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Conductance signatures of electron confinement
induced by strained nanobubbles in graphene

Dario A. Bahamon,*a Zenan Qi,b Harold S. Park,b Vitor M. Pereirac,d and
David K. Campbelle

We investigate the impact of strained nanobubbles on the conductance characteristics of graphene nano-

ribbons using a combined molecular dynamics – tight-binding simulation scheme. We describe in detail

how the conductance, density of states, and current density of zigzag or armchair graphene nanoribbons

are modified by the presence of a nanobubble. In particular, we establish that low-energy electrons can

be confined in the vicinity of or within the nanobubbles by the delicate interplay among the pseudo-

magnetic field pattern created by the shape of the bubble, mode mixing, and substrate interaction. The

coupling between confined evanescent states and propagating modes can be enhanced under different

clamping conditions, which translates into Fano resonances in the conductance traces.

The fine control over nanofabrication techniques has not only
increased the performance of existing electronic devices,1 but
has also allowed the emergence of concept devices based on
the strictly quantum-mechanical properties of electrons. One
such proposal is the incorporation of patterned ferromagnetic
or superconducting films on two dimensional electron gas
(2DEG) structures. Under the right conditions and design para-
meters, these can be tailored to provide non-homogeneous
magnetic fields able to interact strongly with the underlying
electrons in the ballistic transport regime.2–5 Ideally, the
spatial profile of such fields should be extremely sharp along
the transport direction and homogeneous in the transverse
direction, so that the resulting magnetic barrier might behave
as an effective momentum filter, which is necessary to achieve
control of the ballistic transmission.4,5 In addition, strong and
sharp barriers generally beget richer transmission character-
istics, including the stabilization of confined states within the
barrier.6 The same concept has been proposed following the
advent of graphene as a versatile two-dimensional platform for
nanoscale electronic devices, with local magnetic barriers
being one of several proposed means to confine, guide, and
control electron flow.7–11 The need for robust and tunable

confinement strategies is more fundamental in graphene elec-
tronic devices than in conventional semiconductors because
the massless Dirac character of the charge carriers in graphene
renders them more vulnerable to the phenomenon of Klein
tunneling, and they cannot be adequately confined by stan-
dard electrostatic means, particularly in the ballistic regime.
However, although the search towards achieving control of the
electron flow in graphene remains one of the most active
research areas when it comes to applications of graphene in
the electronics industry, little progress has been made towards
this concept of magnetic confinement. This is partly because
of the size requirements that call for magnetic barriers that are
much smaller than the electronic mean free path and also
because of the need to limit the spatial extent of the magnetic
field within regions equally small, since it might be desirable
to have portions of the system free of any magnetic fields. Gra-
phene, with its outstanding electronic and mechanical pro-
perties, offers a completely new approach towards this goal of
local magnetic barriers that can, in principle, be modulated on
scales of a few angstroms. Owing to the peculiar coupling of
electrons and lattice deformations, it is possible to perturb the
graphene electrons in largely the same way they would react to
an external magnetic field in the bulk by purely mechanical
means (i.e., strain).12,13 Several authors have envisaged the
study of phenomena and applications predicted to happen in
the presence of magnetic fields by purely mechanical means,
exploring appropriately engineered strain configurations to
achieve desired pseudomagnetic field (PMF) profiles.14–16 The
development of Landau quantization in the absence of mag-
netic fields is one such prediction17 that was recently con-
firmed in local tunneling spectroscopy experiments.18,19 This
shows that, even though strain doesn’t break time-reversal
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symmetry, and consequently cannot generate a quantum Hall
effect or chiral edge modes as a real field would, the spectral
analogy is robust and supported by experimental evidence.
Time-reversal symmetry can be explicitly broken by combining
strain and magnetic fields, which breaks the valley degeneracy
and can be explored for pseudomagnetic quantum dots whose
sharp resonant tunneling characteristics might provide a very
sensitive strain detector.20,21 The experiments of Levy18 and
Lu19 with graphene nanobubbles confirm the potential of
strain-engineering for effective manipulation of the electronic
motion in graphene and demonstrate the unique character-
istics of this approach: (i) the ability to generate local PMFs
with magnitudes that can easily exceed several 100s of Tesla;
(ii) the possibility of having these fields localized in regions of
only a few nm, if strain can be locally concentrated; (iii) the
prospect of continuously varying the strength of the local PMF,
in particular being able to establish and remove it on demand;
and (iv) not requiring drastic extrinsic modifications of the gra-
phene layer, thus preserving most of its intrinsic superlatives,
namely the high mobility and the Dirac nature of its carriers.
Recently, in order to gain more insight into details of the PMF
magnitude and spatial profile associated with graphene nano-
bubbles, as well as to understand the role played by typical
substrates, we (with several colleagues) conducted a study of
the effects of nano-sized bubbles in graphene under different
geometries and substrate conditions.22 In order to have a con-
tinuous and tunable range of deflection, the nanobubbles
were generated by inflation under gas pressure against selected
apertures on the substrate.22 In the present article, we revisit
this problem from the point of view of electronic transport to
elucidate the main signatures that circular and triangular
nanobubbles, and their strong PMFs, imprint on the conduc-
tance characteristics. We are particularly interested in whether
the large and local PMF leads to scattering and/or confinement
that is significant enough to translate into modified trans-
mission characteristics. This is directly relevant to scenarios
such as the one explored in a recent experiment that shows
selective 3-point electronic transmission across pressurized tri-
angular graphene nano-blisters.23 Existing theoretical work
approaches this problem by straining graphene according to
deformation fields that are either prescribed analytically or
obtained numerically, but always following from the equations
of continuum elasticity thus treating the graphene sheet as a
continuum medium.24,25 Hence, even when performing tight-
binding calculations on the honeycomb lattice, the widespread
practice has been to obtain the deformations from continuum
elasticity theory. If this is justifiable for deformation profiles
that vary over characteristic distances that are large compared
to the lattice parameter, it isn’t so in the cases we are inter-
ested to describe here. One notable exception is the approach
based on discrete differential geometry recently pioneered by
Barraza-Lopez et al.26,27 which retains all the quantities para-
meterized on the lattice.

