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’ INTRODUCTION

The optical properties of fcc metal (gold and silver) nanos-
tructures have recently been the focus of intense scientific study.
The driving force for the interest is because, upon interaction
with incident electromagnetic waves, such as light, these metal
nanostructures exhibit localized surface plasmon resonance
(LSPR).2�4 The LSPR results in both an enhancement of the
near-field electromagnetic fields,5�7 with potential Raman en-
hancements of up to 1012, and the far-field optical efficiencies,8�10

with applications in optical sensing and imaging,11�15miniaturized
photonic devices,2,16,17 and photothermal cancer therapies,18�20

among many others.
Many of these optical applications involve not an individual

nanoparticle, but collections, or arrays of the nanoparticles that
are arranged in a manner such that the optical properties can be
enhanced and exploited.21�23 Two examples of this are the
enhancement in electromagnetic fields that can occur at nan-
ometer separations between individual nanoparticles that is
useful for single molecule sensing and detection,5,24,25 and the
utilization of multidimensional arrays and arrangements of
nanostructures for enhanced plasmon coupling and biosensing
applications.15,26,27

Because of this, there have been many studies, both
experimental28�39 and theoretical,23,40�49 that have investigated
the optical properties of either dimers or one and two-dimen-
sional (2D) arrays of fcc metal nanoparticles, though it should
be noted that the vast majority of such studies, both experi-
mental and theoretical, has focused on the far simpler dimer
geometry.

One key issue that was recently resolved for the case of
interacting nanoparticle dimers was the development of an
analytic expression for the dependence of the far-field optical
properties and, specifically, the LSPR wavelength shift as a
function of nanoparticle size and the gap between the nanopar-
ticles. Such information is necessary to systematically optimize
the arrangements of nanoparticles with predictable and repea-
table optical properties for optical sensing applications. Specifi-
cally, Sonnichsen et al.50 and Reinhard et al.51 established
a “plasmon ruler” to measure distances in biological systems
based on the change in optical properties that result from the
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ABSTRACT: We have utilized the discrete dipole approximation to study the
localized surface plasmon resonance in infinite, periodic two-dimensional arrays
of gold nanospheres with the nanospheres arranged according to the {100} face
of an fcc crystal. Specifically, we have performed a systematic study of the
sensitivity of both the plasmon resonance wavelength shift and extinction
properties considering nanosphere diameters ranging from 20 to 100 nm, and
for nanosphere gap distances ranging from 0.5 to 6 times the nanosphere
diameter. In doing so, we find that the same universal decay length of the
plasmon resonance wavelength shift of about 0.2 units of the nanosphere size that
was previously found by Jain et al.1 for nanoparticle dimers is also operant for
two-dimensional arrays. However, we also find that the universality of the
plasmon ruler is only valid for arrays with nanospheres smaller than a critical
nanosphere diameter of about 70 nm, whereas for larger nanosphere diameters, a
decrease in the extinction efficiency as the gap distance decreases and a reduction in the decay constant are observed. Both of these
size-dependent optical responses are qualitatively interpreted using a semianalytical coupled dipole approximation that accounts for
structural retardation due to the geometric arrangement of the nanospheres, as well as single sphere retardation due to both dynamic
depolarization and radiative damping effects. Using the semianalytical theory, we find that the size dependence is primarily due to
the effects of dynamic depolarization and structural retardation, which reduces the coupling strength, changes the extinction
efficiency trend, and also reduces the decay constant of the plasmon ruler equation for larger diameter nanospheres; similar results
were found for infinite, 2D arrays of nanospheres in hexagonal and simple cubic arrangements. Finally, the semianalytical theory is
utilized to predict a size dependence of the plasmon ruler for dimers starting at the same critical diameter of 70 nm.However, we find
that the size effect is weaker for dimers than for the array case due to the significant reduction in structural retardation for dimers as
compared to the array case.
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interaction of two nanoparticles. The plasmon ruler was given an
analytic form for the case of gold nanodisc dimers by Jain et al.,1

who also found a nearly universal scaling of the decay length of
the interactions between nanoparticle dimers that was apparently
independent of nanoparticle size, shape, metal type, and di-
electric constant. This plasmon ruler equation was then used to
explain the experimental results of Reinhard et al.51

The objective of the present work is to move beyond the case
of nanoparticle dimers and develop a plasmon ruler equation for
infinite 2D periodic arrays of gold nanospheres such that the
spectral shift that occurs for arrays of metal nanospheres can be
predicted not only as a function of the interparticle separation but
also as a function of the nanoparticle size. We expect that this
theoretical information should be valuable considering the recent
experimental advances that have demonstrated the capability
of mechanically tuning the distances or gap between metal
nanostructures,52�54 in conjunction with well-established experi-
mental techniques, such as nanosphere lithograpy21 or Langmuir�
Blodgett assembly,22 that suggest that experimental studies of
periodic arrangements of nanoparticles with arbitrary nanoparticle
sizes and tunable gap distances between the particles are certainly
within reach.

We accomplish this through numerical calculations based on
the discrete dipole approximation (DDA)55,56 and semianalytical
expressions based upon an extension of the coupled dipole
approximation (CDA)44 that accounts for size-dependent single
sphere retardation via both dynamic depolarization (DD) and
radiative damping (RD) effects.30,38,57 We utilize both ap-
proaches to study the changes in LSPR wavelength that occur
for an infinite 2D array of gold nanospheres with diameters up to
100 nm and gap distances ranging from 0.5 to 6 times the
nanosphere diameter. Together, the DDA and semianalytic CDA
expressions enable us to conclude that the universal decay
constant that was previously found for nanodisk dimers by Jain
et al.1 holds only for nanosphere diameters smaller than about
70 nm. For larger diameter nanosphere arrays, we find using the
CDA that DD and structural retardation are the major factors
determining the size-dependent behavior of the coupling
strength and extinction efficiency, and the reduced decay con-
stant in the plasmon ruler equation for larger diameter nano-
spheres. Similarly, we also find a size dependence of the plasmon
ruler starting at the same critical diameter of 70 nm for the dimer
case. However, the size dependence is far weaker as compared
to the array case due to the significant reduction in structural
retardation for the dimers.

