β∈IN α

Lt
(
Λαβ
)
, (63)  

ultimately, we define pair configurational electron density, 

Fig. 3. Illustration of propagation of [0,0,1](1,0,0) crack into the FCC structure of copper. a presents color mapping of z component of pair configurational forces at 
material configuration. b illustrate corresponding spatial configuration at different displacement steps. c illustrate that configurational forces appear at the free and 
crack surfaces. 
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Lt
(
Λαβ
)

=

[

ctexp
(

− B0
1

[
1 − Λαβa0

3

Λαβ

]
2
)

+ dtexp
(

− B0
2

[
1 − Λαβa0

4

Λαβ

])]

…

… ψ
(

1 − Λαβr0
c

Λαβh0

)

(64)  

Some coefficients and variables are redefined here to maintain the unit 
of energy density based on spatial pair distance, such that we need 
(Table 2), 

Using material pair direction, configurational pair force acting on an 
atom α is defined as, 

Kαβ :=

[∂Wt
αβ

∂Λαβ
+

∂Dt

∂Lα
t

∂Lα
t

∂Lt

∂Lt

∂Λαβ

]

Nαβ, (65)  

subsequent functions derivatives to calculate configurational pair force 
are presented in Appendix A.2. Finally, net configurational forces acting 
on an individual atom is derived as the cluster sum of pair configura
tional forces. That is, 

Kpair
α =

1
1!
∑

β∈IN α

Kpair
αβ . (66)  

6.2. Second-generation reactive empirical bond order potential 

The analytical form for the pair potential, Vαβ, of the Brenner et al. 
[23] denoted as second-generation reactive empirical bond order (REBO-II) 
potential energy for solid-state carbon-based structures is given by the 
following functions with corresponding parameters listed in Table 3. 

Fig. 4. Illustration of copper FCC bulk defor
mation under in-plane increasing shear. In a.1- 
a.3, the spatial configurations are presented. 
The bulk lattice is sliced in y direction to two- 
dimensional layers. Configurational forces 
appear in 2D outer layers (b.1) takes a different 
form than an inner layer (c.1). Consecutive in
crease of shear (b.2) leads to the propagation of 
crack. Based on analogous configurational 
forces in c.2, the crack growth can be under
stood as the stretch of bonds along crack path. 
b.3 implies a dislocation glide occurring during 
deformation. Corresponding configurational 
forces in c.3 indicates rigorously the contrib
uting atoms in crack propagation and disloca
tion glide.   
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Vαβ = f c
αβ

[

f R
αβ − bαβf A

αβ

]

. (67)  

The repulsive and attractive pairwise terms are defined by fR
αβ and fA

αβ, 
respectively, 

f R
αβ = A

[

1+
Q
xαβ

]

exp
(
− αxαβ

)
, (68)  

f A
αβ =

∑3

n=1
Bnexp

(
− λnxαβ

)
, (69)  

the cutoff function f c
i j limits the contributions only to nearest-neighbors 

f c
ij

(
xij
)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2

[

1 + cos
([

π xij − d
D − d

])]

d ≤ xij ≤ D

1 xij < d

0 xij > D.

(70)  

Fifth-order polynomial spline function gβαγ describes the energy of a 
triplet as a function of angle θβαγ. The coefficients βn are derived via 
fitting the function to the experimental data. 

gβαγ =
∑5

n=0
βnϕn

βαγ (71)  

The energy associated with the quadruplet dihedral angle is described as 

gγαβδ = 1 − ϕ2
γαβδ (72)  

The ternary and quaternary interactions are involved in bαβ depending 
on the local coordination of atoms around atom α and the triplet and 
quadruplet angles between the atoms (α, β, γ, δ), 

bαβ = bσ− π
αβ + bDH

αβ . (73)  

The pi-bond term bσ− π
αβ depends on the local coordination of atoms 

around atom α and the angle between atoms (β, α, γ), 

bσ− π
αβ =

[

1+
∑

γ∕=α,β
f c
αγ gβαγ

]

− 1/2 (74)  

The dihedral function bDH
αβ includes the quadruplet energy gγαβδ. The 

cutoff functions ensure that atoms α and β interact only with their 
nearest-neighbor atoms which in this case includes atoms γ and δ, 
respectively. This function ultimately describes the torsion between 
atoms α and β 

bDH
αβ =

T0

2
∑

γ,δ∕=α,β
f c
αγf

c
βδ gγαβδ. (75)  

6.3. Spatial setting of REBO-II potential 

The term capturing the repulsion between carbon atoms is defined in 
spatial setting as deformational repulsive energy density, such that, 

WR0
αβ = A0

[

1+
Q0

λαβ

]

exp
(
α0λαβ

)
, (76)  

Similar to the case of EAM potential we require to redefine various pa
rameters and coefficients in REBO-II potential to provide an energy in 
terms of its density, in this way, for Eq. (76) we need, 

α0 = αXαβ, Q0 =
Q

Xαβ
, A0 =

A
Xαβ

. (77)  

We also introduce the signed magnitude of stretch based interaction 
force associated with repulsive energy density, 

∂WR
0

∂λαβ
= −

A0exp
(
− α0λαβ

)

λ2
αβ

[
α0λ2

αβ +α0Q0λαβ +Q0

]
:= kR0

αβ (78)  

The spatial form of attractive force between the atoms depends on 
spatial pair stretch. Thus, 

WA0
αβ =

∑3

n=1
B0

nexp
(
− λ0

nλαβ
)
, (79)  

and it is defined as energy density per unit of spatial pair length by 
modification of the coefficients 

B0
n =

Bn

Xαβ
, λ0

n = λnXαβ. (80)  

