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ABSTRACT: We study the validity of the recently proposed
universal plasmon ruler in the present work using a
combination of numerical techniques based on the finite
difference time domain (FDTD) method, and semianalytical
theories based on the coupled dipole approximation. By
incorporating nonlocal effects for closely spaced two-dimen-
sional gold nanocylinder dimers, we find using both the FDTD
and semianalytical approaches that the universal plasmon ruler
of Jain et al.1 is not applicable for gold nanocylinder dimers
with diameters smaller than about 20 nm. The nonlocal effects
are also found to strongly reduce the electric field enhance-
ments at very small gap distances. Taken together with
previous results,2 we are able to establish the valid size range
for the universal plasmon ruler of gold: 20 nm diameter metal
nanostructure dimers at the smaller end, and 70 nm diameter
metal nanostructure dimers at the larger end.

■ INTRODUCTION

Upon interaction with incident electromagnetic waves such as
light, face-centered cubic (FCC) metal (such as gold and silver,
the former being the focus of this work) nanostructures exhibit
a unique optical response known as a localized surface plasmon
resonance (LSPR).3−5 Excitation of the metal nanostructure at
its LSPR wavelength results in both an enhancement of the
electromagnetic fields close to the surface of the nanostruc-
ture6−8 and also an impact on the far field optical properties
through absorption and scattering of the incident light.9−11

There exists a diverse range of potential applications for
plasmon resonance metal nanostructures, including optical
sensing, detection and imaging12−16 and photothermal cancer
therapies,17−19 among many others.
However, some of the most exciting applications of plasmon

resonance metal nanostructures involve not an individual
nanoparticle, but the interactions of two nanoparticles, a
nanoparticle dimer.7,20−28 This has recently become important
primarily due to the fact that it is now experimentally possible
to, either through synthesis29 or manipulation of the existing
particles,30 control the distance separation between them.
The first important issue this opens up is the fact that the

enhancement in electromagnetic fields that can occur at
nanometer separations between individual nanoparticles can
result in large Raman enhancements of up to 1012, which would
enable single molecule sensing and detection.6,31,32

Second, researchers have recently discovered that the
distances in biological systems can be determined based on
the change in the optical properties, and specifically the LSPR
wavelength, that result from the interaction of two metal

nanoparticles if the nanoparticle size is known.33,34 This
information is critical in order to systematically optimize the
arrangements of nanoparticles with predictable and repeatable
optical properties for optical sensing applications. Specifically,
Sonnichsen et al.33 and Reinhard et al.34 called this distance-
dependent relation a “plasmon ruler”. The plasmon ruler was
given an analytic form for the case of gold nanodisk dimers by
Jain et al.,1 who also found a nearly universal scaling of the
decay length of the interactions between nanoparticle dimers
that was apparently independent of nanoparticle size, shape,
metal type and dielectric constant. This plasmon ruler equation
was then used to explain the experimental results of Reinhard et
al.34 More recently, Ben and Park2 determined that, for both
dimers and two-dimensional arrays of gold nanoparticles, the
plasmon ruler exhibited a dynamic depolarization-induced size
dependence for nanoparticles larger than about 70 nm.
However, the behavior of the plasmon ruler has not been

established if the distance separating nanoparticles becomes less
than about 10 nm. This is because, at such small separations,
classical electrodynamics may become invalid, thus necessitat-
ing the use of other physical models. One such model is the so-
called nonlocal model,35,36 which has recently been utilized
both theoretically37−42 and experimentally43,44 to interpret the
unusual blue shifts and plasmon broadening observed in the
optical properties of either individual or small clusters of very
small diameter or closely separated metal nanoparticles, though
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nonlocal effects on the plasmon ruler have not been studied to
date. We note the recent experimental study of Yang et al.,45

who studied the plasmon ruler for silver nanoparticles 40 nm in
diameter for separations ranging from 1 to 25 nm. The
experimental results did show two clear regimes of the plasmon
ruler. Of particular relevance to the present work, a deviation
from the plasmon ruler was found for center-to-center distance
(L) to diameter (D) ratios smaller than about 1.05. Qualitative
agreement with the nonlocal results of Garcia de Abajo38 were
noted within this size range, though a direct comparison to the
present results cannot be made as gold was the plasmonic
material of choice in the present work.
Therefore, there exist critical unresolved issues not only as to

