
DOCTORAL DISSERTATION

THREE ESSAYS ON ENTERPRISE INFORMATION SYSTEM MINING

FOR BUSINESS INTELLIGENCE

A dissertation submitted to the

HEINZ COLLEGE, CARNEGIE MELLON UNIVERSITY

in partial fulfillment for the requirements for the degree of

DOCTORAL OF PHILOSOPHY

in

INFORMATION SYSTEMS

by

Nachiketa Sahoo

ADVISERS

Dr Ramayya Krishnan (Chair)
Dr Jamie Callan

Dr Christos Faloutsos

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

September 24, 2009

Abstract

This dissertation consists of three essays on data mining in the context of enterprise
information system.

The first essay develops a clustering algorithm to discover topic hierarchies in text
document streams. The key property of this method is that it processes each text doc-
uments only once and assigns it to the appropriate place in the topic hierarchy as they
arrive. It is done by making a distributional assumption of the word occurrences and
by storing the sufficient statistics at each topic node. The algorithm is evaluated us-
ing two standard datasets: Reuters newswire data (RCV1) and MEDLINE journal ab-
stracts data (OHSUMED). The results show that by using Katz’s distribution to model
word occurrences we can improve the cluster quality in majority of the cases over
using the Normal distribution assumption that is often used.

The second essay develops a collaborative filter for recommender systems using
ratings by users on multiple aspects of an item. The key challenge in developing this
method was the correlated nature of the component ratings due to Halo effect. This
challenge is overcome by identifying the dependency structure between the compo-
nent ratings using dependency tree search algorithm and modeling for it in a mixture
model. The algorithm is evaluated using a multicomponent rating dataset collected
from Yahoo! Movies. The results show that we can improve the retrieval performance
of the collaborative filter by using multi-component ratings. We also find that when
our goal is to accurately predict the rating of an unseen user-item pair, using multiple
components lead to better performance when the training data is sparse, but, when
there is a more than a certain amount of training data using only one component rat-
ing leads to more accurate rating prediction.

The third essay develops a framework for analyzing conversation taking place at
online social networks. Conversation data is inherently multi-modal. It consists of
text, author, recipient, keywords etc. Therefore matrix based representation is inade-
quate for analyzing such data. This chapter proposes a tensor based framework for
representing such multi-modal data. With the help of blog data collected from a large
IT services firm it shows that by tensor factorization one can identify significant top-
ics of conversation, the trend of the topic over time, and the important actors in each
topic. In addition it also shows that hubs identified by such tensor factorization are
closer to the topic of discussion in their response than hubs identified by other content
free approaches such as performing HITS on just the reply network.

Table of Contents

Abstract 2

Table of Contents 3

List of Tables 5

List of Figures 7

1 Introduction 9

2 Discovering topic hierarchy in document streams 12
2.1 Introduction . 12

2.1.1 Contribution of this research . 13
2.2 Literature review . 14
2.3 Text Documents and word distributions . 23

2.3.1 Models based on Poisson distribution . 24
2.3.2 Katz’s K-mixture model . 25
2.3.3 Fitness comparison . 28

2.4 Algorithms for text . 29
2.4.1 COBWEB: when attribute values follow Katz’s distribution 29
2.4.2 COBWEB: when attribute values follow Negative Binomial distribution . 31

2.5 Cluster Evaluation Methods . 32
2.5.1 Evaluating the clusters . 32
2.5.2 Evaluating the hierarchy . 33

2.6 Experiment setup and results . 35
2.6.1 Reuters-RCV1 . 35
2.6.2 OHSUMED (88-91) . 39

2.7 Conclusion . 43

3 Multi-component Rating Collaborative Filtering 45
3.1 Introduction . 46
3.2 Multi-component rating recommender system 51

3.2.1 Data description and preliminary analysis 51
3.2.2 Modeling component ratings for collaborative filtering 53
3.2.3 Parallels . 55
3.2.4 Model estimation using EM algorithm . 56
3.2.5 Predicting the Overall rating . 61
3.2.6 Instance based approaches . 62

3.3 Results and discussion . 63
3.3.1 Experiments with Random Training Sample 63
3.3.2 Experiments with time ordered data . 70
3.3.3 Filling-in missing component ratings . 72