The signed magnitude of attractive interaction force is derived as, 

∂WA0
αβ

∂λαβ
= −

∑3

n=1
B0

nλ0
nexp

(
− λ0

nλαβ
)
:= kA0

αβ . (81)  

As classical REBO-II potential requires to have a cut-off function limiting 
the interaction between carbon atoms to first nearest neighbour, we 
define it as a deformational energy density in the form of 

Wc0
ij
(
λij
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2Xij

[

1 + cos
(

π λij − d0

D0 − d0

)]

d0 ≤ λij ≤ D0

1
Xij

λij < d0

0 λij > d0,

(82) 

Fig. 5. The geometry of hexagonal graphene mono-layer including 14,200 
atoms. The boundary of the layer depicted by pink atoms is constrained in all 
direction. Step-wise displacement in z-direction is applied to the central atoms 
depicted by yellow colour. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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However, the variations in spatial pair stretch leads to the changes in 
deformational cut-off energy density and we have signed magnitude of 
corresponding interaction force in the form of, 

Fig. 6. Illustration of pair configurational forces. A.sp) presents the spatial configuration at the undeformed state, its material configuration in (A.ma) shows that the 
configurational forces emerge at the boundary of hexagonal SLGS. B.sp) presents the spatial configuration at the displacement step 107, B.ma) is its material 
configuration illustrating the appearance of configurational forces on the boundary of displacement-carrying zone. C.sp) and D.sp) present the spatial configurations, 
their material configurations (C.ma) and (D.ma) illustrate new configurational forces emerging as displacement-carrying zone detaches from SLGS. 

Fig. 7. a) presents the deformed plane at spatial configuration associated to the 
displacement step n = 106; three green atoms are chosen to measure triplet 
angle at the interface. b) presents triplet angle at unstretched step, that is, Θ =
119.32∘ and at stretched state, rendering, θ = 126.72∘. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 8. a) presents the distribution of configurational forces in the material 
configuration Ktriplet

α . The atoms in the adjacency of displacement-carrying zone 
experience the highest bending, thus reflected in the magnitude of configura
tional forces. b) is the corresponding spatial configuration illustrating the 
maximum curvature tolerated by SLGS before detachment. 
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∂Wc0
ij

∂λij

(
λij
)
:= kc0

ij =

⎧
⎪⎨

⎪⎩

−
π

2Xij
sin
(

π λij − d0

D0

)

d0 ≤ λij ≤ D0

0 D0 < λij < d0.

(83)  

The energy between a triplet of atoms depends on their spatial triplet 
twist ωβαγ, the energy is defined as its density per material triplet angle, 
Φβαγ, such that, 

ωβαγ
0 =

∑5

n=0
β0

nωn
βαγ , (84)  

therefore we need, 

β0
n = βnΦn− 1. (85)  

The signed magnitude associated with the variation of triplet energy due 
to spatial triplet twists, i.e., bending, is defined as 

∂ωβαγ
0

∂ωβαγ
=
∑5

n=0
nβ0

nωn− 1
βαγ := ktriplet

βαγ . (86)  

Spatial tetrad twist ωγαβδ is used to define tetrad potential density, that 
is, 

ωγαβδ
0 =

1
Φγαβδ

− Φγαβδω2
γαβδ. (87)  

The corresponding deformational signed magnitude of four-body inter
action force is defined using infinitesimal changes in tetrad energy 

Fig. 9. The setting of bilyer graphene. The distance between two layers in z 
direction is 3.34 (Å) and the strip has the size of 170.53 (Å) in x direction and 
59.08 (Å) in y direction. 

Fig. 10. Illustration of pair configurational forces at material configuration for deformation of bilayer graphene at snapshot 201.  

Fig. 11. a. sp and b. sp demonstrate the deformation of bilayer graphene including crack propagation at snapshots 251 and 252 from bottom layer perspective. The 
corresponding material configurations in a. ma and b. ma depicts the corresponding material configuration including crack growth. 
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Fig. 12. Color mappings for the magnitude of configurational forces for the snapshots, 201, 252 and 251 during the crack growth. a presents the magnitude of pair 
configurational forces. The magnitude of triplet configurational forces are illustrated in b. In c, the contour plot of tetrad configurational forces are presented. The 
pair configurational forces render the largest energy release due to configurational changes. 

Fig. 13. Illustration of asynchronous crack propagation in a bilayer graphene under tensile loading at step 251. The fracture of top layer occurs faster than bottom 
layer. We use configurational forces to identify the crack tip for the complex deformation of bilayer. 

Fig. 14. Fracture of a mono-layer graphene under tensile loading at snapshots 840–844 at spatial and material configurations. Magnitude of pair configurational 
forces is illustrated, while triplet and tetrad configurational forces are sufficiently small to be ignored. 
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density with respect to tetrad twist. Thus, 

∂ωγαβδ
0

∂ωγαβδ
= − 2Φγαβδωγαβδ := ktriplet

γαβδ . (88)  

Deformational σ − π bond energy density identifies a double covalent 
bond between two carbon atoms. It depends on the triplet twist ac
counting for the spatial changes in the cosine of the angle bonds between 
a triplet of atoms. Similar to the classical case, using deformational cut- 

off function, the energy of triplet is limited to the contributions from 
nearest neighbour. Thus, 

W(σ− π)0
αβ =

[
∑

γ∕=α,β

1
XαβΦβαγ

+Wc0
αβωβαγ

0

]

− 1/2, (89)  

the dependency of deformational σ − π energy density on spatial pair 
stretch and triplet twist requires the derivation of pair and triplet signed 
magnitudes, respectively, 

∂W(σ− π)0
αβ

∂λαβ
= −

1
2

[
∑

γ∕=α,β

1
XαβΦβαγ

+Wc0
αβωβαγ

0

]

− 3/2

[
∑

γ∕=α,β
kc0

αβωβαγ
0

]

:= k(σ− π)0
αβ , (90)  

and, 

∂W(σ− π)0
αβ

∂ωβαγ
= −

1
2

[
∑

γ∕=α,β

1
XαβΦβαγ

+ Wc0
αβωβαγ

0

]

− 3/2

[
∑

γ∕=α,β
ktriplet

βαγ Wc0
αβ

]

:= k(σ− π)0
βαγ .