whether the universal plasmon ruler is still valid at very small
gap distances between nanoparticles but also as to the precise
nanoparticles sizes for which it is valid. We study these issues in
the present work using a two-dimensional nonlocal, finite
difference time domain (FDTD) formulation of McMahon et
al.,37,39 and interpret the FDTD results within the context of a
semianalytical theory based on the coupled dipole approx-
imation (CDA).

■ NONLOCAL THEORY AND NUMERICAL
METHODOLOGY

The optical response of small metal nanostructures is often
modeled using the bulk Drude plus Lorentz pole(s) model, in
which the Drude term describes the free electrons in the
conduction band as negative charges moving collectively in an
infinite homogeneous medium.46 However, for small metallic
nanostructures, particularly particles with sharp edges or
interacting particles separated by very small distances, the
bulk Drude model loses validity as there is no confinement or
wall felt by the free electrons,47 and the effects of spatial
dispersion (or wave vector dependence) of the optical response
are not captured.
One approach to incorporating these nonbulk effects is to

utilize a nonlocal dielectric function, where nonlocality means
that the material polarization at a point in space depends not
just on the local electric field but also on the electric field in the
surrounding neighborhood.39 The result of this is that the
dielectric function is not only temporally but also spatially
dispersive, which leads to an additional dependence on the
wavevector k along with the traditional dependence on
frequency ω.
Formally, the motion of the free electron gas corrected by

nonlocal effects is captured using the hydrodynamic equation of
motion.48 The resulting dielectric function εHD that emerges is
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where ωD is the plasmon frequency, γ is the collision frequency,
and β2 = 3vF

2/4 for a two-dimensional free-electron gas at high
frequencies.
We utilize the nonlocal FDTD formulation and code of

McMahon et al.37 to numerically solve Maxwell’s equations,
where the nonlocal and standard (local) FDTD algorithms49

are essentially identical. The only difference in the nonlocal
approach is that there is an additional material property
dependence on the wavevector k from the hydrodynamic
Drude term εHD in eq 1, i.e.,
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and where ωL is the frequency at which the d- to sp-band
transition happens, ΔεL is the relative permittivity shift at the
transition, and δL is the electron dephasing rate. Here, a Drude
plus two Lorentz poles model was used to fit the experimental
data,39 with ε∞ = 3.559, ωD = 8.812 eV, γ = 0.0752 eV, ωL1 =
4.693 eV, ωL2 = 3.112 eV, ΔεL1 = 2.912, ΔεL2 = 1.272, δL1 =
1.541 eV, δL2 = 0.525 eV. We note that γ is taken to be size-
independent, meaning that electron-surface scattering effects,
which appear to be important only for nanoparticle sizes
smaller than about 5−10 nm,50 were not accounted for as the
smallest diameter cylinder we considered was 20 nm. We also
note that quantum mechanical effects, such as electron spill out
and quantum tunneling, are not captured in our model. A
summary of other effects that a spatially nonlocal dielectric
function does not capture are summarized by McMahon et al.39

■ NUMERICAL RESULTS
We performed two-dimensional FDTD simulations using both
local and nonlocal formulations on a pair of infinitely long
cylindrical wires that form a dimer separated by varying gap
distances. Specifically, the diameters D of the cylinders ranged
from 20 to 50 nm, while the corresponding gap (edge-to-edge)
distances T ranged from 0.02D to 3D. Because the smallest gap
distance of 0.02D is considerably smaller compared to previous
studies of plasmon rulers,1,2 nonlocal effects are expected to be
important. The dimer systems are excited in the FDTD
simulations by a pulse with electric field parallel to the dimer
axis and the wave vector perpendicular to the dimer axis.
Because the gap distances we have considered in our study

