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ABSTRACT: We present a computational, atomistic electro-
dynamics investigation of the effects of planar defects on the
optical properties of silver nanocubes, where the planar defects
we considered are different surface orientations, twins, partial
dislocations, and full dislocations. We find that for nanocubes
smaller than about 3 nm, the optical response is very sensitive
to the specific surface structure resulting from the defects.
However, the sensitivity, as measured by shifts in the plasmon
resonance wavelength, is strongly reduced at larger sizes
because of the decreasing importance of surface effects even
when the majority of the atomic deformation due to the crystal
defects is contained within the interior of the nanocube.
Overall, this study suggests that the effects of individual
crystalline defects on the optical properties of nanostructures
can be safely ignored for nanostructure sizes larger than about
5 nm.

■ INTRODUCTION

The optical properties of small metal nanostructures have been
investigated in great detail over the past two decades with most
of the studies focusing on gold and silver nanostructures.
Specifically, these two metals exhibit localized surface plasmon
resonance (LSPR), which is a collective oscillation of the
conduction electrons when excited by electromagnetic radiation
within the visible spectrum.1−3 Because of this, they have been
utilized for a wide range of applications, including biosensing,4

single molecule sensing and detection via surface-enhanced
Raman scattering (SERS),5−7 photothermal ablation treatments
for cancer,8,9 optical tagging and detection,10,11 strain sensing,12

metamaterials,13 and many others.
In conjunction with these fascinating applications and

experiments, computation has played a key role in elucidating
the factors that control the LSPR wavelengths and optical
properties of the nanostructures. For example, the discrete
dipole approximation (DDA)14 has been one of the most
widely used computational techniques to study the optical
properties of metal nanostructures.3,15−20 Other popular
approaches to calculating the optical properties of metal
nanostructures include the finite difference time domain
(FDTD) method,21−23 volume integral methods,24 and finite
element methods.25

While these numerical methods have led to many seminal
and important conclusions about the optical properties, there
exist two main issues that preclude the application of existing
numerical methods to the study of crystal defects on the optical

properties. First, methods such as DDA and FDTD are both
based on the bulk dielectric function, that is, the averaged
atomic response of the material, and therefore do not resolve
the optical properties at the atomic scale. Second, most
numerical techniques work by discretizing a three-dimensional
volume into a collection of small subdomains or volumes.
Because of this, they are generally unable to explicitly represent
the discrete atomic positions and, thus, the exact microstructure
of a nanomaterial. For example, in the DDA, the volume is
meshed into a set of discrete dipoles, which are constrained to
sit on a regular, cubic grid. Because of this, the positions of the
dipoles do not correspond to the actual positions occupied by
atoms in an ideal face centered cubic (FCC) lattice. Taken one
step further, one would experience considerable difficulty in
applying these methods to study the optical properties of metal
nanostructures that contain planar defects, and as a result, aside
from a few studies22,26 that considered pinhole-type defects in
metal nanoshells, the effect of planar defects on the optical
properties of metal nanostructures is largely unknown and
unresolved.27

However, defects are common in metal nanostructures. For
example, in solution-phase synthesized pentagonal nanowires
or nanorods, the pentagonal nanowire also contains 5-fold
twinned symmetry with the twins meeting in the center of the
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nanowire.28,29 Similarly, researchers have recently had success
synthesizing small metal nanowires with diameters about 2
nm.30,31 The mechanical properties of such small nanowires are
known to be controlled by their extensive surface area;32

however, it is not known how the discrete nature of different
FCC surfaces, that is, {100} or {111}, impacts the resulting
optical properties. Finally, many small metal nanoparticles are
polycrystalline.27 In all of these examples, the ability to resolve
the effects of the defects on the optical properties depends
crucially on having a computational method in which the
discrete positions of all atoms are explicitly represented.
Therefore, we utilize the recently developed atomistic

electrodynamic method of Jensen and Jensen33,34 to perform
a systematic study of planar defects on the optical properties of
small silver nanostructures. This method is advantageous
because it considers the actual discrete positions of atoms in
the lattice regardless of whether the positions are ideal or
correspond to those of a particular defect. Furthermore, this
model is based on the careful parametrization of the atomic
optical response. We consider three fundamental types of
planar defects, that is, surfaces, twins, and intrinsic stacking
faults, and in each case, we perform a comparison of the optical
properties of the silver nanowire with the planar defect to a
pristine one of the same size and number of atoms. In doing so,
we are able to delineate the effects of each planar defect on the
optical properties, and we find that surface effects dominate the
optical response of nanocubes smaller than about 3 nm, while
the effect of defects disappears for nanocubes larger than about
5 nm. The results are explained via simple analytical models of
surface electron density and also via the relative polarizability of
surface atoms as compared to those in the bulk.