TABLE OF CONTENTS 4

3.4 Conclusions . 78

4 Socio-temporal analysis of conversations in intra-organizational blogs 81
4.1 Introduction . 81
4.2 Importance of entities in intra-organizational blogs 84

4.2.1 Summary of notations . 86
4.2.2 Importance definition for multi-modal data 86
4.2.3 Blog post developments . 87
4.2.4 Blog conversation development . 89
4.2.5 Comparison with the existing methods 89

4.3 Dataset . 89
4.4 Application of tensor factorization . 91

4.4.1 Data preparation . 91
4.4.2 Illustrative results . 93
4.4.3 Comparison with content independent hub and authority 95
4.4.4 “On topic” quality of the top hubs’ response 101
4.4.5 Community discovery . 102

4.5 Conclusion . 105

5 Conclusion 107

A Document Clustering 110
A.1 MLE of Katz’s distribution parameters . 110

B Multi-component Rating Collaborative Filtering 112
B.1 Derivation of marginal distributions . 112

B.1.1 P (U, I,O) for the model with dependency among the ratings 112
B.1.2 P (U, I,O) for the model with independent component ratings 113
B.1.3 P (U, I,O) for the model with only the overall ratings 113
B.1.4 P (U, I, S,O) from the complete joint distribution 114

B.2 Halo in multi-criteria movie rating . 114
B.2.1 Halo Effect . 114
B.2.2 Halo in movie rating data . 118

References 122

List of Tables

2.1 Likelihood comparison . 30
2.2 RCV1 dataset . 36
2.3 Cluster quality comparison on RCV1 data . 37
2.4 Evaluation of the cluster hierarchy using RCV1 data 39
2.5 OHSUMED dataset (88-91) . 39
2.6 Cluster quality comparison on OHSUMED dataset 41
2.7 Evaluation of the cluster hierarchy using OHSUMED data 42

3.1 Examples of Collaborative Filtering based recommender systems 46
3.2 An example of multi-component rating. Ratings are on a scale of 0 to 4. 51
3.3 Correlation among components of rating . 53
3.4 Principal components . 53
3.5 Factor loadings after quartimax rotation . 53
3.6 Partial correlations controlling for Overall rating 56
3.7 Set of metrics compared . 64
3.8 Increase in dataset size after filling in missing components 74
3.9 Comparison of different methods filling in missing rating components. 75

4.1 Blog data description . 89
4.2 Posts in different communities . 90
4.3 Different communities . 90
4.4 Blog reading counts obtained from the web access logs. The raw data often

contains one person accessing a post multiple times. For some purposes it might
be more meaningful to consider only the unique instances of a person reading
a blog post. 90

4.5 Average number of people who read posts of the most frequent bloggers. Aver-
age over the entire blog dataset is 22 . 91

4.6 Topics of conversation . 92
4.7 Descriptive statistics of the reply network . 93
4.8 Comparison of hubs. 98
4.9 Comparison of authorities. 99
4.10 Reader writer adjacency matrix . 99
4.11 Correlation of authorities identified by HITS and PARAFAC with centralities of

the writers (AR) on the reading network. 100
4.12 Precision recall of community discovery . 105

5.1 Thesis summary . 108

B.1 Correlation among rating components . 118
B.2 Partial correlation given Overall. Ri, Rj ∈ {S,A, V,D} 118
B.3 Eigen values of the correlation matrix . 119
B.4 Eigen values of the partial correlation matrix . 120

LIST OF TABLES 6

B.5 Factor loadings after quartimax rotation . 120
B.6 Principal component analysis of rating components 121

List of Figures

2.1 COBWEB control structure. 19
2.2 COBWEB illustrated . 20
2.3 COBWEB: After first two items are added. 20
2.4 COBWEB: Two partitions of the root cluster. 21
2.5 Merge and split operations illustrated. 22
2.6 Word distribution . 26
2.7 Hierarchical evaluation illustrated . 34
2.8 Three classification hierarchies. 36
2.9 Cluster quality comparison on RCV1 data . 38
2.10 MeSH labels file . 40
2.11 Sibling precision: using 25 and 75 words . 42
2.12 Sibling precision: using 125 and 175 . 43