We tackle this in the same framework developed in ref. 22,
that combines molecular dynamics (MD) and tight-binding
(TB) calculations. In this approach, the lattice deformation is

determined fully atomistically for the prescribed substrate and
loading conditions, and the relaxed atomic positions are used
to build a TB description of the electron dynamics in the
system. The aim is to reduce any bias in the description of the
electronic system by capturing all the atomic-scale details of
deformation and curvature, without assumptions, since they
play an important role at these scales of less than 50 nm.
Similar to what is observed for real magnetic barriers6 or Gaus-
sian bump deformations,28,29 the conductance of either zigzag
(ZZ) or armchair (AC) graphene nanoribbons (GNR) develops
marked dips (anti-resonances) at the edge of each conductance
plateau. We show that this is due to scattering of propagating
modes into evanescent states confined in the nanobubble. The
coupling between the confined evanescent state and the propa-
gating modes can be enhanced under different clamping and
substrate conditions, leading to Fano resonances30–32 in the
conductance traces. Our calculations show that these signa-
tures of electronic confinement in graphene nanobubbles are
a robust effect, being observed irrespective of the orientation
of the underlying graphene lattice, for circular and triangular
graphene nanobubbles on hexagonal boron nitride.

1. Model and methodology

To reproduce the deformation of graphene and its derived
transport properties as accurately as possible, we implemented
a combined MD-TB simulation. Molecular dynamics provides
the spatial location of the carbon atoms when graphene is sub-
jected to gas pressure and a nanobulge forms through the sub-
strate aperture. Once the coordinates of each atom are known,
the nearest-neighbor TB parameters are calculated throughout
the system and the TB Hamiltonian for the deformed system is
built. This Hamiltonian constitutes the basis for the calcu-
lation of all the local spectral and transport properties. Elec-
tronic transport is addressed via the lattice representation of
the non-equilibrium Green’s function (NEGF).

It is beneficial to underline from the outset the role we attri-
bute to the substrate in our modeling with regards to the elec-
tronic structure and transport: all the electronic action is taken
to happen within the graphene sheet, which we assume not to
be chemically perturbed in a significant way by the presence of
the substrate underneath. This amounts to assuming that the
electronic properties of graphene are completely decoupled
from those of the substrate, the latter playing a rather passive
role from this perspective, in that it simply stabilizes the static
lattice configuration of graphene on which all the electronic
action unfolds. This is a reasonable assumption for most
current experimental scenarios, where graphene is physically
transferred and deposited on a target substrate with a random
orientation of the respective lattice directions. It also implicitly
assumes substrates without reactive/dangling bonds that could
strongly interact with those pz orbitals that happen to be in
registry and become a significant source of disorder. The most
important aspect of this scenario of weak electronic coupling
between graphene and the substrate is that we consider

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2015 Nanoscale, 2015, 7, 15300–15309 | 15301

Pu
bl

is
he

d 
on

 2
4 

A
ug

us
t 2

01
5.