’NUMERICAL METHODOLOGY

To calculate the extinction spectra for an infinite, periodic 2D
array of gold nanospheres, we utilize the discrete dipole approx-
imation (DDA), which was originally developed by Purcell and
Pennypacker.55 The fundamental idea behind the DDA is to
discretize a volume of arbitrary geometry using small (finite)
elements, in which each element represents an individual dipole
with polarizability Ri that interacts, due to an incident electric
field, with all other dipoles in the body. The polarization can be
written as10

Pi ¼ RiElocðriÞ ð1Þ

where the local electric field Eloc,i is the sum of an incident field
Einc,i and the contribution from the j other dipoles in the system

Eother,j and can be written as

Eloc;i ¼ Einc;i þ Eother;j ¼ E0expðik 3 riÞ � ∑
j 6¼i

Aij 3Pj ð2Þ

where k is the wave vector of the incident plane wave, E0 is the
amplitude of the plane wave, and the matrix Aij represents the
interactions of all dipoles i and j as

Aij 3Pj ¼
expðikrijÞ

r3ij
k2rij � ðrij � PjÞ þ 1� ikrij

r2ij

 

�ðr2ijPj � 3rijðrij 3PjÞÞ
! ð3Þ

The goal of the DDA is to solve for the polarization vector P in
eq 2. Once this is known, the extinction cross section can be
calculated as58

Cext ¼ 4πk

jE0j2 ∑
N

j¼ 1
ImðE�inc;j 3PjÞ ð4Þ

In the present work, we calculate the extinction spectra for infinite,
periodic 2D arrays of gold nanospheres using the code DDSCAT
byDraine and Flatau56 and the dielectric constants of Johnson and
Christy,59 where, in particular, we utilize DDSCAT 7.0 due to its
capability to calculate both near- and far-field optical properties for
periodic arrangements of metal nanoparticles. We note that earlier
versions of DDSCAT have recently been utilized by many
researchers1,6,8,10,60�63 to study the extinction spectra of both
individual metallic nanostructures and metal nanostructure
dimers. We also note that nonlocal effects, which may be
important for interactions of multiple nanostructures at very short
particle separations,64,65 were not considered in the present work.

’NUMERICAL RESULTS

Themodel infinite, periodic 2D array of gold nanospheres that
we considered in the present work is one in which the positions
of the nanospheres correspond to the atomic positions on the
{100} face of an fcc crystal. Nanosphere diameters ranging from
D = 20�100 nm were utilized to study the LSPR wavelength
shifts as a function of size, where air was the dielectric medium
of choice for all calculations. Gap distances, which are defined as
the edge-to-edge distance between two nanospheres along the
[100] direction on the {100} fcc face, ranged between 0.5 and 6
times the nanosphere diameter. We note that, for our particular
2D periodic arrangement, the smallest possible gap distance is
(
√
2 � 1)D; the smallest center-to-center distance between the

nanospheres is
√
2D. Touching spheres were not considered in

our work due to the inapplicability of the DDA to such situations.
The wave vector used in our calculations is perpendicular to the
plane containing the infinite, periodic 2D array of nanospheres,
whereas the polarization vector is parallel to the plane of the array
and in the [100] direction. This optical illumination is also
utilized for the semianalytical CDA results presented later.

For these different nanosphere diameters and gap distances,
the values of interest are the corresponding change in the far-field
extinction properties and LSPR wavelength. We found that,
for the 2D periodic array, different numbers of dipoles were
required to obtain convergence of the LSPR wavelength, with
more dipoles required to obtain convergence as the gap distance
between nanospheres decreased. To ensure accuracy of the DDA
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results, we performed a convergence study to ensure that, for
each nanosphere diameter and gap distance, sufficient numbers
of dipoles were used to obtain an accurate LSPR wavelength.

We show in Figure 1 the LSPR wavelength shift versus gap
distance for 2D periodic arrays with nanosphere diameters of 20,
40, and 60 nm. We note that all LSPR wavelength shifts reported
in this work for the arrays are red shifts with respect to the LSPR
wavelength of the corresponding single nanoparticle. By fitting
each of the curves separately, we find that the decay lengths
increase with increasing nanosphere diameter, from about 4.5 nm
when D = 20 nm, to about 13.4 nm when D = 60 nm. It is
interesting to note that the 13.4 nm decay length we find for the
infinite 2D periodic array with 60 nm diameter nanospheres is
similar to the decay length of 13.7 nm found for the 54 nm
diameter nanodisc dimers by Jain et al.1 Furthermore, Figure 1
also shows that, for the same gap distance of 0.5D, which

corresponds to the center-to-center distance 1.5D, the magni-
tude of the LSPR wavelength shift increases from 20 to 40 nm
and then decreases from 40 to 60 nm.

To examine the universality of our results, we systematically
study the LSPR wavelength shift for nanosphere diameters from
20 to 100 nm; these results are summarized in Figure 2. One
interesting finding is that, for the smallest gap distance of 0.5D
(center-to-center distance of 1.5D), there is, first, an increase in
the maximum LSPR wavelength shift in going from about 20 to
50 nm, followed by a decrease for the 60�100 nm diameters. The
behavior of the arrays with relatively small nanosphere diameters
(<60 nm) thus appear to be reasonably well described by the
dipolar electrostatic polarizability, which contains no size effects,
where, due to the increase in volume, the absolute coupling
strength increases as a result of the increased number of electrons
that participate in the plasmon oscillation.