(91)  

Deformational dihedral energy density describes the energy for a spatial 
rotation about dihedral angles for carbon double bonds per material 
tetrad twist and pair stretches, assuming only nearest neighbour in
teractions, we thus derive, 

W(DH)0
αβ =

T0

2
∑

γ,δ∕=α,β
Wc0

αβWc0
βδ ωγαβδ

0 . (92)  

Fig. 15. The magnitude of configurational forces at the crack tip predicts the 
direction of crack growth. As it is illustrated in a, b and c using a black vector, 
the crack propagates in the direction that the configurational forces are larger. 

Fig. 16. Illustration of bi-crystalline mono-layer graphene. The second grain is oriented by θ = 9∘ from x axis.  

Fig. 17. Illustration of crack propagation in a bi-crystalline mono-layer graphene. The crack initiates and propagates in a zigzag fashion into the crystal. a depicts the 
contour plot for magnitude of pair configurational forces, whereby the configurational forces appear at the free surfaces, crack region and grain boundary. b presents 
that configurational forces not only trace the path of crack growth but also they predict the path of crack growth at the crack tip (see black vector). c presents that 
crack has chosen the path suggested in b to grow. 
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Next, we derive signed magnitude of interaction forces as a response to 
the changes in deformational dihedral energy due to the variations in 
spatial pair stretches and tetrad twist, namely, 

∂W(DH)0
αβ

∂λαβ
=

T0

2
∑

γ,δ∕=α,β
kc0

αβWc0
βδ ωγαβδ

0 := k(DH)0
αβ , (93)  

∂W(DH)0
αβ

∂λαβ
=

T0

2
∑

γ,δ∕=α,β
kc0

βδWc0
αβωγαβδ

0 := k(DH)0
βδ , (94)  

∂W(DH)0
αβ

∂ωγαβδ
=

T0

2
∑

γ,δ∕=α,β
Wc0

βδ Wc0
αβkγαβδ

0 := k(DH)0
γαβδ . (95)  

Net pair deformational force acting on atom α is defined using the 
cluster sum of pair deformational forces, 

kpair
α =

1
1!
∑

β∈IN α

kpair
αβ , (96)  

where, 

kpair
αβ =

[
kR0

αβ + kA0
αβ + k(σ− π)0

αβ + k(DH)0
αβ

]
nαβ. (97)  

Next, triplet deformational force takes the form of 

ktriplet
α =

1
2!
∑

β∈IN α

∑

γ∈IN β

ktriplet
βαγ , (98)  

triplet force of REBO-II potential is defined as 

ktriplet
βαγ = 2k(σ− π)0

βαγ

[
p⊥

αβ⋅nαγ + p⊥
αγ⋅nαβ

]
. (99)  

Finally, we derive atom-wise tetrad deformational force as, 

ktetrad
α =

1
3!
∑

β∈IN α

∑

γ∈IN β

∑

δ∈IN γ

ktetrad
γαβδ , (100)  

and tetrad deformational force is defined as, 

ktetrad
γαβδ = 2k(DH)0

γαβδ

[
xγβ ×

[
p⊥

αβδ⋅nγαβ

]
+ xαδ ×

[
p⊥

γαβ⋅nαβδ

]]
(101)  

6.4. Material setting of REBO-II potential 

In the following, we present material atomistic energy and force 
formulations contributing to configurational problem to determine the 
release of energy in carbon-based atomistic structures modelled with 
REBO-II potential experiencing any variations in their material atomistic 
setting. Configurational repulsive energy density per unit of spatial pair 
distance is defined based on material pair stretch 

WRt
αβ = A0Λαβ

[
1+Q0Λαβ

]
exp
(

−
α0

Λαβ

)

, (102)  

signed magnitude of the configurational repulsive force takes the form, 

∂WRt
αβ

∂Λαβ
= A0exp

(

−
α0

Λαβ

)[

1+ 2Q0Λαβ −
1 + Q0Λαβ

Λαβ

]

:= KRt
αβ. (103)  

Next, we define configurational attractive energy density per unit of 
spatial pair distance, 

WAt
αβ =

∑3

n=1
Bt

nΛαβe

(

−
λ0
n

Λαβ

)

, (104)  

what follows is the derivation of the magnitude of configurational 
attractive force, presenting the variations in the attractive energy den
sity with respect to the variations in material pair stretch, 

∂WAt
αβ

∂Λαβ
=
∑3

n=1
Bt

nexp
(

−
λ0

n

Λαβ

)
Λαβ − 1

Λαβ
:= KAt

αβ. (105)  

Similar to spatial setting we require to define configurational cut-off 

Fig. 18. The setup of single-walled carbon nanotube by length 99.47 Å  and 
ring diameter R=6.77 Å. A torque is applied to the pink atoms at a rotation rate 
of Δθ = 0.9∘ per step. 
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potential density per unit of spatial pair distance 

Wct
ij

(
λij
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Λij

2

[

1 + cos

(

π
(
1 − Λij

)
d0

Λij
(
D0 − d0)

)]
1

D0 ≤ Λij ≤
1
d0

0
1
d0 < Λij <

1
D0,

(106)  

corresponding the signed magnitude of configurational cut-off force 
takes the form of,  

Configurational triplet energy density as a function of material triplet 
twist Ωβαγ measures the energy between a triplet of atoms per unit of 
spatial triplet angle ϕβαγ, 