■ ATOMISTIC ELECTRODYNAMIC METHOD

The atomistic electrodynamic model that we utilize in the
present work to calculate the optical properties of small silver
nanostructures was recently developed by Jensen and
Jensen.34,35 It is an extension of the capacitance-polarizability
interaction model (CPIM),35 which utilizes a point charge and
dipole model to describe the interaction of the atoms with an
external electric field. The point dipole-only model has been
widely used in elucidating the optical properties of metal
nanostructures most notably through the discrete dipole
approximation (DDA).3,14,17 However, as described in the
Introduction, the DDA requires that the atoms lie on a
periodic, cubic grid which does not match the FCC lattice
structure of silver. In contrast, the atomistic electrodynamic
method of Jensen and Jensen34 calculates the optical properties
directly from the actual position of atoms in the silver
nanostructures. Furthermore, the method of Jensen and
Jensen34 directly describes the polarizability of each atom
rather than considers the dielectric permittivity to be a bulk
quantity, and thus, the optical properties obtained using this
method are a direct outcome of the collective response of all
atoms, whose individual optical response is described by fitted
parameters from time-dependent density functional theory.34

We consider a silver cluster with N atoms where each atom is
characterized by a frequency-dependent capacitance ci(ω),
described by a single Lorentzian oscillator, and a frequency-
dependent polarizability αi,αβ(ω), described by two Lorentzian
oscillators, that is,
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where ci,s = 2.7529 au is the static atomic capacitance, αi,s,αβ =
49.9843 au is the static atomic polarizability, wi,1 = 0.0747 au
and wi,2 = 0.0545 au are the oscillator plasmon resonance
frequencies, and γi,1 = 0.0604 au and γi,2 = 0.0261 au are the
oscillator widths. Size-dependency of the optical properties is
introduced through the size correction parameters wi,2(N) with
A = 2.7759, which ensures that the absorption peak red shifts
with increasing cluster size in agreement with experiments and
also with time-dependent density functional theory (TDDFT)
calculations. All of the parameters in eqs 1−3 were optimized
by Jensen and Jensen34 on the basis of TDDFT calculations for
small silver nanostructures; we use the same parameters in the
present work.
In the point dipole model, each atom has a frequency (ω)-

dependent induced atomic charge qi
ind(ω) and dipole μi

ind(ω).
Therefore, the total energy of the system is written as34
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where Tij
(n) are the interaction tensors of rank n, which are

obtained using classical electrodynamics, where retardation
effects are ignored in this work because of the small-size (<5
nm) nanostructures we consider in this work. Tij

(0), Tij,α
(1), and

Tij,αβ
(2) capture the charge−charge, charge−dipole, and dipole−

dipole interactions, respectively. Eext and ϕi
ext are the external

electric field and potential, and λ is a Lagrange multiplier to
ensure that the charge of the cluster remains constant.
Furthermore, as originally formulated by Mayer36 and as later
utilized by Jensen and Jensen,34 the interaction tensors are all
normalized to eliminate the polarization catastrophe.
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Minimizing the total energy V in eq 4 with respect to the
induced atomic charges, dipoles, and Langrage multiplier λ
leads to the following complex linear equations in matrix form
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The interaction matrix on the right-hand side of eq 5 is a full
matrix comprised of A, M, and C, where the elements are
defined using the interaction tensors Tij

n, that is,
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Inverting the full interaction matrix on the right-hand side of eq
5 will lead to the solution of induced dipole moments and
charges for each atom, that is,
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All of the structural and geometric information for the given
nanostructure under consideration is contained in this (4N + 1)
by (4N + 1) matrix in eq 5, which captures both the atom type
as well as the influence of the actual atomic positions and thus
enables us to study the effects of surfaces and other crystalline
defects (dislocations, twins) on the resulting optical properties.
The frequency-dependent molecular polarizability can then

be quantified in terms of the inverted interaction matrix as

∑α ω ω ω= −αβ αβ α βB D( ) ( ( ) r ( )r )
i j

N

ij i ij j
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,
, , ,
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where the imaginary parts of eq 11 directly relate to the
absorption spectra of the metal cluster as

σ ω πω α ω=
c

( )
4

Im[ ( )]
(12)

In all of the numerical examples below, we report the
absorption calculated as the average of the three principal
cross sections.