However, for the arrays with large nanosphere diameters
between 60 and 100 nm, the size-independent dipolar polariz-
ability loses accuracy. Because the nanosphere diameter becomes
comparable to the incident wavelength of light, single sphere
retardation effects in the form of DD and RD, which are size-
dependent, compete with the volume increase and begin to
confine the plasmon resonance more to the surface electrons,
which reduces the overall oscillation strength per unit volume,
and thus results in a smaller absolute plasmon coupling strength
in this nanosphere size range.39 This is shown most clearly in
Figure 3, which demonstrates that, although the nanosphere
diameters from 20 to 70 nm show a similar universal scaling for
the normalized LSPR wavelength shift with gap distance, arrays
with nanosphere sizes larger than 70 nm clearly deviate from the
universal scaling exhibited by the smaller diameter arrays. This
results from both single sphere retardation effects as well as
structural retardation due to the geometric arrangement of the
nanospheres. A further discussion delineating the relative im-
portance of DD, RD, and the structural retardation within the
context of the semianalytical CDA will be given later.

Figure 4 shows the scaled LSPR wavelength shift for all
nanosphere diameters ranging from 20 to 70 nm on a single

Figure 1. DDA calculations of LSPR wavelength shift versus gap
distance for 2D infinite, periodic arrays with nanosphere diameters of
20, 40, and 60 nm. Solid curves are the least-squares fits to the function y
= a exp�[(x� 1.414D)/(l)], whereD is the nanosphere diameter. The
corresponding decay lengths l are 4.5, 9.0, and 13.4 nm.

Figure 2. DDA calculations of LSPR wavelength shift versus gap
distance for nanosphere diameters between 20 and 100 nm.

Figure 3. DDA calculations of scaled LSPR wavelength shift versus
scaled gap distance for nanosphere diameters from 20 to 100 nm. It is
clear that the data for arrays composed of 80, 90, and 100 nm nano-
spheres deviate from the universal exponential decay curve formed by
the 20�70 nm nanospheres.
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plot, whereas Figure 5 shows a similar plot, except containing
only nanosphere diameters ranging from 80 to 100 nm. A similar
fitting function as for the nanoparticle dimer case that was
studied by Jain et al.1 was utilized because both Figures 4 and
5 show that the LSPR wavelength shift decays rapidly with
increasing nanosphere gap distance and reaches a near zero value
if the nanosphere distance increases beyond a gap distance-to-
diameter ratio of about 3. Because this behavior is similar to the
dimer behavior reported by Jain et al.,1 it can be approximated as
an exponentially decaying function, which is known as a plasmon
ruler equation, if the LSPR wavelength shifts Δλ of the infinite,

periodic 2D array are scaled by the single sphere resonance
wavelength λ0, and the gap distances T are scaled by the diameter
D of the corresponding single sphere. Hence, the plasmon ruler
equation we applied for fitting the data from both DDA (and the
semianalytical CDA discussion in the next section) is

Δλ

λ0
¼ ae�

x � 0:414
τ ð5Þ

where x = T/D. By fitting the data in Figure 4 for the 20�70 nm
diameter nanospheres, we find a trend that appears to be
independent of nanosphere diameter, where the decay constant
τ = 0.23( 0.02 and the particle coupling strength a = 0.21( 0.02.

We compare the value for the decay constant τ that is obtained
for the infinite, periodic 2D array to the nanoparticle dimers that
were previously reported in the literature. Specifically, Jain et al.1

reported a decay constant τ = 0.23 ( 0.03 for gold nanodisk
dimers using DDA calculations, whereas an experimental value
of τ = 0.18 ( 0.02 was found for the same nanodisk dimers.
Similarly, a decay constant of τ = 0.22 was reported by Gun-
narsson et al.66 for silver nanodisk pairs. Thus, our results
strongly suggest that 2D infinite periodic arrays of gold nano-
spheres with diameters smaller than a critical value of about
70 nm follow the same universal decay rule, in which the plasmon
coupling strength decays exponentially with a decay length that is
approximately 0.2 in units of particle size.

In contrast, Figure 5 shows the results for the 80, 90, and
100 nm diameter nanospheres, where the scaled LSPR wave-
length shift for each diameter was fit individually. In doing so, we
find that the decay constant decreases with increasing nano-
sphere diameter. Specifically, the decay constant τ decreases to a
value of 0.15 for an infinite, periodic 2D array of 100 nm diameter
gold nanospheres.

In addition to the size-dependent LSPR wavelength shift and
plasmon ruler equation, we have also found that there is a size-
dependent transition for the trend of the extinction efficiency, as
shown in Figure 6. Specifically, the extinction efficiency increases
as the nanosphere gap distance decreases for nanosphere dia-
meters smaller than 70 nm, whereas a decrease in the extinction

Figure 5. DDA results of scaled LSPR wavelength shift versus gap
distance-to-diameter ratio for 80, 90, and 100 nm diameter nanospheres.
We fit each data set to the plasmon ruler y = a exp�[(x� 0.414)/(τ)]
individually, obtaining the decay constants τ = 0.19, 0.17, and 0.15, while
the coupling strengths are very similar, a = 0.22, 0.21, and 0.21,
respectively.

Figure 6. DDA results of extinction efficiency versus scaled gap distance
for nanosphere diameters ranging from 20 to 100 nm.

Figure 4. DDA results of scaled LSPR wavelength shift versus scaled
gap distance for nanosphere diameters ranging from 20 to 70 nm. We
find that these follow a universal trend that can be fitted to the plasmon
ruler y = a exp �[(x � 0.414)/(τ)], with the coupling strength a =
0.21 ( 0.02 and the decay constant τ = 0.23 ( 0.02.
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efficiency with decreasing gap distance is found for nano-
sphere diameters larger than 70 nm. We will explain both the
size-dependent trends in the LSPR wavelength shift and the
extinction efficiency using the semianalytical CDA in the next
section.