3.1 Aspect model in Hofmann and Puzicha, 1999. Latent variable nodes are shaded
and observed variable nodes are not shaded. 49

3.2 Flexible Mixture model of Luo Si, Rong Jin, 2003. Latent variable nodes are
shaded and observed variable nodes are not shaded. 49

3.3 log-log plot of frequency of users who have rated a certain number of movies.
logs are calculated with base e. 52

3.4 Extreme ratings are more frequent . 52
3.5 Flexible Mixture model for component rating collaborative filtering 54
3.6 Discovered structure in the sub ratings . 55
3.7 Flexible Mixture Model with component rating dependency structure 57
3.8 Flexible mixture model with independent component ratings 59
3.9 Plot of errors by amount of training data used, for different models. 66
3.10 Precision-Recall curve for Three methods . 68
3.11 Mean precision at top-5 and Mean reciprocal rank 69
3.12 MAE comparison using randomly selected training data, vs., using training

data as they are received. 71
3.13 Three algorithms compared by using data in time order for training 72
3.14 Precision-Recall curves using prior data for training and later data for testing . 73
3.15 Records with partial information . 74
3.16 Error distributions . 76
3.17 Accuracy of collaborative filtering after filling in missing components 76
3.18 Precision recall curves for filled in data . 77

4.1 Tensor representation of the conversation . 85

LIST OF FIGURES 8

4.2 Trends of topics and importance of top bloggers in each topic. Four identified
topics are illustrated. The top-left one is about software testing. The top-right
one is about Indian politics. The bottom-left one is about physical exercise. The
bottom-right one is about new technology companies. The histograms of the
actor importances show different degree of participation of actors in the topic.
For example, the topic of physical exercise can be seen to be driven primarily
by one person. 94

4.3 Trends of topics and importance of topic specific hubs and authorities in each.
The plots from the top-left to bottom-right can be roughly described to be on
topics “Free Linux open source community”, “Cast system in India”, “Mythol-
ogy”, and “Hinduism”. The histogram of source bloggers show the extent to
which the top bloggers have posted in the topic. The histogram of target blog-
gers show the extent to which they are the recipient of messages in the topic—
presumably because of their prior participation in the topic. 96

4.4 Analysis of messages exchanged in the Sports community reveals Cricket and
Soccer topics . 97

4.5 Discussion of file systems and Linux medial players in FLOSS community . . . 97
4.6 Average KL divergences of the top hubs identified by HITS, keyword specific

HITS, and Tensor factorization . 103

CHAPTER 1

Introduction

Mining large scale corporate data to gather business intelligence has become a
part of doing competitive business today. This involves identifying patterns in data,
collected from a variety of sources, which can lead to economic gains. Developing
methods to do so provides strategic advantages. Under these new realities of business
operation this dissertation makes a contribution by developing data mining methods
in three areas of enterprise information systems.

Text documents, such as reports, news articles, emails etc., are one of the most
common forms of information in any organization. They contain data in unstructured
form. The data variables and their values are not as well defined as data gathered from
some other sources such as, data collected from surveys or those recorded from ex-
periments. Therefore, text data presents unique challenges to the analysts. In last two
decades text data mining and information retrieval literature has seen rapid progress.
Some of the topics in the literature include document clustering, classification, doc-
ument indexing and retrieval, natural language processing, etc. However, there are
opportunities for further development in each area especially with relation to their
application in corporate data mining. The first essay focuses on one such important
application. One of the common nature of corporate document databases is that doc-
uments arrive in a streaming manner rather than in batches, e.g., from newswires,
emails, blogs and electronic message boards etc. Given a large collections of docu-
ments one of the task of interest is to automatically identify topics and subtopics that
exist in it (See Section 2.2 for a review). Although, document clustering literature ad-
dresses this task, most of the proposed methods work in a batch manner, i.e., they
wait for certain set of documents to be collected and then process them all together. I
argue in Chapter 2 that batch clustering can be unsatisfactory in an enterprise setting
where the time sensitive nature of decision making requires real time processing of the
documents. I propose an algorithm to identify topic hierarchies in document streams
by processing the documents as they arrive. This algorithm exploits the skewness in
occurrence distribution of a word across documents. I evaluate the proposed algo-
rithm using two large document datasets collected from Reuters news wire and from
MEDLINE medical journals database.