are very small, a convergence study on the spatial grid size was
performed. In doing so, we determined that, for the 20 nm
diameter dimers, a mesh size of 0.1 nm was sufficient; a 0.2 nm
mesh size was sufficient for the 30 and 40 nm diameter dimers,
while a 0.25 nm mesh size was sufficient for the 50 nm diameter
dimer.
The effects of accounting for nonlocal effects are illustrated

in Figure 1, which shows the extinction profiles for 50 nm

Figure 1. FDTD results of the extinction efficiency profile for 50 nm
diameter cylinder dimers with gap distances ranging from 1 to 10 nm.
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cylinder diameters separated by gap distances ranging from 1 to
10 nm. There are several general trends to note. First,
compared to the local resonance wavelength for a given gap
distance, there is a blue shift in the corresponding nonlocal
wavelength, with the blue shift becoming stronger for smaller
gap distances (and also smaller diameters). This demonstrates,
as has previously been found,38,39 that nonlocal effects become
stronger for smaller dimensions and separations, which can be
explained by examining the hydrodynamic Drude term in the
nonlocal permittivity ε(k,ω). Specifically, if we reduce the edge-
to-edge distance separating the dimer, highly evanescent fields
with larger magnitudes of k are generated, which implies that a
higher frequency is needed to excite the localized plasmon
resonance.40 Second, we note that in general the nonlocal
resonance peaks become broader and weaker as compared to
the local peaks for the same diameter and gap spacing.
Before moving forward to discuss the numerical results, we

note that because we have considered a two-dimensional
geometry as compared to the three-dimensional plasmon ruler
established by Jain et al.,1 within the quasistatic approximation
we find a 1/(T/D)2 dependence between the scaled plasmon
shifts vs scaled gap size as compared to the 1/(T/D)3

dependence found for the universal plasmon ruler. The net
effect is that the decay constant we obtain for the two-
dimensional, infinitely long cylindrical wires are slightly
different from full three-dimensional case.
We show in Figure 2 a comparison between the scaled

plasmon resonance wavelength shift (Δλ/λ0) vs the gap/
diameter ratio (T/D) for the 20−50 nm diameter cylinder

dimers as calculated using both the local and nonlocal FDTD
simulations. The plasmon ruler is defined as follows to describe
the relationship between Δλ/λ0 and T/D as, where λ0 is the
resonance wavelength for a single nanocylinder, D is the
cylinder diameter and T is the edge-to-edge gap distance,1

λ
λ
Δ = τ−a e x

0

/

(4)

where x = T/D and Δλ is the plasmon resonance wavelength
shift compared to the individual nanocylinder resonance
wavelength. It is seen in Figure 2a that, using the local theory,
the curves for all cylinder dimer sizes we have considered
appear to follow the same trend, particularly when the gap/
diameter ratio is small. This fact is important as the exponential
form of the plasmon ruler in eq 4 is designed to capture the
scaled plasmon resonance shift at small gap/distance ratios.
In contrast for the nonlocal case in Figure 2b, while the 30−

50 nm diameter dimers appear to follow the same scaled
resonance wavelength behavior at small gap/distance ratios,
there is a clear deviation for the 20 nm diameter dimers, and
thus we conclude that it is at this diameter that the nonlocal
effects become important. Specifically, for the smallest
separations, the scaled wavelength shift Δλ/λ0 is around 0.09
for the local dimer while decreasing substantially to about 0.05
for nonlocal one.
This fact is reinforced by comparing the plasmon rulers for

the local and nonlocal cases shown in Figure 3. As can be seen
in Figure 3a for the local case, the curves can be fitted to the
universal plasmon ruler in eq 4, where the coupling strength a =
0.112 ± 0.110, and the decay constant τ = 0.19 ± 0.04. In
contrast for the nonlocal case, the 30−50 nm diameter dimers
can be fit to the same universal plasmon ruler, though the
coupling strength is smaller, a = 0.098 ± 0.01, than the local
case while the decay constant is larger, i.e., τ = 0.28 ± 0.07. The
plasmon ruler for dimers with nonlocal effects is found to have
a larger decay constant, which is due to the wavevector
dependence of the hydrodynamic Drude term in eq 1. Further
insights into the plasmon ruler will be obtained using a
semianalytical model in the next section.
We close our discussion of nonlocal effects on the optical