 D
ow

nl
oa

de
d 

by
 B

os
to

n 
U

ni
ve

rs
ity

 o
n 

24
/0

9/
20

15
 0

2:
35

:5
1.

 
View Article Online

http://dx.doi.org/10.1039/c5nr03393d


electronic conduction taking place only through the graphene
system, and its characteristics are determined solely by the
electronic states derived from the pz orbitals in the deformed
and curved graphene. This is done so that the computations
can be easily extended to tens of thousands of atoms, and
relies on a tight-binding parameterization of the electronic
dynamics that has been repeatedly shown to be reliable to
describe low energy processes such as those involved in the
electronic conduction. Moreover, a full ab initio consideration
of the relaxation, electronic structure and quantum transport
is unattainable in this context because (i) the deformation
fields are highly non-uniform, (ii) graphene, substrate and gas
atoms have to be all taken into account, and (iii) we wish to
tackle the characteristic deformation scales seen in the experi-
ments quoted above, all of which entail a large number of
atoms in the minimal supercell. This justifies and motivates
the multi-scale approach to this problem that we now describe
in more detail.

1.1 Molecular dynamics simulations

For an unbiased analysis of the local profile of deformations,
the mechanical response of the system was simulated by MD
with the Sandia-developed open source code LAMMPS.34,35

The MD simulation system consisted of three subsystems: a
graphene monolayer, a rigid substrate with a central aperture,
and argon gas that was used to inflate graphene through the
aperture to generate a nanobubble. An illustration of the
system is shown in Fig. 1. The Tersoff potential was used to
describe the C–B–N interactions. The parameters were adopted
from ref. 36–38, the dimension of the simulation box was 20 ×
20 × 8 nm3, and circular and triangular apertures were
“etched” in the center of the substrate to allow the graphene
membrane to bulge downwards due to the gas pressure. In
each simulation, the system was initially relaxed for 50 ps

before slowly raising the pressure to the desired target by
decreasing the volume of the gas chamber. Upon reaching the
target pressure, the system was allowed to relax for 10 ps, after
which deformed configurations were obtained by averaging the
coordinates during equilibrium. Target pressures are deter-
mined to yield a deflection of 1 nm. All simulations in the
presence of the gas were carried out at room temperature
(300 K) using the Nose–Hoover thermostat.39

Since a previous study established that the magnitudes and
spatial dependence of the strain-induced PMFs can be very
sensitive to the clamping conditions and substrate type,22 we
considered two scenarios to analyze how these effects impact
the transport signatures. In one case the MD simulations are
done with clamped boundary conditions, i.e., an ideal system
consisting only of Ar gas and graphene, and where all carbon
atoms outside the aperture region were strictly fixed. This is to
study the effect of aperture geometry without considering the
substrate and is similar to the approach used in previous
work.14,20,40 In the second scenario, we included a 1 nm thick
substrate of h-BN and its interaction with the graphene sheet
is explicitly taken into account. The Ar–BN (gas–substrate)
interactions were neglected, and the substrate layer remained
static during the simulation. Most of the graphene layer was
unconstrained, except for a 0.5 nm region around the outer
edges of the simulation box where it remained pinned.

The choice of the substrate is motivated by is the experi-
mental observation that, for certain substrates such as boron
nitride, graphene develops a nonuniform strain strong enough
to induce an energy gap ≃20 meV at the Dirac point,41–44 to
introduce satellite Dirac points,45,46 and to allow the obser-
vation of a Hofstadter spectrum47 in the presence of a mag-
netic field.48 Our goal is to assess whether any features in the
conductance of the system when deformed under realistic con-
ditions of contact with a substrate are robust, or dependent on
the degree of substrate–graphene interaction.

1.2. Tight-binding calculations

The scattering region used in the electronic transport calcu-
lations contains the entire MD simulation cell (including the
flat portions between the bubble’s perimeter and the edge of
the cell). The cell accommodates 15 088 lattice sites, an
example of which is shown in Fig. 1. For convenience, we take
the x axis parallel to the ZZ direction. Most low energy elec-
tronic properties of graphene are captured by the π band
nearest-neighbor TB Hamiltonian

H ¼
X
ki;jl

tij c†i cj þ c†j ci
� �

; ð1Þ

where ci represents the annihilation operator on site i and tij is
the hopping amplitude between nearest neighbor π orbitals (in
the unstrained lattice tij = t0 ≈ −2.7 eV). The link between the
MD simulation and the TB Hamiltonian is made when the
positions of the carbon atoms in the deformed configuration,
obtained by MD, are incorporated into the TB Hamiltonian
through the modification of the hopping parameter tij between

