

Earth's Energy Balance:

- 1. Types and key properties of energy
- 2. Blackbody radiation revisited and Wein's displacement law
- 3. Transformations of the sun's radiant energy by earth
- 4. Adding up the numbers: the global energy budget

Becoming comfortable with power units:

-How much power does a human give off?

Fable 4 Powers of Continuous Phenomena	
Energy flows	Power
Global intercept of solar radiation	170 PW
Wind-generated waves on the ocean	90 PW
Global gross primary productivity	100 TW
Global Earth heat flow	42 TW
Worldwide fossil fuel combustion	10 TW
Florida Current between Miami and Bimini	20 GW
Large thermal power plant	5GW
Basal metabolism of a 70-kg man	80 W

Note how CH4 absorbs farther to the left than the atmospheric window at 10 um (17°C) (I.e. at hotter temperatures) - how then can it act as a greenhouse gas?

The answer lies in the fact that blackbody radiators radiate over a range of wavelengths – so earth surface radiation, with a peak e.g. at 17°C, also contains a range of other wavelengths, including those that CH4 absorbs.

Characteristic emission spectra from blackbody radiator

Total energy (integral under curve) = $\epsilon \sigma T^4$

This is the Stefan-Boltzmann Law