properties of cylindrical dimers by discussing the impact on the
electric field enhancements. The enhancements, as calculated
from the FDTD simulations, are shown in Figure 4, where the |
E|2 enhancement was calculated from the maximum value at the
cylinder−air interface for T/D varying from 0.02 to 0.4. As seen
in Figure 4a for the local dimers at constant T/D = 0.02, the |
E|2 enhancements are about 347, 476, 726, 905 respectively for
20, 30, 40, and 50 nm dimers. In contrast for the nonlocal
dimers, the corresponding |E|2 enhancements at constant T/D
= 0.02 are 157, 252, 378, 496, which means that |E|2

enhancements are reduced by 47.1%, 47.9%, and 45.2% for
the 30, 40, and 50 nm dimers, respectively. Finally, the |E|2

enhancement was reduced the most (54.6%) for the 20 nm
dimer.

■ SEMIANALYTICAL MODEL

To assist in interpreting the results of the nonlocal FDTD
simulations, we present a semianalytical model based upon the
coupled dipole approximation (CDA)2,51 and effective
permittivity (EP) theory.35,52,53 The semianalytical model
considers each cylinder to be an infinitely long nanowire that
acts as a two-dimensional electric dipole. The incoming electric

Figure 2. FDTD calculations of LSPR wavelength shift vs gap distance
for 20−50 nm diameter cylinder dimers in both (a) local and (b)
nonlocal responses.
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field is perpendicular to the cylinder axis and parallel to the
dimer axis. Due to the symmetry of our dimer system, the local
electric fields at equivalent positions in each cylinder are
identical, and we can therefore write the electric field felt by
each cylinder as the sum of the incoming field and the near-field
of the neighboring electric dipole,1,54 i.e.,

α
= +

d
E E Elocal

cylinder
2 local (5)

where, for our two-dimensional system, the near field decays as
the square of the center-to-center distance d, and where, in eq
5, αcylinder is the polarizability of an infinitely long cylinder. By
defining S = 1/d2 as the dipole sum for our dimer system and
noting that S is a geometric structure factor that only depends
on the relative positions of the cylinders,2 the effective
polarizability of the dimer system can be written as

α
α

α
=

− S1dimer
cylinder

cylinder (6)

where

α
ε ε

ε ε ε ε
=

−
+ − −π q

a
( ) i ( )cylinder

m

m 4
2

m

2

(7)

and where, in eq 7, a is the cylinder radius, q = ka, εm is the
medium dielectric constant and ε is the electric permittivity of
gold. We note that, rather than using a quasistatic polarizability,
we have included finite size retardation effects that become
important with increasing size into the single cylinder
polarizability55,56 in eq 7. Retardation effects must be accounted
for to achieve a consistent comparison with the FDTD results,
since FDTD automatically accounts for retardation by meshing
the cylinder cross-section. We note that the size effects −i(π/4)
q2(ε − εm) due to retardation in eq 7 disappear and the dipole
polarizability of a single, infinitely long metallic cylinder reduces
its quasistatic counterpart α = [(ε − εm)/(ε + εm)]a

2 in the
limit q → 0.
In the local case, because the electric permittivity depends

only on frequency, we can directly apply the Drude plus
Lorentz pole(s) model for gold with parameters from
McMahon et al.39 to obtain the semianalytical results. For the
nonlocal case, care must be taken because we require electric
permittivities that capture the nonlocal effects such that a direct
relationship between the wavevector k and frequency ω is
converted to a dependence on cylinder diameter D and
wavelength λ.
We accomplish this using the effective permittivity (EP)

model,35,52,53 which is based on the electrostatic approximation
and Pekar’s ABC method,39,53 and enables us to find the
polarizability of small metal nanoparticles in terms of the
effective permittivity εL(D,ω) based on the hydrodynamic
εHD(k,ω) in eq 1. Here we restrict ourselves to the first order

Figure 3. FDTD calculations of scaled LSPR wavelength shift vs gap
distance/diameter for gold cylindrical dimers, with (a) diameters of
20−50 nm for dimers within the local model and (b) diameters of 30−
50 nm for nonlocal dimers. For local dimers, we fit the results to the
plasmon ruler y = a exp(−x/τ) with 95% confidence bounds, resulting
in the coupling strength a = 0.112 ± 0.010 and the decay constant τ =
0.19 ± 0.04. For nonlocal dimers, the fit to the plasmon ruler results in
the coupling strength a = 0.098 ± 0.010 and decay constant τ = 0.28 ±
0.07.