The second essay focuses on mining customer ratings on items to identify promis-
ing customer-item match. This is a task of collaborative filtering based recommender
systems. Such recommender systems are used by many online businesses, such as

10

Amazon and Netflix, to help customers discover interesting items and to target ad-
vertise items in inventory by finding potential customers. There is a large literature in
collaborative filtering (See Section 3.1 for a review). However, they have been mostly
designed to work with unidimensional ratings, e.g. ratings indicating how much a
person likes an item on a scale of 1–5. However, often times there are multiple as-
pects of customer experience that are not captured by one dimensional ratings, e.g.
restaurants can be rated for their food, ambience, service; movies can be rated for the
story, acting, directorial style etc. Collaborative filtering for multi-component rating
data has not been actively researched due to lack of large scale datasets. However, re-
cently Yahoo! movies have started collecting multi-component ratings from its users
on movies they have watched. The users rate each movie indicating how much they
liked its story, acting, visuals, direction, and how much they liked it overall. More
detailed rating data at the matching of user and item should enable better recommen-
dations. Based on this idea I develop one of the first multi-component rating collabo-
rative filtering algorithms. One of the major challenges in this development was that
component ratings are correlated because of Halo effect. I discovered and modeled for
the dependency structure among the component ratings in a probabilistic graphical
models framework. Then I evaluate the proposed algorithm using multi-component
rating data from Yahoo! movies and compare it with existing methods.

The third essay focuses on the emergent phenomenon of online social conversation
occurring at intra-organizational blogs. Such blogs provide the employees media for
expressing themselves and channels for connecting to other bloggers of similar inter-
est. Thus blogs act as a online social network among the employees that is auxiliary
to the traditional social network. However, unlike in the traditional social network
conversations taking place at the online blog social network are easier to monitor and
analyze. Such analysis of blog conversation can enable us to identify experts in dif-
ferent topics and monitor developments of online conversations. There has been a lot
of work in Information Retrieval literature in topic detection and tracking. In social
network analysis methods have been developed for identifying important and influ-
ential actors in a network. The contribution of this essay is an integrated analysis of
the multi-modal blog data that consists of blog authors, post text and timestamps. For
this study we collected data from the internal blogs of a large IT services firm. The
data includes text and timestamps of the posts and the replies by the employee blog-
gers in the firm, along with the employment information of those bloggers. We have
also collected author provided community labels on the posts and user provided tags
indicating the topic of the post. In addition we have also collected data on who is
reading whose blogs and posts along with the timestamp from the webserver logs of
the blog system. This essay starts with a brief study of the influence of different online
and off-line ties on formation of two important ties in the blog social network: citation
and reply. Then it proceeds to develop a framework for analyzing the conversation
in the blogs. It shows that by encoding the actors, the text, and the time stamps of a
conversation in a higher order tensor and performing a factorization we can identify
dominant topics of conversation, important people behind each conversation and how

11

the topics have evolved over time. This work brings together ideas from the text data
mining literature and the social network analysis literature. Initial analysis considers
the ties between bloggers encoded in their replies to each others posts. I propose to
extend the analysis by including reading ties between people which is the basis of
other ties in the blog social network. In addition, number of times a blog is read also
provides a measure of influence of the blog. Therefore, it can shed a different light
on which bloggers are important. The other endeavour of this essay is to evaluate
the results of the tensor factorization in a task based manner. For this evaluation we
use the author provided community labels on the blog posts as “gold standard”. The
hypothesis is that since we take into account the people involved in each conversation
in addition to the text in the conversation, the tensor factorization should enable us to
better identify communities in the posts than if we used only the text in the document
as is done in document clustering for topic discovery. Our initial tests show that it
is indeed the case. The second task based evaluation I propose to do is to compare
the accuracy of communities discovered by tensor factorization with the communities
discovered by graph partitioning methods. The hypothesis here is that by using the
text as the label of the tie between bloggers, we should be able to do a better job of
identifying communities than by using just the network information.