Fig. 1 Illustration of a MD simulation cell conveying the strategy used
to generate the graphene nanobubbles. An aperture (a triangle in this
case) is perforated on hexagonal boron nitride on which rests a mono-
layer of graphene (gray). Argon gas is then pressurized against graphene
which bulges through the aperture, with a deflection that is controlled
by the gas pressure. For ease of visualization the gas molecules are not
shown in the picture above. Visualization is performed using VMD.33
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all nearest-neighbors. The modification that accounts simul-
taneously for the changing distance d between neighbors and
the local rotation of the pz orbitals is given by:

tijðdÞ ¼VppπðdijÞn̂i � n̂j

þ VppσðdijÞ � Vppπ dij
� �� � ðn̂i �~dijÞðn̂j �~dijÞ

d2ij
;

ð2Þ

where n̂i is the unit normal to the surface at site i,~dij is the dis-
tance vector connecting two sites i and j, and Vppσ(d ) and
Vppπ(d ) are the Slater–Koster bond integrals for σ and π bonds.
Their dependence on the inter-atom distance is taken as22,49

VppπðdijÞ ¼ te�βðdij=a�1Þ; ð3Þ

VppσðdijÞ ¼ 1:7 VppπðdijÞ; ð4Þ

where t = 2.7 eV, a ≃ 1.42 Å represents the equilibrium bond
length in graphene, and β = 3.37 captures the exponential
decrease in the hopping with interatomic distance. Once the
values of tij are obtained, we use the TB Hamiltonian of the
strained system as the scattering central region, to which two
ideal contacts are attached. This approach captures all the
possible modifications of the π-derived bands at the level of
the Slater–Koster approximation. In particular, since nothing
is assumed with regards to the position of the carbon atoms,
it naturally includes effects such as the so-called pseudo-
magnetic field induced by non-uniform deformations, the scalar
local deformation potential, and sublattice symmetry breaking
terms if the atomistic configurations so allow.12,13,26,28,50 Since
the edges of the central system are of ZZ or AC type, the central
region is seamlessly stitched to the contacts resulting in a
perfect ZZ or AC ribbon. We then study the quantum transport
characteristics of such a GNR containing a central region
deformed by the presence of the nano-bubble. The zigzag gra-
phene nanoribbon (ZGNR) is created attaching two pristine
semi-infinite ZZ nanoribbons to the left and right edges of the
strained graphene square. The metallic armchair graphene
nanoribbon (AGNR) is constructed by connecting two perfect
metallic semi-infinite AGNR to the upper and lower edges of
the central region. The conductance of these nanoribbons is
calculated within the Landauer–Büttiker formalism using

Caroli’s formula:51–53 G ¼ 2e2

h
Tr ΓqGrΓpGa� �

, where Gr = [Ga]† =

[E + iη − H − Σp − Σq]
−1 is the retarded [advanced] Green’s

function, the coupling between the contacts and the central
region is represented by Γq = i[Σq − Σ†

q], and Σq is the self-
energy of contact q which is calculated recursively for ZZ and
AC contacts.54 Having calculated the retarded and advanced
Green’s functions, other electronic properties such as the

density of states (LDOS), ρii ¼ �Im Gr ri
!; ri

!;E
� �� �

=π, and the
total density of states (DOS), ρ = Tr(ρii) are readily calculated.
For a local mapping of the current distribution in the central
region we consider the current density between nearest neigh-

bors,51 Iij ¼ 2e
h

ð
dE tjiG,

ij � tijG,
ji

h i
, that is calculated from the

lesser Green’s function, and which can be obtained exactly in

the absence of electronic interactions as53 G< = Gr(E)[ΓL(E) fL(E) +
ΓR(E) fR(E)]G

a(E). We stress again that the interaction graphene–
substrate is included in the MD simulation part to realistically
describe the interaction and sliding of graphene in contact
with the substrate by the combined action of gas pressure and
substrate aperture.55 From the electronic point of view, the
substrate plays no direct role in electronic tunneling or other
electronic processes.

In order to compare the local current distribution to the
spatial pattern of the PMF the latter is calculated directly from
tij introduced in eqn (2) via

AxðrÞ � iAyðrÞ ¼ 2ℏ
3tae

X
n

δtr;rþneiK�n: ð5Þ

This defines the two-dimensional pseudomagnetic vector
potential, A = (Ax, Ay),

12,13 from where the PMF is calculated
using B = ∂xAy − ∂yAx. Note that eqn (5) is used here only as a
practical and direct means of quantifying the effect of the non-
uniform strain in the electronic properties of graphene. It does
not imply that we use this as an approximation for the PMF in
graphene for, as stressed above, the general and realistic
hopping model eqn (2) that we use in the transport calcu-
lations naturally includes effects that are not captured by such
an approximation.