’COMPARISON TO SEMIANALYTICAL COUPLED
DIPOLE APPROXIMATION

Coupled Dipole Approximation—Theory. To assist in the
analysis of the DDA results, we employ a semianalytical approach
to analyze the far-field optical properties of metal nanosphere
arrays based upon the coupled dipole approximation (CDA).
As described by Zhao et al.,44 the CDA is conceptually similar to
the DDA, though with important differences. First, in the DDA,
each sphere is discretized with a finite number of dipoles that
have different polarizabilities, whose interactions lead to an exact
representation of all higher-order (multipole) contributions
to the LSPR. In contrast, in the CDA, each nanosphere has a
homogeneous dipolar polarizability throughout the volume such
that interactions between different nanospheres occur only at the
dipolar level. The CDA was also utilized by Jain et al.1 to assist in
their interpretation of their nanoparticle dimer results, though
both the size-dependent single sphere retardation effects of DD
and RD and the structural retardation (see eq 8 below) were not
accounted for.
To utilize the CDA, rather than using the near-field expression

for a dipole, we must utilize its radiative counterpart to describe
electric field effects beyond 100 nm distances, which also plays an
important role in our infinite 2D array. The local field at the ith
sphere can be expressed as the sum of the external field and the
induced field due to all other dipoles in the 2D array as

Eloc;i ¼ Einc þ ∑
j 6¼i

k2ðnij � PjÞ � nij
expðikrijÞ

r3ij

 

þ ð3nijðnij 3PjÞ � PjÞ 1
r3ij
� ik
r2ij

 !
expðikrijÞ

! ð6Þ

where nij is the unit vector pointing from the ith to the jth sphere
and Pj is the polarization for the jth sphere, which is defined as Pj
= RsphereEloc,j. We assume that the 2D nanosphere array is
infinite, the wave vector of the incident field is perpendicular
to the plane containing the array, the polarization vector is
parallel to the plane of the infinite 2D array and in the [100]
direction, and that the local field at each sphere as well as the
polarization of each sphere is identical. Therefore, eq 6 for our
infinite 2D array simplifies to

Eloc ¼ Einc þ S 3 RsphereEloc ð7Þ
where the retarded dipole sum S is

S ¼ ∑
j 6¼i

k2 sin2 θ
eðikrijÞ

rij
þ ð3 cos2 θ� 1Þ 1

r3ij
� ik
r2ij

 !
eikrij

 !

ð8Þ
We emphasize that S accounts for structural retardation effects
via the geometric arrangement of the nanospheres due to the
fact that it depends only on the distance rij between nanospheres.
The effective polarizability of the infinite periodic 2D array is

then obtained as30,38

Rarray ¼ Rsphere

1� SRsphere
ð9Þ

Because the CDA considers only dipolar interactions, and thus
is most accurate for ultrasmall nanoparticle sizes at which the
quasistatic approximation holds, we have accounted for finite
size single sphere retardation effects, including DD and RD, to
determine if these size effects become significant for the 2D
periodic array with larger (70�100 nm) nanosphere diameters.
We accomplished this by following the analytic work of Meier
andWokaun,57 where the single sphere polarizability is described
by a size-dependent function

Rsphere ¼ ε� εm
ðε þ 2εmÞ � ðε� εmÞq2 � ðε� εmÞi2=3q3a

3

ð10Þ
where a is the radius of the sphere and q = ka. The last two terms
in the denominator are the size modifications of the quasistatic
single sphere polarizability R = [(ε � εm)/(ε + 2εm)]a

3.
Specifically, the term� (ε� εm)q

2 corresponds to DD, which
accounts for the red shift of the single particle resonance
wavelength that occurs for larger nanosphere diameters. The
physical interpretation of DD is that, as the nanosphere diameter
increases, so does the distance between the opposite charges of
the induced dipole at each end of the nanosphere.67 Because
the restoring Coulombic force between the induced dipoles is
proportional to 1/a2, the DD term contains a factor of q2. Thus,
due to the decreased restoring force and thus increased polariza-
tion from DD, larger diameter nanospheres exhibit a reduced
resonance frequency, resulting in the well-known red shifted
LSPR wavelength with increasing nanosphere diameter.61

The � (ε �1)i2/3q3 term accounts for RD, which causes
broadening of the resonance peak and reduces the magnitude of
the resonance for larger nanosphere diameters. The physical
interpretation of RD is one in which the energy of the resonant
electron oscillation, and thus the extinction efficiency, is reduced
by radiative losses to photon scattering. Because scattering
constitutes an increasingly large contribution to the optical
extinction with increasing nanosphere diameter,61 the radiative
(scattering) losses are captured in RD via the volume-dependent
q3 term. However, RD is not important for smaller nanospheres
because the radiative losses are minimized due to the fact that the
optical response is dominated by absorption, and not scattering,
and is captured by the decrease of the nanosphere volume
through the q3 term. Thus, the size effects disappear and the
polarization reduces to its quasistatic counterpart in the limit
k f 0.
Having defined all values needed to calculate Rarray in eq 9, we

can generate the extinction cross section as

Cext ¼ 4πk ImðRarrayÞ ð11Þ
In our present semianalytical comparison, the optical response
of gold was approximated using the Drude�Lorentz model, with
parameters from Hohenau and Krenn.68 We applied this mod-
ified semianalytical model for different sphere sizes ranging from
20 to 100 nm, with tunable lattice spacing to compare against the
obtained DDA results.
Coupled Dipole Approximation—Comparison to DDA. As

previously discussed for the DDA, as shown in Figure 2, we found
that the LSPR wavelength shift for the smallest gap distance of
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0.5D (or center-to-center distance of 1.5D) increased with
increasing nanosphere diameter until a critical diameter of about
50 nm was reached, after which a corresponding decrease was
observed with increasing nanosphere diameter. Qualitatively
similar results are also obtained using the CDA, as shown in
Figure 7. As can be seen, the LSPR wavelength shift increases
with increasing nanosphere diameter until the diameter becomes
70 nm; after that size, a clear decrease in the LSPR wavelength
shift can be observed with increasing nanosphere diameter. In
further comparing the DDA results in Figure 2 and the CDA
results in Figure 7, it is clear that the CDA slightly underpredicts
the LSPR wavelength shift for the same nanosphere diameter.