The proposal is organized as follows. Chapter 2 describes the hierarchical topic
discovery in document streams. Chapter 3 describes the multi-component rating col-
laborative filtering. Chapter 4 describes the data collected, tensor factorization meth-
ods developed and results obtained so far in the intra-organizational blog data analy-
sis.

CHAPTER 2

Discovering topic hierarchy in document
streams

Abstract

Incremental hierarchical text document clustering algorithms are impor-
tant in organizing documents generated from streaming on-line sources,
such as, Newswire and Blogs. However, this is a relatively unexplored
area in the text document clustering literature. Popular incremental hierar-
chical clustering algorithms, namely COBWEB and CLASSIT, have not been
applied to text document data. We discuss why, in the current form, these
algorithms are not suitable for text clustering and propose an alternative
formulation for the same. This includes changes to the underlying distri-
butional assumption of the algorithm in order to conform with the empiri-
cal data. Both the original CLASSIT algorithm and our proposed algorithm
are evaluated using Reuters newswire articles and OHSUMED dataset, and
the gain from using a more appropriate distribution is demonstrated.

2.1 Introduction

Document clustering is an effective tool to manage information overload. By group-
ing similar documents together, we enable a human observer to quickly browse large
document collections (Cutting et al. 1992), make it possible to easily grasp the distinct
topics and subtopics (concept hierarchies) in them, allow search engines to efficiently
query large document collections (Liu and Croft 2004) among many other applica-
tions. Hence, it has been widely studied as a part of the broad literature of data clus-
tering. One survey of existing clustering literature can be found in Jain et al(Jain et al.
1999).

The often studied document clustering algorithms are batch clustering algorithms,
which require all the documents to be present at the start of the exercise and clus-
ter the document collection by making multiple iterations over them. But, with the
advent of online publishing in the World Wide Web, the number of documents be-
ing generated everyday has increased considerably. Popular sources of informational
text documents such as Newswire and Blogs are continuous in nature. To organize
such documents naively using existing batch clustering algorithms one might attempt

2.1. INTRODUCTION 13

to perform clustering on the documents collected so far. But, this is extremely time
consuming, if not impossible, due to the sheer volume of documents. One might be
tempted to convert the existing batch clustering algorithms into incremental cluster-
ing algorithms by performing batch clustering on periodically collected small batches
of documents and then merge the generated clusters. However, ignoring for the mo-
ment the problem of deciding on an appropriate time window to collect documents,
there will always be a wait time before a newly generated document can appear in the
cluster hierarchy. This delay would be unacceptable in several important scenarios,
e.g., financial services, where trading decisions depend on breaking news, and quick
access to appropriately classified news documents is important. A clustering algo-
rithm in such a setting needs to process the documents as soon as they arrive. This
calls for the use of an incremental clustering algorithm.

There has been some work in incremental clustering of text documents as a part of
Topic Detection and Tracking initiative (Allan et al. 1998, Yang et al. 1998, Franz et al.
2001, Doddington et al. 2000) to detect a new event from a stream of news articles.
But, the clusters generated by this task are not hierarchical in nature. Although, that
was adequate for the purpose of new event detection, we believe this is a limitation.
The benefits of using a hierarchy of clusters instead of clusters residing at the same
level of granularity is twofold. First, by describing the relationship between groups
of documents one makes it possible to quickly browse to the specific topic of interest.
The second reason is a technical one. Finding the right number of clusters in a set of
documents is an ill-formed problem when one does not know the information needs
of the end user. But, if we present the user with a topic hierarchy populated with doc-
uments, which she can browse at her desired level of specificity, we would circumvent
the problem of finding the right number of clusters while generating a solution that
would satisfy users with different needs.

In spite of potential benefits of an incremental algorithm that can cluster text docu-
ments as they arrive into a informative cluster hierarchy, this is a relatively unexplored
area in text document clustering literature. In this work we examine a well known in-
cremental hierarchical clustering algorithm COBWEB that has been used in non-text
domain and its variant CLASSIT. We discuss why they are not suitable to be directly
applied to text clustering and propose a variant of these algorithm that is based on
the properties of text document data. Then we evaluate both the algorithm using real
world data and show the gains obtained by our proposed algorithm.