ωβαγ
t =

∑5

n=0

βt
n

Ωn− 1
βαγ

, (108)  

the signed magnitude of configurational triplet force presents the 
required force to bend the triplet at material configuration 

∂ωβαγ
t

∂Ωβαγ
= −

∑5

n=0

(n − 1)βt
n

Ωn− 2
βαγ

:= Ktriplet
βαγ , (109)  

where we require to redefine a coefficient in the form of, 

βt
n = βnΦn− 2. (110)  

Configurational tetrad energy density based on material tetrad twist per 
unit of spatial tetrad angle ϕγαβδ is defined as 

ωγαβδ
t =

1
Φγαβδϕγαβδ

−
1

Ωγαβδ
(111)  

the signed magnitude of configurational tetrad force determines the 
energy release due to the rotations of the atomistic tetrad at the material 
configuration, that is, 

∂ωγαβδ
t

∂Ωγαβδ
= −

1
Ω2

γαβδ
:= Ktetrad

γαβδ . (112)  

Configurational σ − π potential density captures the double covalent 

Fig. 19. Illustration of deformation and configurational changes in single-walled carbon nanotube. a) presents a series of snapshots from spatial configuration of 
nanotube under torsion, folding initiates at step 1250 and leads to a central buckling of tube. Above each step, the cross sections at center of tube are presented. b) 
indicates the material configuration based on the color mapping of magnitude of configurational forces. We observe the concentration of the tetrad forces in the 
vicinity of edges at step 1250, indicating significant bendings that are necessary to fold the tube. Moreover, in step 1500 configurational pair forces are focused in the 
vicinity of bukling zone, thus we can measure the associated energetical variations based on pair stretches. 

Kct
ij :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

[

1 + cos

(

π 1 − Λijd0

Λij
(
D0 − d0)

)]

−
Λijπ

2

[

sin

(
− π

Λ2
ij

(
D0 − d0)

)]
1

D0 ≤ Λij ≤
1
d0

0
1
d0 < Λij <

1
D0.

(107)   
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interactions between carbon atoms whereby the spatial position of 
triplet is fixed to identify the energy of system at the material configu
ration, 

W(σ− π)t
αβ =

[
∑

γ∕=α,β

1
xαβϕβαγ

+Wct
αβωβαγ

t

]

− 1/2, (113)  

configurational σ − π forces are presented as their magnitude. We 
derive, 

∂W(σ− π)t
αβ

∂Λαβ
= −

1
2

[
∑

γ∕=α,β

1
xαβϕβαγ

+Wct
αβωβαγ

t

]

− 3/2

[
∑

γ∕=α,β
Kct

αβωβαγ
t

]

:= K(σ− π)t
αβ ,

(114)  

and, 

∂W(σ− π)t
αβ

∂Ωβαγ
= −

1
2

[
∑

γ∕=α,β

1
xαβϕβαγ

+Wct
αβωβαγ

t

]

− 3/2

[
∑

γ∕=α,β
Ktriplet

βαγ Wct
αβ

]

:= K(σ− π)t
βαγ .

(115)  

Configurational dihedral energy density describes the energy for a ma
terial rotation about a dihedral angle per spatial tetrad twist and pair 
stretches, assuming only nearest neighbour interactions we have, 

W(DH)t
αβ =

T0

2
∑

γ,δ∕=α,β
Wct

αβWct
βδωγαβδ

t (116)  

Next, we derive signed magnitude of interaction forces as a response to 
the changes in configurational dihedral energy due to the variations in 
material pair stretches and tetrad twist, respectively, 

∂W(DH)t
αβ

∂Λαβ
=

T0

2
∑

γ,δ∕=α,β
Kct

αβWct
βδωγαβδ

t := K(DH)t
αβ , (117)  

∂W(DH)t
αβ

∂Λβδ
=

T0

2
∑

γ,δ∕=α,β
Kct

βδWct
αβωγαβδ

t := K(DH)t
βδ (118)  

∂W(DH)t
αβ

∂Ωγαβδ
=

T0

2
∑

γ,δ∕=α,β
Wct

βδWct
αβKγαβδ

t := K(DH)t
γαβδ . (119)  

Net pair configurational force acting on atom α is defined using the 
cluster sum of pair configurational forces, 

Kpair
α =

1
1!
∑

β∈IN α

Kpair
αβ , (120)  

where, 

Kpair
αβ =

[
KRt

αβ +KAt
αβ +K(σ− π)t

αβ +K(DH)t
αβ

]
Nαβ (121)  

Next, triplet configurational force takes the form of 

Ktriplet
α =

1
2!
∑

β∈IN α

∑

γ∈IN β

Ktriplet
βαγ , (122)  

triplet force of REBO-II potential is defined as 

Ktriplet
βαγ = 2K(σ− π)t

βαγ

[
P⊥

αβ⋅Nαγ +P⊥
αγ⋅Nαβ

]
. (123)  

Finally, we derive atom-wise tetrad configurational force as, 

Ktetrad
α =

1
3!
∑

β∈IN α

∑

γ∈IN β

∑

δ∈IN γ

Ktetrad
γαβδ , (124)  

tetrad configurational force is defined as, 

Ktetrad
γαβδ = 2K(DH)t

γαβδ

[
Xγβ ×

[
P⊥

αβδ⋅Nγαβ

]
+Xαδ ×

[
P⊥

γαβ⋅Nαβδ

]]
. (125)  

7. Numerical examples 

In this section, we study two- and three-dimensional atomistic 
crystalline models as a way of verifying configurational formulation of 
Section 6 for a wide range of interatomic potentials representing 
different types of atomic bonding, i.e., covalent and metallic. Consid
ering the suitability of REBO-II potential [23] for studying the fracture 
and failure of graphene, we provide various models composed of carbon 
under quasi-static process. Moreover, we consider fracture of copper as 
it is originally investigated in the introduction of EAM potential [24]. In 
Fig. 1 a flowchart for solving following examples is presented. The 
material (initial) positions of atoms are initially recorded. External en
ergy is then applied to the boundary atoms in the consecutive steps, 
requiring minimization of total potential energy. Thereby, we obtain 
spatial atomistic positions to compute configurational forces. Next, the 
magnitude of pair, triplet and tetrad configurational forces are 
compared with a threshold allowing us to delete or preserve an inter
atomic bond using Configurational-Force-Criterion (CFC) proposed by 
Birang O. and Steinmann [17]. 