We also note the seemingly anomalous behavior with regards
to the extinction maxima that was observed using the DDA.
Specifically, it is well known that individual fccmetal nanospheres
exhibit an increase in extinction efficiency with increasing
diameter,61 up to a critical diameter. However, despite the fact
that an LSPR red shift and peak broadening are observed for all
nanosphere diameters (20�100 nm) with a decrease in gap
distance, we find using the CDA, as shown in Figure 8, that the
extinction efficiency decreases for decreasing gap distance for
infinite, periodic 2D arrays for nanosphere diameters larger than
about 70 nm, whereas it increases only for nanosphere diameters
smaller than 70 nm. Again, the similarity between the CDA
results in Figure 8a and the DDA results in Figure 6 is readily
apparent.
Both of these unique results can be interpreted using the CDA,

where it is known that the retarded array sum in eq 8 coupled
with themodified single sphere polarizability in eq 10 contributes
to both the shift of the LSPR wavelength and the line width with
changes in the array spacing. To assist in the interpretation, we
note that it was previously shown by Zhao et al.44 that the real
and imaginary parts of the retarded array sum S in eq 10 hold
different physical meanings. Specifically, a positive real part leads
to a red shift in the LSPR wavelength, whereas a negative real
part results in a blue shift. Also, a positive imaginary part of S
corresponds to a broadening of the LSPR line width, whereas a
negative one corresponds to a narrowing of the line width. Thus,
by comparing the difference between the real parts of 1/Rsphere

and S, we can determine the relative amount of the LSPR
wavelength shift. Similarly, by comparing the difference between
the imaginary parts of 1/Rsphere and S, we can determine the
variation in the extinction maxima, as shown in eq 11.
Therefore, we show in Tables 1�3 the retarded array sum, S,

and modified single sphere polarizability, 1/Rsphere, for 20, 70,
and 90 nm diameter 2D arrays, where all values were evaluated at
the LSPR wavelength of the array for each size and gap distance.
We will utilize these values below to explain the observed size
dependence in both the LSPR wavelength shift and extinction

Figure 7. CDA results of LSPR wavelength shift versus gap distance for
nanosphere diameters ranging from 20 to 100 nm. For the smallest
center-to-center distance considered (1.5D), the wavelength shifts
first increase and then decrease for nanosphere diameters larger than
about 80 nm.

Figure 8. CDA results of extinction efficiency versus scaled gap distance for nanosphere diameters ranging from 20 to 100 nm: (a) including both DD
and RD and (b) including DD only. The similarity of (b) to the DDA results in Figure 6 and the CDA results, including DD and RD, in (a) should be
noted, indicating the dominant effect of DD in causing the size-dependent extinction that is observed.
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maxima, similar to the approach previously taken by Zhao et al.44

and Haynes et al.38

As the gap distance between the nanospheres decreases, we
find that both the real and the imaginary parts of the retarded 2D
array sum S in eq 8 and Tables 1�3 become increasingly positive
for all nanosphere diameters, which indicates both an LSPR red
shift and a broadening of the resonance peak. Thus, the CDA
correctly predicts both the LSPR red shift and the peak broad-
ening for all nanosphere diameters with a decrease in gap
distance.
If we compare the values of both S andRsphere at the resonance

wavelength of each specific array arrangement, we can obtain the
far-field optical properties, such as the extinction efficiency, at the
particular resonance wavelength. This point should be empha-
sized, because later in this section after analyzing the extinction
properties, we will be calculating S and Rsphere at different
resonance wavelengths in order to understand the origins of
the size-dependent wavelength shifts.
To explain the size dependence of the extinction behavior of

arrays using the CDA, we note that extinction represents the
amount of light removed from the incident beam by interference
between the incident and forward scattered light, which depends
on both the retarded dipole sum S and the single sphere
polarizability Rsphere. For the 2D array, the peak extinction
efficiency is proportional to (1)/(|Im(1/Rsphere � S)|), where
the |Im(1/Rsphere � S)| term is shown in Tables 1�3. Again, we
emphasize that the values for each row in the three tables are
calculated at the same λarray, the resonance wavelength of the
array, in order to compare the extinction properties for arrays
with the same nanosphere size, but different gap distances. As can
be seen in Table 1 for the 20 nm diameter 2D array, a decrease in
|Im(1/Rsphere � S)| is observed with decreasing gap distance,
which results in an increased value of (1)/(|Im(1)/(Rsphere �
S)|), and thus an increase in the extinction efficiency. In contrast,
for the 70 and 90 nm diameter 2D arrays in Tables 2 and 3, an

increase in |Im(1/Rsphere � S)| is observed for decreasing gap
distance, which leads to a decrease of (1)/(|Im(1/Rsphere� S)|),
and the observed decrease in extinction efficiency.
To explain the observed decrease in the LSPRwavelength shift

for increasing nanosphere diameters using the CDA, we recall
that a more positive real part of the retarded sum S results in a
larger red shift of the LSPR wavelength. Thus, to explain the
observation that, with increasing nanosphere diameter, the LSPR
wavelength shift first increases for smaller nanosphere diameters
and then begins to decrease for nanosphere diameters larger than
about 70 nm, we compare in Table 4 the value of the retarded
dipole sum S at the LSPR wavelength λarray for each array to the
value of the single sphere polarizability at the single sphere LSPR
wavelength λ0, in order to determine the amount of the array
LSPR wavelength shifts with respect to each single sphere LSPR
wavelength shift. This is also important as this is how the
plasmon ruler is calculated; see eq 5. In this case, |Re(1/Rsphere

� S)| corresponds to the relative LSPR wavelength shift between
the array and the single sphereΔλ = λ�λ0. As shown in Table 4,
the value of |Re(1/Rsphere � S)| increases from 20 to 70 nm but
then decreases for larger nanosphere diameters, which agrees
well with the size-dependent LSPR wavelength shifts seen in
Figures 2 and 7.
Having established that the CDAwith DD and RD can capture

the observed size dependence in both the LSPR wavelength shift
and the extinction efficiency, we delineate the specific single
sphere retardation effect that is most critical. We determined this
by using the CDA with the single sphere polarizability Rsphere

calculated in four different forms: the quasistatic polarizability,
RD only, DD only, and both RD and DD. The most relevant
result is shown in Figure 8b for the DD-only case, where a
striking similarity to both the CDA result in Figure 8a accounting
for both DD and RD and the DDA results in Figure 6 can be
observed. Furthermore, we show in Figure 9 the CDA results for
the scaled LSPR wavelength shift as a function of scaled gap
distance while accounting for DD only. It is clear that, in
accounting for DD-related single sphere retardation effects in
the CDA calculation, the size-dependent deviation from the
plasmon ruler equation that was previously observed for the
DDA in Figure 3 is replicated.
Figure 10 demonstrates that, if the nanospheres with dia-

meters ranging from 20 to 70 nm are combined into a single
universal plot, the CDA, including both DD and RD, predicts a
plasmon ruler equation with a decay constant of τ = 0.42 and
magnitude of 0.14. Furthermore, we have also fit the 20�70 nm