2.1.1 Contribution of this research

In this chapter we demonstrate methods to carry out incremental hierarchical cluster-
ing of text documents. Specifically, the contributions of this work are:

1. A COBWEB-based algorithm for text document clustering where word occur-
rence attributes follow Katz’s distribution.

2. Evaluation of the existing algorithms and our proposed algorithm on large real
world document datasets.

2.2. LITERATURE REVIEW 14

In Section 2.2 we briefly review the text clustering literature. In Section 2.3 we describe
key properties of text documents that are central to this work. In Section 2.4 we explain
the contributions of our work. In Section 2.5 we describe the cluster quality metrics
that we have used to evaluate the results obtained. In Section 2.6 we explain the setup
of the experiment and discuss the results. In Section 2.7 we conclude with scope for
future research.

2.2 Literature review

Clustering is a widely studied problem in the Machine Learning literature (Jain et al.
1999). The prevalent clustering algorithms have been categorized in different ways
depending on different criteria, such as hierarchical vs. non-hierarchical, partitional
vs. agglomerative algorithms, deterministic vs. probabilistic algorithms, incremen-
tal vs. batch algorithms, etc. Hierarchical clustering algorithms and non hierarchical
clustering algorithms are categorized based on whether they produce a cluster hier-
archy or a set of clusters all belonging to the same level. Different hierarchical and
non-hierarchical clustering algorithms for text documents have been discussed by
Manning and Schutze(Manning and Schütze 2000). Clustering algorithms can be par-
titional or agglomerative in nature. In a partitional algorithm one starts with one large
cluster containing all the documents in the dataset and divides it into smaller clusters.
On the other hand, an agglomerative clustering algorithm starts with all documents
belonging to their individual clusters and combines the most similar clusters until the
desired number of clusters are obtained. Deterministic clustering algorithms assign
each document to only one cluster, while probabilistic clustering algorithms produce
the probabilities of each item belonging to each cluster. The former is said to make
“hard” assignment while the later is said to make “soft” assignments. Incremental
clustering algorithms make one or very few passes over the entire dataset and they
decide the cluster of an item as they see it. But, the batch clustering algorithms iterate
over the entire dataset many times and gradually change the assignments of the items
to the cluster so that a clustering criterion function is improved. One such criterion
function is the average similarity among documents inside the clusters formed. An-
other criterion function is the average similarity between a document in a cluster and
documents outside the cluster. The first criterion is called average internal similarity
and the second criterion is called average external similarity. In a clustering solution we
would want high average internal similarity, because that would mean that our clus-
ters are composed of similar items. We would also want low average external similar-
ity because that would mean our clusters are dissimilar, i.e., they do not overlap. The
final set of clusters is produced after many iterations when no further improvement
of the cluster assignment is possible.

Clustering to browser large document collections (Scatter/Gather) Cutting et al. is
one of the first to suggest a cluster aided approach, called Scatter/Gather, to browse
large document collections(Cutting et al. 1992). It describes two fast routines named

2.2. LITERATURE REVIEW 15

Buckshot and Fractionation to find the centroids of the clusters to be formed. Then
it assigns the documents in the collection to the nearest centroid and recomputes the
centroids iteratively until very little or no improvement is observed. The last step is
similar to the Simple K-means clustering except that in Simple K-means initially one
randomly assigns k items as centroids of k clusters (Manning and Schütze 2000). Note
that k is a fixed user provided number. Buckshot finds the k centers in the document
datasets by drawing a sample of

√
kn documents and clustering them into k clusters

using an agglomerative hierarchical clustering routine. The agglomerative hierarchi-
cal clustering algorithms have a time complexity of O