■ NUMERICAL RESULTS

Simulation Details. Having described the computational
approach we used to calculate the optical properties, we now
describe the silver nanostructures we studied in the present
work. Specifically, we studied silver nanocubes with the
majority of the studies performed on those having a ⟨100⟩
axial orientation with {100} surfaces, which we refer to as a
⟨100⟩/{100} nanocube. We focus our results on these
nanocubes with 2 nm cross-sectional length though we
considered nanocubes of up to 5 nm cross-sectional length to
study how surfaces, dislocations, and twins impact the optical
properties of larger silver nanostructures. The nanocubes were
created assuming ideal atomic positions, that is, with silver
atoms lying in an FCC unit cell with the lattice constant of
silver being a = 4.09 Å.
To study surface effects, we considered a nanocube with the

same ⟨100⟩ axial orientation but rotated 45 degrees about the
axial axis in order to generate {110} and not {100} surfaces as
illustrated in Figure 2b. This nanocube thus contains four
{110} surfaces and two {100} surfaces. We will refer to this
nanocube as a ⟨100⟩/{110} nanocube.
We considered three types of defects aside from surfaces: full

dislocations, partial dislocations, and twins all created in the
⟨100⟩ nanocube with {100} surfaces as illustrated in Figure 1.
Full dislocations were generated by dividing the atoms in the
cube into two groups by the center {111} plane and then by
shearing one group of atoms with respect to the other by the
standard full dislocation displacement of ((a/2)[101 ̅]), where a
= 4.09 Å is the lattice constant for silver. For the partial
dislocation, the same procedure was applied except with a
different displacement of ((a/6)[112 ̅]). The twin fault was
generated by first creating a single partial dislocation according
to the procedure just described and then by shearing an
adjacent {111} plane by the same amount to generate a twin
fault.

Figure 1. Energy-minimized configurations for ⟨100⟩/{100} nanocube of size 2.0432 × 2.0432 × 2.0432 nm3 with a partial dislocation, full
dislocation, and twinning fault. Atoms are colored by potential energy after energy minimization. Unit is in eV.
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For all of the above-mentioned structures (i.e., perfect
⟨100⟩/{100} nanocube, ⟨100⟩/{110} nanocube, and ⟨100⟩/
{100} nanocube with dislocations and twins), we then took the
resulting atomic positions and determined the minimum energy
configuration via conjugate gradient energy minimization of
each structure using the open-source simulation code
LAMMPS37 using a realistic embedded atom method (EAM)
potential38 to model the interactions of the silver atoms. A
comparison between the ⟨100⟩/{100} and ⟨100⟩/{110}
nanocubes after energy minimization is given in Figure 2,
while the ⟨100⟩/{100} nanocube with partial dislocation, full
dislocation, and twin is shown later. Typically, the energy
minimization results in a small contraction of the cube, which is
consistent with previous atomistic simulations of FCC metal
nanostructures which found that surface atoms tend to contract
toward the bulk in order to increase their electron density.39

The atomistic electrodynamic method was then run using the
resulting energy minimized atomic positions to calculate the
optical properties. Using these positions, we can generate the
full interaction matrix needed to calculate the dipoles and
charges in eq 9, which are then used to extract information
about the absorption cross section via eq 12 for each cluster.
Because some of the structures, particularly those in which the
nanocube is rotated to generate the {110} transverse surfaces,
have a slightly different number of atoms, we have for
consistency normalized all results for the absorption cross
section by the total number of atoms in each structure. Table 1

shows the size, number of atoms, and number of atoms for the
⟨100⟩/{100} nanocube shifted because of the three crystal
defects (full and partial dislocations, twin). We emphasize that
for the larger nanocubes we considered, the same proportion of
atoms were shifted in order to enable a consistent size effect
comparison.
The nanocube geometry was chosen for two main reasons.