2. Pseudomagnetic fields,
mode mixing and confinement

In order to recognize the incremental contributions of the
different factors determining the conductance characteristics
of the system (geometry, substrate interaction, and edge type
of the GNR), we start with the simplest scenario described
above: a ZGNR where all carbon atoms outside the aperture
are rigidly (thus artificially) attached to their original position;
any deformation occurs only within the aperture region under
the gas pressure. Under this scheme the nanobubble in the
middle of the ZGNR is the only extended scattering center,
which allows us to isolate the effect of the bubble geometry
and the corresponding PMF on the conductance. We chose
two representative cases of aperture geometry for discussion:
triangular and circular. The triangular aperture is particular
because it begets a PMF that is appreciably uniform within
most of the bubble area, and which does not alternate in sign
within. The circular hole, on the other hand, is used because it
captures most of the qualitative features of the PMF that sets
in for a class of different shapes22 For a meaningful compari-
son, circular and triangular bubbles are chosen with approxi-
mately the same area ≃50 nm2, and centered within the square
simulation cell; specifically, the radius of the circular aperture
is 4 nm and the side length of the triangle is 10.6 nm. In a
second stage, we analyze the conductance traces arising from
the nanobubbles inflated against a h-BN substrate to deter-
mine whether the graphene–substrate interaction perturbs the
conductance traces of the ideal clamped situation.
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2.1. Clamped bubbles

There is one key feature in the quantum transport of these
systems stemming from the presence of the central bubble in
an otherwise perfect GNR and which is independent of the
bubble geometry. Irrespective of the shape, the conductance of
a ZGNR with W ≃ 20 nm of transverse dimension with an
embedded bubble exhibits reproducible dips just at the onset
of a every new conductance plateau. The conductance traces
for circular and triangular nanobubbles are shown in Fig. 2(a)
and (b) for a gas pressure of 19 Kbar, equivalent to a deflection
of 1 nm. The difference in sharpness and depth of these dips,
as well as the roundness of the conductance steps, can be
attributed to the geometry of the bubbles which, together with
the spatial extent and magnitude of the local PMF, contributes
to defining the strength of the scatterer. The weaker the scat-
terer, the narrower the line-shape of the conductance dips will
be.56,57 The red dashed traces in Fig. 2(a) and (b) represent the
conductance of the ideal ZGNR. By direct inspection, we see
that the conductance is generally lowered relative to perfect
quantization, and dips remain sharp for the circular bubble.
The triangular bubble exhibits larger reduction from the quan-
tized value within each plateau, together with broader dips
(notwithstanding, the original plateau structure is still identifi-
able). The spectral fingerprint of the conductance dips is the
appearance of strong and narrow peaks in the DOS of the
ribbons, just below the van Hove singularities (VHS) of the
unpressurised system, as observed in Fig. 2(c) and (d).

Before proceeding further with our analysis we want to
discuss the origin and physics behind the shallow and sharp
features observed right before the onset of the plateaus (in the
conductance) or the VHS (in the DOS). This resonant behavior
is a multimode effect previously observed in quasi-one dimen-
sional systems with impurities,58,59 finite-range local potential
scattering,60,61 and short-range impurity potentials.56,57,62–64 It
can be understood by recalling that in quantum wires electric
current is carried by independent transverse modes. When an
impurity is present an electron incident upon the defect in a
given mode will be scattered into a number of available modes
with the same energy, including evanescent states.56 The tran-
sition probability for this process depends on the density of
final modes and, therefore, by virtue of the high density of eva-
nescent states at the edge of each sub-band (mode), the elec-
tron has a high probability of scattering to an evanescent state,
which is a state predominantly confined within the defect
region, with an energy close to the bottom of the sub-band.56

Of course, the transition rate depends also on the scattering
potential itself, in addition to the density of evanescent states.
As we outlined in the introduction, electrons in graphene per-
ceive non-uniform local changes in the electronic hopping
parameter as a PMF, and it is this non-uniform PMF pattern
created by the inflation of graphene that determines the
strength of the scattering at each nanobubble. The detailed
analysis of the PMF created by the clamped circular and tri-
angular nanobubbles, and other geometries not considered
here, can be found in ref. 22. For our current purposes, Fig. 3(a)
and (b) shows the spatial profile of the PMF in the two geo-
metries considered. We recall briefly that one of the leading
characteristics of the PMF distribution arising from an inflated
nanobubble is an intense magnetic barrier that is narrowly
localized within a few atomic distances from its perimeter.
This results from the large bending and high bond stretching
that occurs at the edge of the apertures. Different geometries
have an impact in the local polarity of the PMF and its magni-
tude and space dependence in the central regions of the
bubble.