Figure 4. FDTD calculations of |E|2 enhancement vs gap distance/
diameter for the gold cylindrical dimers, with diameters of 20 to 50 nm
for (a) local and (b) nonlocal cases. The scaled gap distance T/D
varies from 0.02 to 0.4.
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EP (l = 1) since only the dipolar resonance responses are
utilized to construct and compare the behavior of the plasmon
ruler.
By using the hydrodynamic dielectric function with EP

theory to calculate the effective polarizability, we have all
information necessary to not only calculate the extinction cross
section of the cylindrical dimers as

π α=C k2 Im( )ext dimer (8)

but also find the resonance wavelength corresponding to
different separation distances for each dimer size.
To demonstrate the ability of an analytical approach to

capture the observed nonlocal size effects, we first compare the
local (size-independent) permittivity with the calculated EPs
for different cylinder diameters taking nonlocal effects into
account. As seen in Figure 5, the real parts of the nonlocal

permittivities are generally smaller than the local one. This is
important because the plasmon resonance requires a specific
value of the real part of ε. However, as seen in Figure 5, in
order to reach a specific value of the real part of ε, an
increasingly strong blue shift is observed for the nonlocal cases
with decreasing diameter. The results in Figure 5 also suggest a
gradual increase in the importance of nonlocal effects with
decreasing diameter, which may be expected to carry over to
the size-dependence of the universal plasmon ruler. However,
as our results in Figure 2 and Figure 3 show, while the increase
in nonlocal effects is gradual, the cumulative effect to cause a
deviation from the universal plasmon ruler only appears at the
20 nm diameter size scale.
In order to provide more insights into the cause for the

failure of the universal plasmon ruler for the 20 nm cylinder
dimers, we now employ the semianalytical theory for both local
and nonlocal cases. We show the predicted universal plasmon
rulers in Figure 6. It is seen that, for the local case, all cylindrical
dimers with diameters ranging from 20 to 50 nm collapse upon
the same curve. This result agrees with our FDTD results in
Figure 3 and demonstrates that retardation, or finite size effects,
are weak in this diameter range, thereby resulting in the
prediction of a universal plasmon ruler.
In contrast for the nonlocal dimers as shown in Figure 6, the

scaled plasmon resonance shifts Δλ/λ0 for the 20 nm cylinder

dimer deviates from the trend formed by the 30−50 nm dimers.
To bring insight to the observed drop in Δλ/λ0 for the 20 nm
nonlocal dimer, we compare the value of the dipole sum S and
Re(1/α),51 where α is the polarizability of a single cylinder with
retardation, corresponding to eq 7. The reason why we are
interested in these two quantities is because a more positive S
leads to a stronger red shift of the LSPR wavelength, while
Re(1/α) controls the actual value of the LSPR wavelength.
Here, because for all the sizes and separations Re(1/α) is
positive and larger than the dipole sum S, the LSPR wavelength
shift is proportional to 1/[Re(1/α) − S], where the value of
Re(1/α) is found at the single resonance wavelength λ0.
Therefore, in order to determine the scaled plasmon resonance
wavelength shifts, we divide [Re(1/α) − S] by Re(1/α).
Hence, the values of Δλ/λ0 follow the same trend as {[Re(1/α)
− S]/[Re(1/α)]}−1. Table 1 and Table 2 show these various
values calculated at the smallest separation, T/D = 0.02 for both
local and nonlocal material response.
We focus on the last column of both Table 1 and Table 2,

which correspond to the scaled LSPR wavelength shifts (i.e.,
Δλ/λ0). It is clearly seen that, for the local dimers in Table 1,
the values of {[Re(1/α) − S]/[Re(1/α)]}−1 for all cylinder
sizes are similar, and have larger magnitudes compared to the
nonlocal dimers in Table 2. This has the important implication
that, for the local case, the scaled LSPR wavelength shift is
independent of the dimer diameter, and instead is mainly
dependent on the gap distance.