First, in the atomistic electrodynamic model for silver
developed by Jensen and Jensen,34 the model was parametrized
to be valid for incident energy values between about 2.4 and 4.8
eV. This range of incident energy values limits the potential
geometry that can be studied to those that are more cubic as
larger aspect ratio geometries such as one-dimensional

nanowires would exhibit plasmon resonances at lower energies
outside the valid energy range for the atomistic electrodynamic
model because of the red shift that occurs with increasing
aspect ratio. Second, the cubic geometry enables us to delineate
the most important driving forces for the evolution of the
plasmonic response when different surface orientations and
crystal defects are introduced into the system. We expect that
the key findings below will hold for other, more complex
nanostructure geometries though the specific length scales at
which the transition from surface-dominated to bulk-dominated
plasmonic response may vary slightly depending on the specific
geometry that is considered.

Simulation Results. Surfaces.We first discuss the effects of
changing the surfaces of the ⟨100⟩ nanocube from {100} to
{110}, where the results for 2 nm nanocubes are shown in
Figure 3. Nanocubes of similar cubic size were considered in

order to ensure that the optical response we report can be
attributed to the differences in discrete surface structure of the
nanocubes.
As shown from the averaged optical response spectrum in

Figure 3, the LSPR is very sensitive to the discrete atomic
structure of the nanocube. The two nanocubes exhibit very
different resonance behavior, LSPR position, and absorption
widths. Specifically, the LSPR frequency for the ⟨100⟩/{100}

Figure 2. Equilibrium atomic positions for (a) ⟨100⟩/{100} nanocube with size 2.0432 × 2.0432 × 2.0432 nm3 and (b) ⟨100⟩/{110} nanocube with
size 2.2000 × 2.0363 × 2.0363 nm3 after energy minimization. Atoms are colored by potential energy. Unit is in eV.

Table 1. Dimensions of ⟨100⟩ Nanocubes with {100}
Surfaces with Total Number of Atoms NAtoms for Each
Nanocube and the Total Number of Atoms Ndislocation Shifted
by the Introduction of a Dislocation (Full, Partial, Twin)

nanocube size NAtoms Ndislocation

⟨100⟩/{100} 2.0432 × 2.0432 × 2.0432 nm3 665 378

Figure 3. The absorption cross sections of 2.0432 × 2.0432 × 2.0432
nm3 ⟨100⟩/{100} and 2.2000 × 2.0363 × 2.0363 nm3 ⟨100⟩/{110}
nanocubes. Values are averaged over the total number of atoms for
each nanocube.
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nanocube is 0.4 eV higher than the ⟨100⟩/{110} nanocube (3.6
and 3.2 eV, respectively), corresponding to a 43 nm red shift,
even though they are nanocubes of the same shape and size.
Before conducting a more rigorous analysis, it is instructive

to first compare the mechanical potential energy of the
nanocubes in Figure 2 with the corresponding polarization
distribution in Figure 4. From the minimized energy
configurations seen in Figure 2, it is clear that the corner,
surface, and edge atoms have a higher potential energy as
compared to the bulk atoms for both the ⟨100⟩/{110} and the
⟨100⟩/{100} nanocubes because of their relative under-
coordination as compared to bulk atoms, where bulk refers to
those atoms in the interior of the nanocube. Similarly, atoms at
the edges, surfaces, and corners in Figure 4 also have higher
polarizabilities than the atoms within the bulk. Therefore, we
expect that it is the surface effects for these small nanocubes
that control the polarizability distribution. Furthermore,
because the individual atomic polarizabilities determine the
nanocluster polarizability and therefore the optical response of
the nanocube, we can expect that it is surface effects that lead to
the large difference in the optical response of the nanocubes as
shown in Figure 3.
We can gain more insights into the effects of surfaces on the

LSPR by comparing the free-electron density at the surfaces for
the two nanoclusters because the LSPR arises from the
resonant oscillations of electrons in response to an external
electromagnetic field. The incident field shifts the negative
charges collectively with respect to the positive ionic back-
ground resulting in net negative and positive charges at the
opposite side of the particle.40 It is this attraction of the
alternating charges that forms the restoring force, controls the
eigenfrequency of the oscillation, and thus determines the
LSPR frequency. Because the attraction mainly comes from the
net surface electrons, the restoring force is proportional to the
surface electron density, and the eigenfrequency should be
proportional to the square root of the surface electron density
nsurf.
We now perform a simple analysis on the basis of the surface