Table 2. CDA Values for a 2D fcc Array with 70 nm Diameter
Nanospheres Accounting for Both DD and RD

gap (nm) S 1/Rsphere 1/Rsphere � S

35 2.5967 + 4.9246i 2.5482 � 2.7436i �0.0485 � 7.6682i

45 2.0411 + 3.6987i 3.4809 � 1.1049i 1.4398 � 4.8037i

65 0.8242 + 2.7306i 2.9367 � 1.6165i 2.1125 � 4.3471i

Table 3. CDA Values for a 2D fcc Array with 90 nm Diameter
Nanospheres Accounting for Both DD and RD

gap (nm) S 1/Rsphere 1/Rsphere � S

45 2.1831 + 5.3006i 3.3568 � 1.0791i 1.1737 � 6.3797i

65 0.6478 + 4.1207i 2.3797 � 1.5922i 1.7319 � 5.7129i

75 0.1803 + 3.5935i 2.1187 � 1.7915i 1.9384 � 5.3805i

Table 4. CDA Values for a 2D fcc Array for Nanosphere
Diameters Ranging from 20 to 100 nm with a 0.5D Gap
Distance

diameter

(nm) S (λarray) (1/Rsphere) (λsphere) |Re((1/Rsphere)� S)|

20 4.4549 + 1.2466i 4.3324 � 2.6983i 0.1225

30 4.3322 + 1.8813i 4.1467 � 2.6985i 0.1855

40 4.1186 + 2.5004i 3.8783 � 2.7113i 0.2403

50 3.8714 + 3.1162i 3.5139 � 2.7134i 0.3575

60 3.5416 + 3.7055i 3.0678 � 2.7270i 0.4738

70 3.1372 + 4.2764i 2.5473 � 2.7109i 0.5899

80 2.7218 + 4.8172i 1.9914 � 2.6789i 0.7304

90 2.1831 + 5.3006i 1.4627 � 2.6027i 0.7204

100 1.5939 + 5.7842i 1.0291 � 2.5234i 0.5604

Table 1. CDA Values for a 2D fcc Array with 20 nm Diameter
Nanospheres Accounting for Both DD and RD

gap (nm) S 1/Rsphere 1/Rsphere � S

10 4.4549 + 1.2466i 5.0257 � 0.5755i 0.5707 � 1.8221i

15 2.7278 + 0.9712i 4.2538 � 1.4812i 1.5260 � 2.4525i

30 0.9082 + 0.5212i 4.1600 � 2.1650i 3.2518 � 2.6862i
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data obtained using DD-only together, resulting in a decay
constant τ = 0.42, which is the same as obtained using the
CDA with both DD and RD, which implies that the single sphere
DD effects coupled with structural retardation are the dominant
effects in causing the observed size dependence of the plasmon
ruler equation. The fact that the CDA plasmon ruler constants
differ from that predicted from the DDA is not surprising,
considering that higher-order multipole effects are neglected,
and reflects the fact that the CDA underestimates the coupling
strength between the nanospheres at small distances.1 We note
that similar values for the decay constant and magnitude were
also found by Jain et al.1 using a quasistatic analytical method for
the nanodisc dimer case.

We also demonstrate the decrease in decay constants τ for
the larger diameter nanospheres as predicted using the CDA in
Figure 11. There, a clear decrease in the decay constant from τ =
0.42 in the universal case for the 20�70 nm diameters to τ = 0.25
for the 100 nm diameter case is observed. This is in good
agreement with the DDA results, where, for the CDA, the decay
constant for the 100 nm diameter case decreases 40% as
compared with the universal decay constant, whereas in the
DDA, the decrease for the 100 nm diameter case is 33% as
compared with the universal decay constant. The agreement
between CDA and DDA is encouraging and suggests that the
small difference in the two results from the fact that multipole
interactions are neglected in the CDA. However, this demon-
strates that, even considering only dipolar interactions, the CDA
is an effective methodology to gain physical insights into the
optical properties of 2D nanosphere arrays.
Finally, we also discuss the implications of DD-driven retarda-

tion effects on the functional form of the plasmon ruler.
Specifically, Jain and El-Sayed have recently noted in a recent
review on plasmonic coupling69 that an observable discrepancy
between the DDA and experimental results and the exponential
fitting function exists in the gap distance/diameter (T/D) range
of about 1�2 for nanoparticle dimers. This discrepancy is also
observed for our 2D array cases, as seen in the DDA calculations
for the 20�70 nm diameter nanospheres in Figure 4. In contrast,
as shown in Figure 5 for the larger sphere sizes of 80�100 nm, as
the nanosphere diameter increases, the plasmon coupling ap-
pears to converge toward an exponentially decaying value and is
well-fitted by the exponential function for the entire T/D range.
The same trend is observed using the CDA calculations

accounting for DD, as can be seen in Figure 10 for the
20�70 nm diameter range, in which the deviation from the
exponential function for the T/D range of 1�2 is observed, and
in Figure 11 for the 80�100 nm diameter range, where the
increasing agreement with the exponential fitting function is
again observed. Therefore, we conclude that the discrepancy
between the DDA results and the exponential fitting func-
tion in the T/D range of 1�2 can be attributed to the effects

Figure 10. CDA results of scaled LSPR wavelength shift versus scaled
gap distance for nanosphere diameters ranging from 20 to 70 nm. The
data points are fitted together to the plasmon ruler y = a exp �[(x �
0.414)/(τ)], with decay constant τ = 0.42 ( 0.02 and magnitude a =
0.14 ( 0.01.