7.1. Fracture of copper under tensile loading 

In the following example, we study fracture of FCC copper to assess 
our proposed configurational formulation for embedded-atom method 
(see Section 6.1). An edge crack of length 27.014 Å  along [1 0 0] axis is 
introduced on (0 0 1) plane of a single crystal FCC copper of size 
68.685 × 14.46 × 68.685 Å3. The pre-crack is formed by turning off the 
interaction between yellow and blue atoms. Mode-I loading is applied to 
the pink atoms by uniform stretch in z direction, whereby other 
boundaries are traction-free. The lattice constant of FCC copper is 3.615 
Å  and it is arranged in cubic directions, i.e., x[1 0 0], y[0 1 0] and z[0 
0 1] (see Fig. 2). All boundaries are constrained by non-periodic 
boundary condition. After crack insertion, the lattice is minimised 
using L-BFGS optimization algorithm. An increasing displacement by 
ΔZ = 0.005 Å  in 1600 steps  is then applied. Upon imposing the 
displacement the pink atoms are frozen to find the atomistic positions at 
equilibrium. Zero Kelvin temperature of lattice suppresses the thermally 
activated dislocations. 

We evaluate pair configurational forces at every equilibrium 
configuration as pair forces are applicable to functional potentials such 
as EAM. We observe that in this model the crack propagates in a brittle 
manner (Fig. 3 (b)), a similar behavior of pre-defined crack in single 
crystalline copper under tensile is reported in [27]. The brittle propa
gation of crack is associated with symmetric geometry of assumed lattice 
as well as symmetry of imposed boundary conditions. Moreover, the 
reversibility of crack propagation in such a model due to the preserva
tion of all bonds prevents the observation of ductile crack. The visuali
zation of configurational forces (Fig. 3 (c)) demonstrates that these 
forces appear at free surfaces, as well as crack surfaces. In Fig. 3 (a), we 
present the contour plot of z component of these forces, thus they trace 
crack growth precisely. 

Table 4 
Table of maximum magnitude of local pair, triplet and tetrad configurational 
forces during the torsional buckling of a single-walled armchair nanotube.  

Force|step 1250 1460 1500 

Pair Configurational Force (eV/Å) 1740 1825 1910 
Triplet Configurational Force (eV/cos) 623 677 712 
Tetrad Configurational Force (eV/cos) 192 237 296  
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7.2. Fracture of copper under shear loading 

In the previous example, we studied configurational changes for a 
perfect brittle crack growth in bulk copper. In line with it, in the 
following example we aim to study the capability of configurational 
forces to study the mechanism of dislocations under shear loading. A 
uniform displacement of 0.005 Å  in 1600 steps in x direction is applied 
to the lattice. Initially, the deformation of the lattice leads to the prop
agation of the pre-defined crack, next we observe an emission of a 
dislocation from the crack tip as illustrated in Fig. 4 (a.1-a.3). The 
evaluation of net configurational forces at various 2D slices of 3D cube 
illustrate that during crack growth configurational fores of each layer 
are distinctive. In Fig. 4 (b.1-c.1) at step 0, we have chosen an inner and 
outer layer to compute configurational forces, as it is observed, the outer 
layer entails configurational forces on all atoms including crack zone as 
it represents a free boundary of lattice, however in an inner layer 
configurational forces appear at the pre-defined crack zone and edge 
boundary atoms. The increment of shear leads to further reorganizations 
at material configuration, thus new configurational forces emerge in the 
crack path (see Fig. 4 (c.2)). Ultimately the angle and path of dislocation 
can be precisely identified using configurational forces, See Fig. 4 (c.3) 
depicting plainly the slip plane (1,0,1)[0,1,1]. These forces determine 
accurately the direction of energy release and the contributing atoms in 
the complex mechanism of dislocation nucleation/glide. This example 
classifies the capability of atomistic configurational forces to study 
plasticity occurring at the crack tip to determine subjectively and 
objectively the sources of local energy release under configurational 
changes. 

7.3. Fracture of mono-layer graphene under mixed-mode bending- 
displacement 

Graphene monolayers exhibit excellent load-carrying capability, 
even under out-of-plane displacement, due to its strength under large 
bending and torsion. Duan and Wang [28] carried out study to assess 
bending behavior of a circular graphene under point-loading using 
Molecular Dynamics (MD) and Von-Karman plate theory. Their results 
from MD and Von-Karman theory show that there is stress concentration 
near loading region and free boundaries. 

We consider a single-layer graphene sheet (SLGS) under out-of-plane 
displacement to analyze pair, triplet and tetrad configurational forces at 
a material configuration that corresponds to a specific spatial configu
ration of SLGS. 