The PMF graphs in Fig. 3(a) and (b) show that the circular
bubble has high PMF barriers (∼2000 T) at the perimeter,
followed by a rapid decay towards the center of the bubble.
Triangular bubbles, on the other hand, create PMFs of
magnitude equally large around the perimeter and a roughly
constant field of ∼100 T in the inner central area. Unlike the
behavior in circular bubbles, in triangular nanobubbles the
intensity and polarity of the peripheral barrier remain constant
at all the three edges. Based on the this, we can attribute the
conductance dips observed in Fig. 2 to scattering of propagat-
ing modes into a confined state around the bubble. However,
it remains unclear how the wave function of the confined elec-
tron is distributed under such different strengths and patterns
of PMF created by the bubbles. To clarify this point, let us
inspect the LDOS maps shown in Fig. 3(c) and (d), each taken
at the energy of the conductance dips observed at E = 0.215t0.
We see no fingerprint of a strictly confined state: the shape of
the bubble itself is not even identifiable in either panel and,

Fig. 2 Top rows present the conductance as function of the Fermi
energy, EF, for a ZZ GNR 20 nm wide with an embedded (a) circular and
(b) triangular nanobubble. Bottom rows correspond to the Density of
States (DOS) of the same ZGNR with (c) circular and (d) triangular
bubbles. In all panels the carbon atoms outside the bubble region are
rigidly clamped to the substrate and remain (artificially) undisplaced. The
red dashed lines correspond to the conductance and DOS of a pristine
graphene ribbon with ZZ edges state.
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although the highest values of the LDOS are found within the
bubble region, they are not significantly different from those
outside.

To interpret these maps it is important to note that the
unpressurized conductance of these systems at E = 0.215t0 is
G(0.216t0) = (2e2/h) × 11. From the conductance quantization
sequence of an ideal GNR, G = (2e2/h)(2n + 1),65,66 we conclude
that there are 5 conducting modes in an ideal GNR at the
energy represented in Fig. 3(c) and (d). The inclusion of the
bubbles brings only a small change to this tally, as Fig. 2
shows that the conductance in their presence is, for the most
part, scarcely modified: at E = 0.215t0 one or more channels
are backscattered because G = (2e2/h) × (10.1) for the circle,
and G = (2e2/h) × (9.4) for the triangle. Despite this nominal
suppression by 1 to 2 of the conducting modes, the conduc-
tance is never zero.

A better insight into the extent to which the local PMF
arising from different geometries disrupts the electron flow
can be obtained from the local current density that we have
calculated at each C–C bond as described earlier, and whose
results are presented in Fig. 4. The current map shown in
Fig. 4(a) for the circular bubble reveals current streams where
the current is directed forwards and backwards in an alternat-
ing pattern, signaling electron trapping within and its boun-
cing back and forth by the action of the strong PMF barriers at
the perimeter of the bubble (cf. Fig. 3). Over the central region
of the bubble the current remains predominantly horizontal

by virtue of the negligible PMF inside a circular bubble. These
strong bands decay outside bubble, confirming that this
current pattern is associated with an evanescent mode created
by the bubble through mode mixing. In contrast to the circle,
a triangular bubble sustains a high and constant PMF ∼ 100 T
in the inner central region (cf. Fig. 3). Inspection of the cur-
rent’s spatial distribution in Fig. 4(b) reveals that the PMF
within is seemingly enough to permanently trap a fraction of
the electronic density in closed orbits, as suggested by the
presence of a local eddy of current of at the center of the
bubble. We note that an electron in graphene with energy E =
0.215t0 in a constant magnetic field of 100 T has a magnetic
length ℓB ≈ 2.6 nm and a cyclotron radius of rc = ℓB

2kF ≈
6.8 nm. Since such rc is larger than the bubble, and since
other geometries still display conductance dips despite the
absence of such localized current features, we conclude that

Fig. 4 (Color online) Current density at E = 0.215t0 around the clamped
circular bubble (a) and triangular bubble (b). The red outline marks the
portion of the system corresponding to the bubble region. Each blue
arrow indicates the local current flow, and has a magnitude proportional
to the current at each lattice site.