structures of the two nanocubes. Here, we only consider the
contribution from the outermost layer of surface for simplicity,
which is shown to result in very good accuracy. For the ⟨100⟩/
{100} nanocube, the surface electron densities are the same for
each of the six {100} surfaces, and each atom contributes one
free electron, and so the surface electron density is simply the
number of surface atoms divided by the surface area (i.e., the
surface atomic density). Assuming that the atoms at the center
of each surface belong to that surface, while the atoms at the

edges are shared by two surfaces and while the atoms at the
corners are shared by four surfaces, the number of surface
atoms is Nsurf = Ncenter + Nedge/2 + Ncorner/4, then the average
surface electron density is nsurf = 1/3{[Nxy/(dx × dy)] + [Nyz/
(dy × dz)] + [Nzx/(dz × dx)]}. Details of the decomposition of
surface atoms into center, bulk, and corner are given for the
{100} and {110} surfaces in Table 2 and Table 3, respectively.

For the ⟨100⟩/{100} nanocube, the surface electron density
is, following Table 2, n1

surf = (40 + 20/2)/(2.0432 × 2.0432) =
11.9770 nm−2. For the ⟨100⟩/{110} nanocube, there are two
identical {100} and four identical {110} surfaces, which then
following Table 3 leads to a surface electron density of n2

surf =
(1/3)[(36 + 24/2 + 4/4)/(2.0363 × 2.0363) + 2 × (24 + 20/2
+ 4/4)/(2.0363 × 2.2000)] = 9.1474 nm−2. Because the LSPR
frequency is proportional to the eigenfrequency of this
oscillating spring induced by the restoring force, ωres ∝
(nsurf)1/2, we will have (ω1/ω2) = (n1/n1)

1/2 = (11.9770/
9.1474)1/2 = 1.1442 in good agreement with our atomistic
electrodynamic simulation results where (ω1/ω2) = (3.6 eV/3.2
eV) = 1.1250. This again verifies that the different optical
responses of the ⟨100⟩/{100} and ⟨100⟩/{110} nanocubes
with similar size are indeed controlled by their different
surfaces.
Our results agree with those of Jensen and Jensen,33 who

found that for nanoclusters with less than around 700 atoms,
most atoms have surfacelike polarizabilities which further
justifies our analysis of the surface electron density differences
for the 2 nm nanocubes. However, this also suggests that
because the nanocluster polarizability can be distinguished into

Figure 4. The effective polarizability distribution for ⟨100⟩/{100} and ⟨100⟩/{110} nanocubes with similar size, i.e., 2.0432 × 2.0432 × 2.0432 nm3

for the ⟨100⟩/{100} nanocube and 2.2000 × 2.0363 × 2.0363 nm3 for the ⟨100⟩/{110} nanocube. Unit is in au.

Table 2. Decomposition of Surface Atoms into Center, Edge,
and Corner for the {100} Surface of a ⟨100⟩/{100}
Nanocube

⟨100⟩/{100} nanocube

surface Ncenter Nedge Ncorner area (nm2)

{100} 40 20 0 2.0432 × 2.0432

Table 3. Decomposition of Surface Atoms into Center, Edge,
and Corner for the {110} and {100} Surfaces of a ⟨100⟩/
{110} Nanocube

⟨100⟩/{110} nanocube

surface Ncenter Nedge Ncorner area (nm2)

{100} 36 24 4 2.0363 × 2.0363
{110} 24 20 4 2.2000 × 2.0363
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distinctive bulk and surface components at larger sizes,33 we
should expect the importance of the surface effects to decrease
at larger sizes; we will discuss this in further detail in a later
section.
Partial Dislocations, Full Dislocations, and Twins. We

next analyze the optical properties of 2 nm cross-sectional
length ⟨100⟩/{100} silver nanocubes containing either a single
partial dislocation, full dislocation, or twin fault; a comparison
of the optical absorption for all three defect cases with a perfect
⟨100⟩/{100} silver nanocube without any such defects is given
in Figure 5.

