

Metastability: Thresholds and Surprises

- 1. Observed climate variability and 'switching'
 - 2. External vs. internal drivers of variability
 - 3. The thermohaline circulation collapse
 - 4. Ice sheet collapse

How can humans cause a collapse of the thermohaline circ?

- 1. Global warming leads to increased arctic/polar melting
- 2. This freshens seawater
- 3. Fresh seawater is more bouyant than salty water
- 4. Disrupts the sinking loop in the N. Atlantic
- 5. Shifts loop to the far south
- 6. N. America and Europe cools drastically as in Younger Dryas.

	An Abrupt Climate Change Scenario and Its Implications for United States National Security
Threshold	By Peter Schwartz and Doug Randall
behavior of the	Commissioned by US Defense Dept. (Pentagon)
	Imagining the Unthinkable
global climatic environment:	The purpose of this report is to imagine the unthinkable – to push the boundaries of current research on climate change so we may better understand the potential implications on United States national security.
Thermohaline	We have interviewed leading climate change scientists, conducted additional research, and reviewed several iterations of the scenario with these experts. The scientists support this project, but caution that the scenario depicted is extreme in two fundamental ways. First, they suggest the occurrences we outline would most likely happen in a few regions, rather than on globally. Second, they say the magnitude of the event may be considerably smaller.
Circulation	We have created a climate change scenario that although not the most likely, is plausible, and would challenge United States national security in ways that should be considered immediately.
Collapse	
	Executive Summary There is substantial evidence to indicate that significant global warming will occur during the 21 st century. Because changes have been gradual so far, and are projected to be similarly gradual in the future, the effects of global warming have the potential to be manageable for most nations. Recent research, however, suggests that there is a possibility that this gradual global warming could lead to a relatively abrupt slowing of the ocean's thermonalme conveyor, which could lead to harsher writer weather conditions, sharpy reduced soil moisture, and more intense winds in certain regions that currently provide a significant fraction of the world's food production. With inadequate preparation, the result could be a significant drop in the human carrying capacity of the Earth's environment. The research suggests that once temperature rises above some threshold, adverse
	weather conditions could develop relatively abruptly, with persistent changes in the atmospheric circulation causing drops in some regions of 5-10 degrees Fahrenbeit in a single decade. Paleoclimatic evidence suggests that altered climatic patterns could last for as much as a century, as they did when the ocean conveyor collapsed 8,200 years ago, or, at the extreme, could last as long as 1,000 years as they did during the Younger Dryas, which began about 12,700 years ago.

Tipping point with ice sheets?:

Greenland, antarctica accumulate ice as temperature warms, but then begin to lose ice more and more rapidly because of temperature increases with decreasing altitude. (10°C/km)

To build ice sheets back up requires much more colder temperatures than to maintain them

MRT = Pool size / Flux Rate

• Amelia Drinking Water

Table 4.1(a): Chemically	reactive greenhous	e gases and th	keir precursor	s: abundances, t	rends, budgets, lifeti	mes. and GWPs.	
Chemical species	Formula	Abundance ^z ppt 1998 1750		Trend ppt/yr * 1990s	Annual emission late 90s	Life- time (yr)	100-yr GWP ^b
Methane	CH4(ppb)	1745	700	7.0	600 Tg	8.4/12°	23
Nitrous oxide	N2O (ppb)	314	270	0.8	16.4 TgN	120/114 ^c	296
Perfluoromethane	CF4	80	40	1.0	~15 Gg	>50000	5700
Perfluoroethane	C_2F_6	3.0	0	0.08	~2 Gg	10000	11900
Sulphur hexafluoride	SF_6	4.2	0	0.24	~6 Gg	3200	22200
HFC-23	CHF3	14	0	0.55	~7 Gg	260	12000
HFC-134a	CF3CH2F	7.5	0	2.0	~25 Gg	13.8	1300
HFC-152a	CH ₃ CHF ₂	0.5	0	0.1	~4 Gg	1.40	120

Perfluourocarbons: almost wholly anthropogenic (aluminum smelting, semiconductors)

Other chemically activ	e gases diretly or i	ndirectly aff	eting radiati	re forcing			
Tropospheric ozone	O3 (DU)	34	25	?	see text	0.01-0.05	-
Tropospheric NO _x	$NO + NO_2$	5.999	7	?	~52 TgN	⊲0.01-0.03	-
Carbon monoxide	CO (ppb) ^d	90	?	6	~2800 Tg	0.08 - 0.25	đ
.	HeO (ppm)	3.6	3.5	?	see text	1-6	-