Figure 11. CDA results of scaled LSPR wavelength shift versus scaled
gap distance and fitted curves for nanosphere diameters of 80, 90, and
100 nm. We fit each data set to the plasmon ruler y = a exp �[(x �
0.414)/(τ)] individually, obtaining the decay constants τ = 0.37, 0.29,
and 0.25, with similar magnitudes a = 0.15, 0.16, and 0.14, respectively.

Figure 9. CDA results of scaled LSPR wavelength shift versus scaled
gap distance for nanosphere diameters from 20 to 100 nm accounting for
the DD-related retardation effect only. It is clear that the size-dependent
deviation from the universal plasmon ruler that was previously observed
in Figure 3 using the DDA is also observed here.
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of DD-driven retardation. Mathematically, this occurs because,
while in the quasistatic approximation, the plasmon ruler has a
1/(T/D)3 dependence, the addition of DD adds an additional
factor of 1/(T3/D) dependence, which causes the plasmon
coupling strength to decay more quickly as compared with the
purely quasistatic case, and thus leads to better agreement with
the exponential fitting function.
Comparison Between Dimer and Periodic 2D Array. An

important question that we address now is, why is a size
dependence in the plasmon ruler predicted for the infinite,
periodic 2D array when it was not reported for the dimer case
by Jain et al.?1 To do so, we utilize the same semianalytical CDA
approach summarized previously for the 2D array. Specifically,
we account for single sphere retardation effects with appropriate
modifications for the dimer geometry by considering structural
retardation and near-field coupling effects to give the effective
dimer polarizability Rdimer similar to that in eq 9 for the 2D array

Rdimer ¼ 1
1

Rsphere
� S ð12Þ

where parallel polarization of the incident light is considered.
We note that, in Jain et al.,1 the dimer structure sum S is

SJain ¼ 2
r3ij

ð13Þ

whereas in the present analysis, the dimer structure sum S is

Sdimer ¼ 2
1� ikrij

r3ij

 !
eikrij ð14Þ

where rij is the center-to-center distance between the two nano-
spheres. The difference between the two dimer structure sums
occurs because of the quasistatic approximation utilized by Jain
et al.,1 which neglects the structural retardation that occurs due to
the oscillatory eikrij term.
Our analytical CDA results for the dimer show a decay

constant τ of about 0.40 for nanosphere diameters between
20 and 70 nm, which is in agreement with that previously
reported using the quasistatic CDA by Jain et al.1 However, for
dimers with nanosphere diameters larger than 70 nm, we observe
a weak size dependence of the decay constant of the plasmon
ruler equation for dimers that is similar to that observed for the
2D arrays. Specifically, the decay constant for the dimer decreases
slightly from 0.44 (70 nm diameter) to 0.37 (100 nm diameter)
for the dimer case; this is in contrast to themuch larger drop from
0.39 (70 nm diameter) to 0.25 (100 nm diameter) that was
predicted using the CDA for the 2D array case.
The weaker size dependence of the dimer plasmon ruler as

compared to the 2D array case can be explained as follows. First,
as noted by Zhao et al.,44 the far-field interaction term, or the 1/rij
term in eq 8, is zero for the dimer case as all angles θ are zero.
However, this term does not disappear for the array case and is
thus critical for predicting the size-dependent plasmon ruler
equation for 2D arrays.
Second, in analyzing the retarded sum Sdimer in eq 14 for

nanosphere diameters between 20 and 100 nm, the imaginary
part is found to be essentially independent of the center-to-center
distance rij and is small compared to the real part of Sdimer even
for nanosphere diameters up to 100 nm. This is relevant because
the imaginary part of Sdimer is known to control the width and

intensity of the plasmon resonance. If this is essentially size-
independent, then it suggests that, for the dimer analysis, it is
reasonably accurate to take kd f 0, which would cause Sdimer =
SJain, and implies that structural retardation effects, which are
dependent upon the geometric arrangement of the nanospheres
and are mathematically represented by the eikrij terms, are
relatively unimportant for the dimer case as compared to the
2D array case. Therefore, although this would cause the structure
sum S to be the same between the current work and that of Jain
et al.,1 the size dependence of the plasmon ruler in the present
work for dimers primarily arises because the single sphere
polarizability Rsphere in eq 12 accounts for both DD and RD,
which were not considered by Jain et al.1

Having analyzed the causes of the size dependence of the
plasmon ruler for both 2D arrays and the dimer case, we discuss
the generality of the critical 70 nm diameter for the onset of the
size dependence. Specifically, the critical 70 nm diameter should
be a value that is specific to gold, whereas other metals of interest,
such as silver, will have a different critical transition diameter
for the manifestation of a size-dependent plasmon ruler. This is
because, for both arrays and dimers, the critical diameter is
related to Rsphere, which depends on both the material dielectric
function and the nanosphere diameter.
Discussion and Experimental Comparison. We now place

our results in the context of available experimental data on the
optical properties of 2D nanoparticle arrays, and in doing so, we
first note that we were unable to find any experimental studies
that measured or determined the plasmon ruler for 2D arrays.
One relevant experimental study is that performed by Haynes
et al.,38 who studied the optical properties of gold and silver
cylinders and prisms in 2D hexagonal and square arrays, where
the nanoparticles were all about 200 nm in diameter or size. For
the gold nanoparticles, evidence of the decrease in extinction
efficiency with decreasing gap distance was observed in that
work. Interestingly, the authors also reported theoretical calcula-
tions based on a retardation-corrected CDA model very similar
to the one discussed in the present work, which led to predictions
of a gap distance-dependent red shift for smaller gap distances.
However, this red shift was not observed experimentally, which
the authors attributed to either deficiencies in the CDAmodel or,
alternatively, because the size of the nanoparticles considered
(200 nm) precluded them from achieving the small gap distances
at which the red shift was predicted theoretically. We should note
that, because we have performed DDA calculations in which the
size dependence was observed for both the extinction and the
plasmon ruler, the shortcomings of theCDAmodel do not appear
to explain the discrepancy between theory and experiment.
In addition to the work of Haynes et al.,38 we also note the

more recent work of Kinnan and Chumanov,39 who studied 2D
arrays of somewhat randomly oriented silver nanoparticles with
sizes ranging from about 50 to 300 nm. In that work, a similar
size-dependent decrease in the extinction efficiency for smaller
nanoparticle separations was also observed for nanoparticle sizes
exceeding about 90 nm. Furthermore, a very slight red shift with
decreasing interparticle distance was also observed in that work.
However, the wavelength shifts are fairly small, and thus the size
dependence of the plasmon ruler cannot be definitively inferred
or ruled out from this experimental data.
Finally, we note in the original work by Jain et al. that a direct

comparison to experiment was performed for three nanodisc
diameters, 48, 64, and 86 nm, where no size dependence of the
plasmon ruler was reported either theoretically or experimentally.