A hexagonal sheet including 14,200 atoms is assumed in Fig. 5. The 
atoms at the boundary depicted as pink circles are constrained in all 
directions. We study a quasi-statics model thus the atoms do not possess 
any momenta. Initially at unstretched state, the total energy of the plane 
is minimized to obtain initial relaxed lattice. Next, step-wise displace
ment by Δz = 0.25 (Å) in +z direction is applied to the central yellow 
atoms followed by energy minimization. We use quick-min optimization 
algorithm [29] to find the minimum energy path. The position of atoms 
at every displacement step is recorded as the convergence criterion 
which is the norm of total forces acting on plane is satisfied, i.e., 
|
∑

α∈IC
kα| = 1e − 9. Based on the recorded spatial position of atoms, 

obtained from the solution of standard MS problem, and using initially 
specified material position of atoms, we calculate the material pair 
stretch, triplet and tetrad twists, Λαβ, Ωβαγ, Ωγαβδ, to evaluate local pair, 
triplet and tetrad configurational forces, respectively. 

In [17], it is presented that configurational forces can identify free 
boundaries and the location of pre-defined defects in a crystalline lattice 
involving short-range interactions. Here, we measure configurational 
forces resulting from pair, triplet and tetrad configurational terms as 
illustrated in Fig. 6. At initial undeformed configuration (Fig. 6 (A.sp)), 
configurational forces are observed on the atoms defining fixed 
boundaries. It can be explained by considering that the edge of the plane 

in two-dimensional models or surface of a bulk in three-dimensional 
models behave as a defect. Moreover, during the deformation of SLGS, 
configurational forces at the boundary experience variations in their 
energy. 

Next, we observe the emergence of new configurational forces on the 
atoms in the vicinity of load-carrying zone during the interatomic 
debondings as illustrated in Fig. 6 (B.ma)-(D.ma). It can be inferred from 
the pictures, the configurational forces are compatible with the spatial 
configurations illustrated in Fig. 6 (B.sp)-(D.sp). The configurational 
forces result from stretches and bendings on interface atoms. In this 
example, we show that the energy release associated with the fracture of 
SLGS under a mixed mode stretching-bending can be determined indi
vidually using pair and triplet configurational forces. 

According to Fig. 7 (b), the angle between a triplet of atoms at the 
interface changes from undeformed configuration (n = 0) to the 
deformed one (n = 106). Therefore, we observe the emergence of triplet 
configurational forces before the detachment of load-carrying zone at 
step 106 in Fig. 8 (a), compatible with displacement illustrated in Fig. 8 
(b). 

7.4. Fracture of mono- and bi-layer graphene under tensile loading 

Zhang et al. [30] illustrated an armchair crack morphology in a 
bilayer graphene that is similar to a mono-layer graphene, however they 
ignored the influence of interlayer interaction that might influence crack 
growth path. On the other hand, Jang et al. [31] experimentally pre
sented the asynchronous crack with dissimilar path occurs in fracture of 
bilayer graphene. In the following example, using configurational 
approach we aim to examine the fracture of a mono-layer zigzag crack in 
comparison to a bi-layer zigzag crack entailing interlayer Van der Waals 
forces. We compare the influence of pair, triplet and tetrad energy 
release and emergence of subsequent configurational forces in fracture 
of both layers, particularly their differences at the crack tip. The bi-layer 
graphene with size by 170.53 × 59.08 Å2 has a distance by 3.34 Å  be
tween two layers. The pink atoms are stretched by 0.02 Å  in 200 steps. A 
pre-defined crack is introduced in both layers by deleting three layers of 
atoms in zig-zag direction (see Fig. 9). The equilibrium configuration is 
obtained using L-BFGS optimization algorithm considering energy de
rivative by 1e − 10 as convergence criterion. For stable crack, we 
observe wrinkles occurring due to the consideration of van der Waals 
interlayer interactions (see Fig. 10 (a.ma)). However, in corresponding 
material (Fig. 10 (a.sp)) we observe only configurational forces at the 
free boundaries and crack surfaces, thus the wrinkles do not lead to the 
emergence of primary pair configurational forces. 

The propagation of crack into the graphene layers are presented in 
Fig. 11 (a.sp) and (b.sp) for various snapshots 251 and 252. Moreover, at 
material configuration we observe that the magnitude of pair configu
rational forces are consistent with crack growth at the spatial configu
ration. Next, we compare the magnitude of pair, triplet and tetrad 
configurational forces, namely, Fig. 12 a, b and c at various snapshots. At 
it is comprehensible from the magnitude of contour bar, the largest 
energy release during crack growth occurs due to bond stretches, how
ever the contribution of bending and torsion are remarkable. 

Furthermore, the crack morphology at both layers are compared. As 
illustrated in Fig. 13, using the magnitude of pair configurational forces 
we observe that crack length at the top layer is longer than the bottom 
layer. The dissimilarity of crack paths might stem from highly non-linear 
deformation of system due to interlayer interactions. 

In the following, the fracture of a mono-layer graphene is compared 
with the bilayer. In this model, we use the geometry of bilayer, while 
only one layer of it is considered. A stretch by 0.1 Å, in 500 steps is 
applied to the boundary atoms. From Fig. 14 we observe that for a 
similar geometry, the crack morphology in a mono-layer graphene is 
different than a bilayer graphene. Moreover, mono-layer graphene 
shows a higher fracture toughness in comparison to bilayer graphene, 
thus larger external energy is required to fracture the mono-layer. This 
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behavior can be associated with the intensive wrinkling of bilayer, such 
that it makes the system highly brittle. Moreover, as it is illustrated in 
Fig. 12, bilayer fracture is accompanied with large triplet and tetrad 
energy release, while these terms do not influence fracture of mono- 
layer. 

Finally, we assess the magnitude of pair configurational forces in the 
prediction of crack path. As it is shown in Fig. 15 at snapshot n = 250, 
we can see that due to the artificial blunting at the tip, crack choose the 
path suggested by configurational force (depicted by black vector) as it 
leads to crack growth in armchair direction; that is crack grows toward 
top-right direction rather than bottom-right or zigzag direction. Simi
larly at the crack tip in snapshot 251, we observe that crack propagates 
in a direction that the magnitudes of configurational forces of an 
atomistic pair are largest at the tip, i.e., bottom-right direction. Magni
fied Fig. 15 at n = 252, shows that the prediction suggested at previous 
snapshot is satisfied. 