There are several common characteristics to note. First, as
the severity of the defect increases (i.e., from defect-free
nanocube to those containing a partial dislocation, full
dislocation, and twin fault), the absorption maximum decreases
gradually. Second, the defects result in a red shift of the LSPR
frequency, where a summary of the resulting LSPR wavelength
for all defects in the ⟨100⟩/{100} nanocubes we considered is
given in Table 4. There, it is seen that the LSPR red shift due to

a single full dislocation and twin boundary is 31 nm, almost
exactly double that of the 15 nm shift caused by a partial
dislocation.
It is also of interest to compare the plasmon width (i.e., the

full width at half-maximum) in Figure 5 of the optical response
for the same structure containing different defects. For the
defect-free ⟨100⟩/{100} nanocube, the damping mechanism is
primarily due to the scattering of electrons at the nanocube
surfaces. However, when introducing a partial dislocation to the

nanocube, there is an additional damping effect caused by the
scattering of electrons at the planar defect because of the
changes in atomic bond length across the dislocation.
Furthermore, there are additional surface steps and corners
because of the partial dislocation which further broaden the
optical spectrum. Additional broadening is observed for the full
dislocation and the twin fault because of the increased damping
effects as summarized in Table 4, which demonstrates that the
atomistic electrodynamic model can effectively capture the
internal damping and surface scattering caused by scattering of
electrons on defects and also on surface boundaries and surface
steps.41

To further quantify the dominant effect of surfaces on the
variation in optical properties seen in Figure 5, we consider the
effective atomic polarizability for each atom, which is
dependent on its position in the nanocube, as shown in Figure
6. We find that all atoms within the bulk of the nanocube
behave as bulk atoms (using the definition in Jensen and
Jensen33 that the ratio of the effective polarizability to the bulk
polarizability is less than 0.5) with no distinction between those
atoms sitting immediately around the defect (full dislocation,
partial dislocation, twin fault) and the other bulk atoms, where
the number of bulk and surface atoms via the polarizability
criterion has been summarized in Table 5 for the perfect
nanocube as well as for all cases with defects. Specifically, Table
5 shows that the number of surface atoms (as delineated by
polarizability) increases as the defect severity increases, which
makes sense because of the additional surface steps and edges
introduced by the dislocations and twin faults. It is these
additional surface atoms that result in the LSPR shifts and the
broadening of the resonance.

Size Effects. So far, our discussion has centered on the
effects of defects for a single size. The question remains as to
how the various defects (surfaces, dislocations) impact the
optical properties at larger sizes. We address that question here.
We conducted a size-effect study by calculating the

absorption for the ⟨100⟩/{100} nanocubes with and without
a single partial dislocation, full dislocation, and twin for cross-
sectional sizes up to 5.3 nm while also considering ⟨100⟩/{110}
nanocubes without any defects for cross-sectional sizes up to
5.3 nm. For the ⟨100⟩/{100} nanocube without defects, we
found that the absorption maximum occurred at 3.6 and 3.24
eV for nanocubes with 2 and 4 nm cross-sectional lengths,
respectively. We compare the red shift with the recent
experimental results on silver nanospheres by Scholl et al.,42

who developed an analytical quantum theory of particle
permittivity within Mie theory and who found absorption
peaks at 3.8 and 3.5 eV for silver nanospheres with diameters of
2 and 4 nm, respectively. Accounting for the difference in
geometry between the nanocubes in the present work and the
nanospheres that were studied experimentally and theoretically,
we find that the present computational model is able to
qualitatively capture the size-dependent LSPR frequency
evolution.
From our previous discussion on the effective polarizability

distribution for ⟨100⟩/{100} and ⟨100⟩/{110} nanocubes, we
established that for 2 nm nanocubes, the surface atom
polarizabilities dominated the bulk atom polarizabilities in
controlling the optical absorption. However, we have not
established the size at which the bulk atoms will begin to
control the optical properties. To do so, we perform a size-
dependent study on the surface electron density and bulk
electron density (total free electrons divided by the volume of

Figure 5. The absorption spectrum of ⟨100⟩{100} nanocube of size
2.0432 × 2.0432 × 2.0432 nm3 for perfect nanocube (black), partial
dislocation (blue), full dislocation (red), and twin (green).