15924 dx.doi.org/10.1021/jp2055415 |J. Phys. Chem. C 2011, 115, 15915–15926

The Journal of Physical Chemistry C ARTICLE

One possible reason that the size dependence was not reported by
Jain et al.1 in their DDA calculations was because they considered
only three nanodisc diameters, 48, 64, and 86 nm, such that
multiple large sphere sizes greater than 70 nm, which would be
needed to observe the size dependence, were not considered.
In addition, the analytical CDAmodel in Jain et al.1 assumed that
kdf 0 andwas based on the quasistatic approximation neglecting
DD, RD, and structural retardation; therefore, no size depen-
dence of the decay length was observed in their work. However, in
extending their work to plasmon rulers for metal nanostructures
of complex geometries70 and trimers, it was noted that electro-
magnetic retardation effects on the universal plasmon ruler,
which could be critical for larger nanoparticle sizes, have not
been considered.
Overall, the current experimental data validate the current

predictions regarding the size-dependent extinction behavior,
though a similar experimental validation of the size-dependent
plasmon ruler has not yet been reported.
Implications for Other Infinite, Periodic 2D Arrangements

of Nanospheres.We close by discussing the implications of the

above findings based on the CDA on the size- and gap-dependent
optical response of other, infinite periodic 2D arrangements of
gold nanospheres, including a hexagonal arrangement of nano-
spheres and a simple cubic arrangement of nanospheres. The
universal plasmon ruler fits for both array geometries are shown
in Figure 12. There, we find that the decay constants are similar
to, though not identical to, that exhibited by the {100} fcc in
Figure 10, where the simple cubic array shows the largest
decay constant, but the smallest magnitude; the hexagonal array
shows a decay constant that is also larger than the {100} fcc case,
but with a significantly larger magnitude. The variations in the
coupling magnitudes are intuitive, as a single nanosphere in
the hexagonal arrangement can interact with the most nearest-
neighbor spheres, whereas a nanosphere in a simple cubic
arrangement can interact with the smallest number of nearest-
neighbor spheres.
The size and distance-dependent extinction efficiencies are

shown for the 2D arrangements in Figure 13. There, it is again
observed that the 70 nm diameter is the critical diameter; for
larger diameters, the anomalous decrease in extinction efficiency

Figure 12. CDA results of scaled LSPR wavelength shift versus scaled gap distance for an infinite, periodic 2D array with nanosphere diameters ranging
from 20 to 80 nm arranged in a (a) hexagonal and (b) simple cubic lattice structure. Both sets of data were fit to the plasmon ruler y = a exp � x/τ,
resulting in decay constants τhex = 0.47 and τsc = 0.51 and magnitudes ahex = 0.23 and asc = 0.09.

Figure 13. CDA results of extinction efficiency versus scaled gap distance for nanosphere diameters ranging from 20 to 100 nm arranged in a (a)
hexagonal and (b) simple cubic lattice structure.
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with decreasing gap distance is observed, using the CDA, for the
three 2D infinite, periodic arrangements of nanospheres. Overall,
this suggests that the size-dependent extinction maxima and
LSPR wavelength shifts are general features that will be observed
for infinite 2D, periodic arrangements of gold nanospheres.

’CONCLUSIONS

In conclusion, we have presented a systematic study using the
discrete dipole approximation of the far-field optical response of
infinite, periodic 2D arrays of gold nanospheres with diameters
ranging from 20 to 100 nm. In doing so, we have determined that,
for nanosphere diameters smaller than about 70 nm, the arrays
follow the universal plasmon ruler equation previously described
by Jain et al.1 for nanodisc dimers. However, for 2D arrays with
nanosphere diameters larger than about 70 nm, a deviation from
the universal plasmon ruler behavior and a decrease in extinction
efficiency with decreasing gap distance is observed. Both of these
anomalous size-dependent optical responses can be interpreted
by including dynamic depolarization effects within a semianaly-
tical coupled dipole approximation that also accounts for struc-
tural retardation due to the geometric arrangement of the
nanospheres. The semianalytical approach was extended to
examine the reasons why such a size-dependent plasmon ruler
has not been reported for nanoparticle dimers. We found that
this is because structural arrangement retardation effects, while
still operant for nanoparticle dimers, are significantly reduced
as compared to the 2D array case, thus leading to a substantial
reduction of the size-dependent retardation effects as com-
pared to the 2D array case. Finally, we have found that previously
observed deviations from the exponential plasmon ruler
fitting function in the gap distance-to-diameter range of 1�2
can be attributed to retardation effects arising from dynamic
depolarization.

Our results have important implications for optical sensing
and detection applications using periodic 2D arrays of gold
nanoparticles. In particular, the value of a universal plasmon
ruler is its implication that utilization of larger diameter nano-
spheres in the periodic 2D array will enlarge the sensing range
in a manner that is proportional to the nanosphere diameter.
However, our results place an upper bound on the extent to
which nanoparticle sizes can be increased in order to increase the
range of the plasmon ruler.1 Overall, our results should enable
size-dependent estimates of the interparticle separation in arrays
of infinite, two-dimensional nanosphere arrays used in biodetec-
tion applications from the shift of the localized surface plasmon
resonance wavelength that is observed experimentally.51
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