Fig. 3 Spatial maps of the PMF in the central scattering cell used in the
transport calculations for the representative cases of a circular (a) and a
triangular (b) nanobulge. The PMF calculated according to eqn (5)
includes the hopping perturbations brought in by bond stretching and
bending, as per eqn (2). Normalized local DOS for (c) circular and (d) tri-
angular bubbles at E = 0.215t0.
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those effects are not dominated solely by the PMF but that
bubble geometry and mode mixing are important ingredients.
Finally, note that an electron should have an energy higher
than E ≈ ħvFπ/L to be sensitive to a scatterer of typical size L.
The average radius of the substrate apertures that we con-
sidered is L ≈ 4 nm, which means that only above energies of
E ≈ 0.16t0 should the electrons begin to be noticeably affected
by the presence of the nanobubble. This estimate is quantitat-
ively consistent with the fact that the conductance dips and
DOS peaks, observed in Fig. 2, develop only above this energy
and are not present at lower energies.

2.2. Nanobubbles on hexagonal boron nitride substrate

Whereas the previous section discusses transport in the pres-
ence of a nanobubble, but with the graphene layer rigidly
clamped everywhere except the aperture region, in a realistic
scenario, we must account for the graphene–substrate inter-
action. The pressure-induced bulging of the graphene sheet
through the aperture will be accompanied by its sliding and
stretching in the regions outside the hole. The final strain dis-
tribution will thus be different which, in turn, will lead to
modifications of the PMF barriers. Since the modification of
electronic conductance discussed above stems from these bar-
riers, one should naturally assess how robust they are in a rea-
listic substrate scenario. To answer this question, we explicitly
incorporate the graphene–substrate interaction at the atomistic
level by carrying out MD simulations of triangular and circular
graphene nanobubbles on a h-BN substrate, letting all the
atoms in graphene to relax under the constraint imposed by
the gas pressure. The PMF that obtains in this case is very
similar to that shown previously in Fig. 3(a) and (b). This is, of
course, not surprising given that outside the aperture region
graphene is still being pressed against the rigid BN substrate;
the magnitudes of the fields are, however, smaller, which is a
direct consequence of the in-plane relaxation of the carbon
atoms and the smaller in-plane strain that, consequently, sets
in for the same deflection imposed on the bubble.

The implications of the modified PMF pattern to the con-
ductance can be analyzed in two different energy ranges,
according to whether the electron’s Fermi wavelength, λF =
k/2π, is larger (E < 0.150t0) or smaller (E > 0.150t0) than the
characteristic size of the central nanobubble. In Fig. 5(c) and
(d) we show the conductance of a ZGNR with embedded circu-
lar and triangular bubbles on h-BN; we can see that the con-
ductance traces – specially at low energies – are now richer
than before. Interestingly, there is no marked difference
between the two geometries; at higher energies, the presence
of the bubble translates only into shallower and wider conduc-
tance dips.

One new feature detected in Fig. 5(c) and (d) is the presence
of a resonant peak right at the start of the second plateau at
E ≃ 0.05t0, and which replaces the conductance plateau of the
unstrained system. The dips and resonances in the conduc-
tance are just two particular manifestations of a Fano reso-
nance in the electron’s scattering cross-section30–32 that are

imprinted in the conductance. In simple terms, a Fano reso-
nance is characterized by a transmission probability of the form

TðEÞ / ðεþ qÞ2
ε2 þ 1

; ε ¼ E � Eres ð6Þ

in the neighborhood of E = Eres, where ε is the reduced energy
and q the phenomenological Fano asymmetry parameter
measuring the degree of coupling between a localized (evanes-
cent) state and propagating states.31,67 Whereas in general the
line shape described by eqn (6) has a characteristic asymmetric
profile, if the coupling is strong (|q| → ∞) the shape reduces
to a resonant symmetric peak (Breit–Wigner), while in weak
coupling (|q| → 0) it becomes a dip, or anti-resonance.

To elucidate the origin of the low-energy resonance it is
instructive to inspect the LDOS at that energy, which is shown
in left panels of Fig. 6. The LDOS in the presence of the circu-
lar bubble on h-BN is strongly peaked in the regions between
the top and bottom edges of the aperture and the outer edges
of the ribbon. Such an enhancement of the LDOS at the edges
constitutes a fingerprint of coupling between states.68 For this
energy E ≃ 0.05t0 at the threshold of the 1st to 2nd conduc-
tance plateau, the current is carried by a single mode (one can
notice that G = G0 throughout the 1st plateau) which is
strongly localized around the edges of the nanoribbons
because it is one of the characteristic edge states of a ZGNR.
The LDOS profile in Fig. 6(a) shows the tendency to localize