Table 4. LSPR Frequency, Wavelength, and Width for
2.0432 × 2.0432 × 2.0432 nm3 ⟨100⟩/{100} Nanocube with
and without Defects

LSPR frequencies for ⟨100⟩/{100} nanocube

⟨100⟩/{100} perfect partial full twins

LSPR frequency 3.6 eV 3.45 eV 3.3 eV 3.3 eV
LSPR wavelength 344 nm 359 nm 375 nm 375 nm
plasmon width 2.04 eV 2.15 eV 2.29 eV 2.39 eV

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp404141k | J. Phys. Chem. C 2013, 117, 13738−1374613743



the nanocube) changes because the LSPR resonance is
essentially the collective resonance oscillation of the free
electrons, and the LSPR frequency is proportional to the
plasmon frequency ωsp = [(ne)2/(mε0)]

1/2,43,44 where n is the
bulk free electron density.
Specifically, we compute the ratio of LSPR frequency (ω1/

ω2), square root of surface electron density ratio, and square
root of bulk electron density ratio for ⟨100⟩/{100} and ⟨100⟩/
{110} nanocubes. As seen in Figure 7, the LSPR frequency
ratio for ⟨100⟩/{100} to ⟨100⟩/{110} follows the same trend

as the surface electron density ratio (n1
surf)1/2/(n2

surf)1/2 for
nanocube sizes smaller than about 3.3 nm. However, for larger
sizes, the LSPR frequency ratio ω1/ω2 tends to follow the bulk
electron density ratio (n1

bulk)1/2/(n2
bulk)1/2, while for the same

size range greater than 3 nm, (n1
bulk)1/2/(n2

bulk)1/2 approaches a
value of about 1.01. Therefore, this implies that for nanocube
sizes smaller than about 3 nm, the surface electron density
dominates, while for larger sizes the bulk electron density
dominates. The ratios of surface electron density and bulk
density are not identical to ω1/ω2 because both should be
modulated by quantum effects. Additionally, the jump in
surface electron density ratio from 4 to 5 nm nanocube
dimension occurs because the ⟨100⟩/{110} nanocubes are in
fact not perfect nanocubes in that they have different side
lengths resulting from the fact that they have two {100} and
four {110} surfaces, which results in a variation in the total
number of electrons at the surfaces.
Having established that the discrete surface effects become

less important for nanocube sizes larger than about 3 nm, we
perform the same size effect study for the crystal defects, that is,
full dislocation, partial dislocation, and twin fault. Interestingly,
we find the same trend, that is, that for nanocubes larger than
about 3 nm, the optical absorption spectrum for a ⟨100⟩/{100}
nanocube with a single partial or full dislocation or twin fault is
essentially identical as shown for a 5.3 nm nanocube in Figure
8. The rationale is similar to the surface case: because we
previously established that it was the surface steps caused by the
crystal defects that were the cause for the large LSPR frequency
red shift for the 2 nm size, it is intuitively clear that for larger
sizes, as the surface effects diminish, the effect of crystal defects
on the optical properties of nanocubes would also diminish at
larger nanocube sizes.
Overall, these results imply that experimentalists can

essentially ignore the discrete atomic structure resulting from
defects for nanostructures with characteristic sizes larger than
about 5 nm. Furthermore, the variations in optical properties
for larger size nanostructures may not be attributed to
individual crystal defects such as surfaces or dislocations and
are likely due to other effects, such as retardation (dynamic
depolarization, radiative damping)45,46 and nonlocal ef-
fects.47−49

Figure 6. The effective polarizability distribution for ⟨100⟩/{100} nanocube of size 2.0432 × 2.0432 × 2.0432 nm3 with partial dislocation, full
dislocation, and twinning fault. Unit is in au.

Table 5. Decomposition of Atoms into Bulk and Surface via
Polarizability Criteria of Jensen and Jensen,33 where the
Average Effective Bulk (αbulk) and Surface (αsurf)
Polarizability Are Shown for Each Structure

surface and bulk atom polarizability

⟨100⟩/{100} Nbulk αbulk (au) Nsurf αsurf(au)

perfect 141 75.72 524 242.60
partial 126 71.60 539 231.87
full 119 69.78 546 227.96
twin 114 68.23 551 228.03

Figure 7. The ratio of LSPR frequency (yellow circles), square root of
surface electron density (purple triangles), and square root of volume
electron density (red triangles). The ratio in each case is calculated as
that of the ⟨100⟩/{100} value (structure 1) to the ⟨100⟩/{110}
(structure 2) value for each size.
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■ CONCLUSION
We have utilized a computational atomistic electrodynamics
model to investigate the effects of various crystalline defects
(surfaces, partial dislocations, full dislocations, twins) on the
optical properties of small silver nanocubes. While the crystal
defects can have a substantial effect for nanocubes smaller than
about 3 nm because of the dominance of surface effects at those
sizes, the effects are mitigated for larger nanocubes.
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