(
n2
)
. By drawing a random

sample of size
√
kn, the time complexity is reduced to O(kn). Fractionation, on the

other hand, finds k centroids in the following manner. It divides the set of documents
into buckets of size m, where m > k. Then it clusters each bucket into ρm clusters,
where ρ < 1 and is a constant. Then it repeats the process of partitioning the data and
clustering them treating each of the formed cluster as a one data item, until k clusters
are obtained. Cutting et al. have shown that Fractionation has a time complexity of
O (mn). The center of the clusters formed by the two methods are returned as the
starting points for the Simple K-means clustering routine. With the help of these two
routines they have proposed a cluster aided approach to browse document collections
in which the program presents the user with a set of clusters for the document dataset
(Scatter) along with their descriptive labels. Then the user can select the clusters which
interest her and submit them to the program. The program merges the documents
contained in those clusters (Gather) and clusters them again. This process is repeated
until the user’s information need is met or the user decides to stop the process. The re-
cursive clustering idea proposed in Scatter/Gather can be effective in browsing large
document sets, especially when one does not know enough about the documents to
query a deployed search engine using key words. This concept loosely parallels the
idea of organizing documents into a hierarchy of topics and subtopics, except that the
organization in this case is guided by the user and executed by a clustering routine.
However, Scatter/Gather has its limitations. It is a batch clustering routine, hence
it cannot be used in some important scenarios as described in subsection. Another
limitation that Scatter/Gather shares with many other clustering algorithms is that it
requires the input of k, the number of clusters to present the user. A value of k differ-
ent from the number of subtopics in the collection might lead to meaningless clusters.

Right number of clusters Finding the right number of clusters in a non-hierarchical
clustering exercise is often a difficult problem (Smyth 1996). The approaches sug-
gested in the literature can, in general, be divided into two groups (Chakrabarti 2002).
The first approach is a multi-fold cross validation one with likelihood as the objec-
tive function, in which one fits a series of mixture models with different numbers of
components to a subset of the data called training data and computes the likelihood of
each model given the remaining subset of the data called testing data. The model that
results in the highest likelihood is selected. The second approach also fits a mixture
model to the data and computes the likelihood of the model given the entire dataset

2.2. LITERATURE REVIEW 16

using different number of clusters, but it penalizes a model with a higher number of
clusters for increased complexity. Observe that a higher number of clusters can be
made to fit any dataset better than a lower number of clusters. Hence, by penalizing
a clustering solution for its complexity one can achieve a trade off between fitness, or
likelihood, of the model and its complexity, which is optimized at the right number of
clusters. One such work has been done by Cheeseman and Stutz in their AUTOCLASS

algorithm(Cheeseman and Stutz 1996). Other such works include Bayesian Informa-
tion Criteria and Minimum Descriptor Length criteria (Figueiredo and Jain 2002). A
different approach has been suggested in Liu et al.(Liu and Croft 2004) for clustering
text documents. It uses stability of clustering solutions over multiple runs at each of a
set of cluster counts to decide the right number of clusters for the document dataset.

Even when the “right” number of clusters can be determined by an algorithm
based on some criterion, human observers often differ from each other about the clus-
ters existing in the dataset and what should be the right number of clusters. One alter-
native solution is to generate a hierarchy of clusters, also called a dendrogram, with all
the documents belonging to a single cluster at the top of the hierarchy, each document
in its individual cluster at the lowest level of the hierarchy and intermediate number
of clusters at levels between the two. Thus, the user can look at the desired level in
the hierarchy and find a number of clusters that meets her requirement (Manning and
Schütze 2000, Jain et al. 1999).

Incremental document clustering

As part of Topic Detection and Tracking (TDT) initiative (Allan et al. 1998, Yang et al.
1998, Franz et al. 2001, Doddington et al. 2000) some experiments have been done in
incrementally clustering text documents. The TDT initiative is a DARPA sponsored
project started to study and advance the state of the art in detection and tracking of
new events in stream of news broadcast and intelligence reports. The identified tasks
of TDT are Story Segmentation, Retrospective Topic Detection, On-line New Event
Detection, Topic Tracking and Link Detection. The Story Segmentation task involves
breaking a stream of text or audio data without story delimiters into its constituent
stories. Retrospective topic detection involves detecting new events in the already
collected set of documents. On-line new event detection involves identifying a new
event, e.g., an earthquake or a road accident, in a new document. Tracking involves
keeping track of evolution of an event by assigning the incoming news stories to their
corresponding events. Among these tasks the on-line new event detection task in-
volves incremental clustering. In this task a decision is made, after observing a new
item, whether it belongs to one of the existing clusters, or it belongs to a new cluster
of its own.