Fig. 5 (Color online) The top row shows the PMF spatial distribution for
(a) circular and (b) triangular bubbles on h-BN substrate. Bottom rows
show the conductance as a function of EF for ZZ nanoribbons 20 nm
wide placed on h-BN substrate, and containing a: (a) circular nanobubble
and (b) triangular nanobubble. The red lines represent the conductance
of the same geometry bubble in the clamped configuration.
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electrons between the perimeter of the circular bubble and the
ribbon edges, which means that the entire current path
coming from the ZZ edge mode overlaps spatially with the
localized state, leading to a strong-coupling scenario between
the confined and propagating modes. This, of course, is a con-
sequence of the underlying PMF for this case: the considerable
“leakage” of the PMF between the aperture and the outer edge
drives electron confinement in that region of strong field and
promotes the localization of electrons in a region through
which all the current would be passing, thus promoting a
strong coupling that leads to a well-defined resonance. A com-
parison between panels a and c at the same energy for the tri-
angular bubble shows, for the latter, an asymmetric
enhancement of the LDOS in the vicinity of the upper and
lower edges of the ribbon. As a result, the coupling to the pro-
pagating mode will not be as strong, which explains the fact
that the resonance at E ≃ 0.05t0 in Fig. 5(d) is not as sharp as
it is for the circular bubble. In contrast to the conductance reso-
nances, the LDOS snapshots associated with dips are charac-
terized by a strong enhancement in the central area, as can be
seen in panels b and d of Fig. 6 for the conductance dip at E =
0.116t0. For completeness, we show in Fig. 7 the respective
current densities at the E = 0.116t0 dip, which support the pre-
vious interpretation but show that the tendency for current
localization is diminished in comparison with the rigidly
clamped scenario, a consequence of the reduced strain in the
present case.

Finally, we note that the type of graphene lead considered
in computing the conductance has no bearing on the validity
of the discussion and conclusions above. To illustrate this, we
show in Fig. 8 the conductance of the same nanobubbles
obtained with AC graphene nanoribbons as leads. This was
done by connecting metallic AC leads to the vertical sides of
the square system cell. The resulting conductance profiles are
entirely similar to those seen in the ZZ transmission configur-
ation, and the differences observed in the triangular case are
due to the different orientation of the triangle (a 90° rotation)
with respect to the incoming current.

3. Conclusions

Using a combined molecular dynamics – tight-binding simu-
lation scheme we have investigated the electronic transport
properties of graphene nanostructures containing circular and
triangular nanobubbles and under two graphene–substrate

Fig. 6 (Color online) The top row shows the normalized local DOS for a
circular bubble in graphene lying on a h-BN substrate for (a) conduc-
tance peak at E = 0.05t0 and (b) conductance dip at E = 0.116t0. The
bottom row refers to a triangular bubble on h-BN substrate, at (c) the
conductance peak for E = 0.05t0 and (d) the conductance dip seen at
E = 0.116t0.

Fig. 7 (Color online) Current density in the vicinity of the (a) circular
and (b) triangular bulges when graphene lies on h-BN substrate, both at
E = 0.116t0. The red outline marks the portion of the system corres-
ponding to the bubble region.
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adhesion conditions. The local strain that develops within and
near the bubble leads to rich patterns of strong PMF with alter-
nating polarity on length scales of a few nm. The combination
of both a strong field and spatially sharp reversal of its polarity
intuitively suggests a tendency for electron localization at
certain energies. We have determined how this localization
manifests itself in (and impacts) the electronic transport. Ana-
lyses of the LDOS and local current distribution reveal the
microscopic details of this localization process and establish
that low-energy electrons can be confined in the vicinity of or
within the nanobubbles by the interplay of the specific PMF
barrier created by the geometry of the bubble, mode mixing,
and substrate interaction. Interestingly, graphene substrate
interaction – unavoidable in real samples – facilitates the
appearance of confined states at the same time that it deter-
mines their coupling to the propagating ones. At low energies,
the coupling of the evanescent electron states in the vicinity of
the nanobubbles leads to two distinct signatures in the con-
ductance as a function of EF: (i) the appearance of peaks, or
Breit–Wigner resonances, when the evanescent states spread
considerably to the outside of the nanobubble; and (ii) dips, or
anti-resonances, when these states are confined mostly inside
the nanobubble by the back and forth scattering of electrons
between the PMF and, consequently, couple less effectively to
the continuum. We conclude that, even though under realistic
conditions the interaction between graphene and the substrate
is seen to modify the magnitude and spatial profile of the PMF
in relation to an ideal (clamped) scenario,22 there remains a
significant tendency for electron confinement under the
rearranged local strain.
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