7.5. Fracture of bicrystalline mono-layer graphene under tensile loading 

In the following example we aim to examine the ability of configu
rational approach to predict fracture propagation through a grain 
boundary where the bonding environment is much more complex than 
for a single crystalline structure. Figure 16 illustrates a bi-crystalline 
mono-layer graphene under increasing displacement at the top and 
bottom boundaries (pink atoms) by 0.046 Å  at 1000 steps. The energy of 
system is minimized using L-BFGS algorithm to derive the configuration 
at equilibrium. What follows is the evaluation of configurational forces. 
At the initial material configuration we observe that configurational 
forces emerge at the edge and the grain boundaries, see the contour plot 
of pair configurational forces in Fig. 17 (a). Moreover, in Fig. 17 (b) we 
observe that configurational forces appear by the initiation of crack, as 
well as predicting the crack propagation path at the grain boundary; see 
magnified image at the boundary where atoms with largest configura
tional forces, that is red atoms illustrate the prospective candidates for 
debonding. Finally, in Fig. 17 (c) we observe that the prediction at step 
(b) is accurate and crack has chosen the suggested path to propagate, 
however it should be noted that the prediction is only possible for one 
lattice unit. 

An extension for studying fracture occurring at grain boundaries 
(GBs) using the configurational mechanics approach might require the 
consideration of an analytical energy describing in particular GB, for 
example the Bulatov-Reed-Kumar five-parameter grain boundary en
ergy function for face-centered cubic metals [32]. In the continuum 
setting, configurational forces indicating the energetical variations 
occurring at surfaces and interfaces is developed by Steinmann [33] 
which might help the development of a framework to study configura
tional mechanics of GBs at atomistic scale. 

7.6. Buckling of carbon nanotube under torsion 

In the following, we study the fracture of a carbon nanotube (CNT) at 
zero Kelvin using configurational forces. The goal is the determination of 
the contribution of two-body stretch, three-body bending and four-body 
torsion under quasi-static torsion to an armchair single-walled CNT as 
illustrated in Fig. 18. 

In recent years, torsional behavior of CNTs is studied in a number of 
studies at molecular scale (see for example [34,35]). Yu et al. [36] 
investigated in the mechanical behavior of CNTs under torsion, therein, 
the torsion of carbon nanotube causes the bukling with dumbbell-shape 
cross section. Khoei et al. [35] reported the reversible nature of CNTs 
bukling under torsion. Energy variation of CNTs accompanied with 
bukling under twist of CNTs are also investigated in other works 
[37–40]. In a separate study [41], the influence of temperature and 
various types of defects on the torsional capacity of CNTs are investi
gated. The previous studies of CNTs provide a detailed analysis on the 
structural evolution of CNTs during torsional deformation, however a 

study on the configurational changes during geometrically nonlinear 
deformation of CNTs is not yet reported. This motivates the following 
example characterizing in detail the structural evolution of twisted 
single-walled CNTs modelled by REBO-II potential and analyses of 
various emerging configurational forces which correlate well with the 
structural evolution. 

We model a perfect CNT that is twisted by Δθ = 0.9∘ in 400 steps, 
whereby the rotation axis is along z direction that goes through origin 
point (0,0,0). Upon applying the torque, the pink atoms are constrained 
in all degrees of freedom to minimize the potential energy with respect 
to the free atoms using L-BFGS algorithm using the second norm of 
forces as the convergence criterion by 1e − 10. Figure 19 (a) presents a 
series of snapshots from the spatial configuration of the armchair CNT. 
The pictures are plotted in a parallel view to tube axis. The single-walled 
carbon nanotube during this study does not fail, indicating its extraor
dinary flexibility under rotational loading. After a rotational angle of 
225∘, initial folding occurs all along the tube. As the rotation increases 
by 262∘, the tube wall folds. Finally, at the rotation of 270∘, we observe 
the collapse thus buckling occurs at the center of tube, introducing 
concentrated plasticity. For the sake of clarification, we select a ring of 
the armchair CNT and plot its evolution above the associated tube, as 
shown in Fig. 19 (a–c). The ring located in the height by 50 Å  from the 
bottom indicates that the imposed shear to the tube during folding 
changes the circular cross section to elliptical, revealing large variations 
in the angle. 

For such a highly nonlinear deformation, we present local configu
rational forces during the progress of twist in Fig. 19 (b). At snapshot 
1250 for the rotation angle by 225∘, triplet configurational forces illus
trate locally the atoms contributing in the process of twisting and 
folding. Next, pair configurational forces at the angle 270∘ of snapshot 
1500 illustrate the exact location of buckling, thus simplifying our 
analysis on the changes of total potential energy. In Table 4, we present 
the contribution of pair, triplet and tetrad configurational forces during 
torsion of CNT. The most significant source of energy release is the pair 
stretches during folding, however the triplet bending and tetrad torsion 
are also sufficiently large to be considered in the failure of CNTs. 

8. Conclusion 

In our prior works, we established the theoretical foundation to 
describe the discrete configurational mechanics of crystalline lattices, 
which interact via many-body potentials. In this work, we briefly reit
erated the theory, but focused on examining the usefulness of discrete 
configurational forces to analyze quasi-static fracture of covalently 
bonded graphene and metallically bonded FCC copper, which are 
modelled by REBO-II and EAM potentials, respectively. The chosen 
empirical potentials capture interatomic stretches, bending and torsion. 
We utilized our kinematical parameters to describe configurational ex
pansions, whereby the notions of pair, triplet and tetrad configurational 
forces capture the release of energy due to the changes from the material 
(initial) positions. These findings confirm that discrete configurational 
forces offer a means to predict both the mechanics driving the crack 
nucleation and propagation, as well as the fracture paths, including 
unpredictable, zigzag crack paths. Furthermore, we demonstrated that 
not only bond stretching, but also triplet bending and tetrad torsion play 
a significant role in brittle crack growth and propagation in crystalline 
lattices. We envision that this approach can be used to study fracture in 
other crystalline nanostructures, such as nanowires, while also incor
porating thermal effects on the fracture mechanics. 
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Appendix A 

A1. 