Figure 5. Effective permittivity of 20−50 nm diameter gold cylinders
for local (size-independent) and nonlocal (size-dependent) material
responses.

Figure 6. Semianalytical calculations of LSPR wavelength shift vs gap
distance for gold cylindrical dimers, with diameters of 20 to 50 nm. (a)
For local dimers, we find these follow a universal trend which can be
fitted to the plasmon ruler y = a exp(−x/τ) with the coupling strength
a = 0.02299 ± 0.001 and the decay constant τ = 0.5593 ± 0.06. (b)
For nonlocal dimers, the fit to the plasmon ruler results in the coupling
strength a = 0.02217 ± 0.001 and decay constant τ = 0.5966 ± 0.05.
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However, when we include nonlocality by replacing the size-
independent local permittivity by EP, the values of {[Re(1/α)
− S]/[Re(1/α)]}−1 in Table 2 decrease with decreasing size,
with a large variation in going from the 30 to 20 nm diameter,
similar to what was observed for the effective permittivity in
Figure 5, which explains why we observe in both the FDTD
and semianalytical results the size-dependent deviation from
the universal plasmon ruler starting from the 20 nm diameter.
Furthermore, this shows directly that the size dependence of
the plasmon ruler for small dimer sizes cannot be reflected
using the local model.
A physical explanation for the observed size dependence due

to nonlocal effects can be obtained by delineating between
surface and volume plasmons. We emphasize that this
explanation was initially proposed by McMahon et al.39,40 for
nanoparticle dimers by noting the excitement of volume
plasmons by the wavevector k, in which a larger k requires a
higher frequency to induce the plasmon resonance. In the
present work, we utilize the same concept of volume plasmons
to explain the nonlocal effects, though with a slightly different
physical origin.57

For a purely local theory, the induced charge rests at the
surface of the cylinder, and does not extend into the bulk.57

Furthermore, the electric field strength decays exponentially in
going from the cylinder−air interface into the bulk, which is
also driven by surface plasmons. However, in nonlocal theory,
electrons in the conduction band do not behave as a purely free
electron gas. Consequently, the induced charge exists not only
at the surface but also inside the cylinder which leads to volume
plasmons. The internal electric field then is composed of two
exponentially decaying fields,57 one due to surface plasmons as
described by the local theory, and the other one due to volume
plasmons, which can be captured with the nonlocal hydro-
dynamic dielectric function. Hence the internal electric field
that is bound to the cylinder surface is modified through the
coupling between surface and volume plasmons, which in turn
alters the plasmon resonance condition. Because the induced
charge is not entirely confined at the surface, nonlocal effects
soften or screen the short distance interactions of the induced
charge at the gap, which leads to a larger effective gap

distance,38,58 and is the reason why using nonlocal theory a
blue-shifted LSPR wavelength is observed as compared to the
local case.
For the larger diameter cylinders, the relative contribution of

volume plasmons to the total electric field is minimal, because it
is the evanescent field of the volume plasmons that couples to
surface plasmons and modifies the internal electric field, and
thus the relative contribution of the volume plasmons to the
total electric field is only important close to the surface of the
cylinder. Therefore, for the large diameter dimers little
deviation from the local results is observed42 and the universal
plasmon ruler is obeyed. However, for the smallest (20 nm
diameter) dimers, higher wave vectors are generated for each
gap separation, so nonlocal effects become more important
with the excitation of the volume plasmons. Furthermore, the
effective area of the cylinders where the effects of volume
plasmons are important increases,42 which enhances the
importance of nonlocal effects, and contributes to the deviation
of 20 nm diameter nonlocal dimer from the universal plasmon
ruler.

■ CONCLUSIONS

We have utilized a combination of FDTD numerical
calculations and semianalytical models based upon the coupled
dipole approximation to study the validity of the universal
plasmon ruler1 for a wide range of nanocylinder dimer
diameters. We found that, if nonlocal effects are accounted
for, which are important for very small gap distances between
nanoparticles, dimers with diameters smaller than about 20 nm
do not follow the universal plasmon ruler. The present results,
when coupled with previous results2 showing a dynamic
depolarization-induced finite size-dependence for larger diam-
eter dimers, establish a validity range for the universal plasmon
ruler: 20 nm diameter dimers at the lower end, and 70 nm
diameter dimers at the upper end.

■ APPENDIX

For the nonlocal FDTD simulations, the equations that update
the currents J corresponding to the Lorentz term εLorentz in
ε(k,ω) remain the same as in the local formulation because the
Lorentz terms involve only ω and ω2, which result in standard
first and second derivatives in time.
However, because the hydrodynamic Drude term εHD(k,ω)

has a wavevector dependence through the −βk2 term in eq 1,
the currents corresponding to the Drude term result in an
additional second order derivative in space. It is clear that εHD
differs from the standard Drude dielectric function through
incorporation of the wavevector k, which accounts for the
spatial dispersion through the nonlocal effects. This implies that
the bound, or core, electrons, which are typically modeled using
Lorentz terms, are left in local form in the present work. A
similar approximation has previously been utilized by Garcia de
Abajo38 and McMahon et al.39 in theoretical studies of nonlocal
effects on the optical properties of small metal nanostructures.
We show herein the three fundamental update equations for

the electric and magnetic fields and also the induced currents
related to the dielectric response of metal, while referring
readers to McMahon et al.39 for more details on the standard
FDTD equations:

Table 1. CDA Values for Cylindrical Dimers Assuming Local
Response with Diameters Ranging from 20 to 50 nm

local response

diam
(nm) S Re(1/α)

Re(1/α)
− S

{[Re(1/α) − S]/[Re(1/
α)]}−1

20 0.002403 0.007832 0.005429 1.4426
30 0.001068 0.003483 0.002415 1.4422
40 0.000601 0.001955 0.001354 1.4435
50 0.000384 0.001248 0.000864 1.4452

Table 2. CDA Values for Cylindrical Dimers Assuming
Nonlocal Response with Diameters Ranging from 20 to 50
nm

nonlocal response

diam
(nm) S Re(1/α)

Re(1/α)
− S

{[Re(1/α) − S]/[Re(1/
α)]}−1

20 0.002403 0.008995 0.006592 1.3645
30 0.001068 0.003859 0.002808 1.3827
40 0.000601 0.002133 0.001532 1.3921
50 0.000384 0.001343 0.000959 1.4011
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From the above eq 9, we see that, through the FDTD
algorithm, the essence of nonlocal effects on the optical
properties of metal nanostructures is clearly illustrated.
Specifically, we see in eq 9 that, because of the
−β2∇2JHD(x,t) term, the current density at a given point in
space is related not only to the field at the same point but also
to the field at previous time steps at neighboring points, which
results in a dependence on both ω and k.
It is also worth noting that, in our FDTD implementation

including nonlocal effects, the update algorithm is based on the
assumption that the curl of the Drude current is zero, and that
both the normal and tangential parts of the Drude currents
vanish at the boundary, which corresponds to Pekar’s additional
boundary condition (ABC).39,53 However, Raza et al.59 have
recently found that care should be taken when applying Pekar’s
ABC, as it may introduce nonphysical ripples on the main
extinction peak. In the hydrodynamic Drude model, the
tangential part of the Drude current need not be zero at the
boundary, since we are assuming a nonviscous material. Thus,
even though Pekar’s ABC produces unwanted ripples, it
predicts a similar plasmon dipolar resonance shift as compared
to the full hydrodynamic model as shown by Raza et al.,59 and
thus we utilize this approach to study the plasmon resonance
wavelength shift as the distance between nanoparticles
decreases.
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