In the following we explain the required mathematical steps to derive deformational inter-atomic forces in embedded-atom method. 
The derivative of pair potential density with respect to spatial bond stretch takes the form of, 
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where the derivative of Morse function density with respect to the spatial stretch is derived as, 
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The infinitesimal changes in the deformational embedding energy by the variation of deformational electron density Lα
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Finally, we evaluate the variation of electron density at the position of an isolated atom with respect to the changes occurring in the spatial stretch 
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A2. 

In the following we explain the required mathematical steps to derive configurational forces in embedded-atom method. 
The derivative of pair potential density with respect to material bond stretch takes the form of, 
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where the derivative of Morse function density with respect to the material stretch is derived as, 
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similarly the derivative of cutoff function with respect to the material stretch is derived, that is, 
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The infinitesimal changes in the configurational embedding energy by the variation of deformational electron density 
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Finally, we evaluate the variation of electron density at the position of an isolated atom with respect to the changes occurring in the material stretch 
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A3. 

Zhang et al. [30] measured fracture toughness of centrally pre-cracked mono- and bi-layer graphene using nanomechanical tensile testing. They 
validated the results via performing MD study at a constant temperature to focus on crack growth only due to mechanical loading. The experimental 
and numerical results in mono- and bi-layer graphene show that fast brittle fracture occurs which manifests the formation of long, atomically sharp 
crack. Budarapu et al. [42] carried out MD study of mono-layer graphene to study the variations in interatomic pair length and triplet angle for a 
pre-crack in zigzag and armchair directions. Their study shows that for zigzag pre-crack, critical pair stretch determines the crack propagation, 
however in armchair fracture pair stretches and triplet angles are both determining factors in crack growth. Le and Batra [43] worked on the influence 
of pre-crack length and distribution in crack tip speed for a MD study, their results show that crack tip speed rapidly reaches steady state, thus it can be 
interpreted as its independency from initial crack length and distribution. However, their efforts for measuring fracture toughness was not fruitful as 

Fig. A.1. The geometry of a graphene strip including 8800 atoms under stretch. The left bottom corner is chosen as the axes of origin and all lengths are measured in 
Å. A step-wise stretch is applied to top and bottom atomic layers depicted by pink. The top atoms are displaced in +x direction, and the bottom ones are displaced in 
− x. 
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Fig. A.2. The pre-defined cracks. Case 1 and 2 present the morphology of the cracks which are inserted to the center of strip at (42.5, 107, 0.0). Case 3 and 4 
illustrate the edge cracks. In case 1 and 3, the crack is modelled via switching off the interaction between yellow atoms and blue ones. For case 2 and 4, the crack is 
introduced by removing four atomic layers. The edge cracks are inserted to the left edge of plane at (42.5, 0.0, 0.0). The geometry of screening cracks is 54.2 (Å) by 
1.42 (Å), and the blunting cracks are in the size of 59.02 × 7.1 (Å2). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. A.3. Illustration of crack propagation for pre-defined screening edge crack (case 3). The crack morphology is presented at different displacement steps. 
Associated material configuration for every selected displacement is also shown to present pair configurational forces emerging on the atoms located in the crack 
path. For the sake of comprehensible illustration, the material configuration is sliced from crack line. 

Fig. A.4. Spatial configuration of SLGS containing screening central crack is presented in (a). The magnitude of pair configurational forces is presented in (b) 
consistent with spatial configuration. Largest configurational forces emerge at the free boundaries and crack path. 
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the discrepancy between measured toughness for various far-field strains was large. Here, we present fracture of a graphene strip as illustrated in 
Fig. A.1. We assume that the strip is subjected to four types of pre-defined cracks individually. We analyze the toughness of SLGS and assess the utility 
of configurational forces in the determination of crack morphology. To this end, in every case of study, we apply a total displacement of Δx = 0.12 (Å) 
in 300 steps to the boundary atoms at top and bottom layers in armchair direction. Initially, at undeformed state, the strip is relaxed by minimization 
of energy using quick-min approach with energy gradient as the convergence criterion by 1e-9. Next, at every step, the energy of the system is 
minimized upon applying the displacement and keeping the boundary atoms fixed in all degrees of freedom during minimization. The positions of 
atoms are also recorded step-wise to calculate configurational parameters for the evaluation of configurational forces. We model the system using 
REBO-II potential, however we assume that minimum and maximum cutoff radi, d and D, respectively, for nearest-neighbor interactions is set to 1.92 
(Å) as it provides the brittle propagation of crack in a mono-layer graphene (see Methods in [30]). The geometry of pre-defined cracks, inserted into 
the strip, are presented in Fig. A.2. 

We evaluate pair configurational forces for the case of screening edge crack. The location of crack at different displacement steps are presented in 
Fig. A.3, whereby at material configuration we observe configurational forces appear at crack edges which are identical due to the model’s symmetry. 

Fig. A.4 presents the contour plot of magnitude of pair configurational forces for the case of central crack. 
Next, we observe the case of central and edge crack (Fig. A.5), thus the crack is introduced by removing some atomistic layers. 
Finally in Fig. A.6, the contour plot of pair and triplet configurational forces for edge blunting crack are illustrated. 
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