The TDT team at the Carnegie Mellon University (CMU) uses a threshold-based
rule to decide whether a new document is another story of one of the detected events
or it belongs to a new event of its own. If the maximum similarity between the new
document and any of the existing clusters is more than a threshold (tc) the new doc-
ument is said to belong to the cluster to which it is most similar and it is merged to

2.2. LITERATURE REVIEW 17

the cluster. If the maximum similarity is less than tc but more than another thresh-
old, tn, then the document is assumed to be an old story but it is not merged to any
cluster. If the maximum similarity is less than tn, then the document is accepted to be
about a new event and a new cluster is formed. They have also investigated adding
a time component to the incremental clustering. In this experiment, similarities of a
new document to each of the past m documents are computed but they are weighted
down linearly depending on how old the past documents are. If the similarity scores
computed in this manner are less than a preset threshold then the new document is
presumed to be about a new event. This work finds that use of time component im-
proves the performance of new event detection task.

TDT team at the University of Massachusetts Amherst (UMASS) takes a variable
thresholding approach to the on line event detection task(Allan et al. 1998). For each
document that initiates a new cluster the top n words are extracted and called a query
vector. The similarity of the query vector to the document from which the query was
extracted defines an upper bound on the threshold required to be met by a docu-
ment to match the query. A time dependent component is also used in the vari-
able threshold that makes it harder for a new documents to match an older query.
When a new document dj is compared to a past query qi the threshold is computed as
0.4 + p× (sim(qi, di)− 0.4) + tp×(j− i), where 0 < p < 1 and tp, a time penalty factor,
are tunable parameters. qi is the query generated from document di. Such threshold
is computed for all existing queries qis. If the similarity of the new document dj does
not exceed any of the thresholds then the document is assigned to a new cluster and
a query is computed for the document, else it is added to the clusters assigned to the
queries it triggers. The newly generated cluster is said to have detected a new news
event.

Outside the TDT initiative, Zhang and Liu in a recent study have proposed a com-
petitive learning algorithm, which is incremental in nature and does not need to be
supplied with the correct number of clusters (Zhang and Liu 2004). The algorithm,
called Self Splitting Competitive Learning, starts with a prototype vector that is a prop-
erty of the only cluster present initially. During the execution of the algorithm the
prototype vector is split and updated to approximate the centroids of the clusters in
the dataset. The update of the property vector is controlled, i.e., when a new data
point is added to the cluster the prototype vector is updated only if the data point is
near enough to the prototype. This determined by another property vector that starts
away from the prototype and zeroes on to it as more and more data points are added.
Time for splitting the cluster associated with the prototype is determined based on
a threshold condition. When there are more than one prototype a new data point is
added to the prototype nearest to it. They have demonstrated their algorithm over text
snippets returned from search engines as a response to a query. However, the success
of this algorithm on datasets with longer text documents is yet to be demonstrated.

Yet another on-line algorithm called frequency sensitive competitive learning has been
proposed and evaluated on text datasets by Banerjee and Ghosh(Banerjee 2003), which
is designed to produce clusters of items of approximately equal sizes. In this work a

2.2. LITERATURE REVIEW 18

version of the K-means clustering algorithm called spherical K-means has been modi-
fied so that the dispersion of the distributions associated with the clusters reduces as
more and more data points are added to them. This makes larger clusters less likely
candidates for a new data point than the smaller clusters. Thus, the algorithm is tai-
lored to produce clusters which are more or less equal in size.

All of these algorithms produce non-hierarchical clustering solutions, which fore-
goes the opportunity to use clustering as an aid to detect topic and subtopic structure
within a large document collection. Also, TDT experiments effectively exploit the in-
formation in the time stamp available with news stories, i.e., assumes that news stories
that describe the same event will occur within a brief span of time. Such information
may not always be available.

Incremental Hierarchical Clustering: Nominal Attributes

Methods have been proposed in the non-text domain to cluster items in an incremen-
tal manner into hierarchies. Most notable among them is the COBWEB algorithm by
Fisher (Fisher 1987) and its derivative CLASSIT (Gennari et al. 1989). COBWEB is an
algorithm to incrementally cluster data points with nominal attributes into cluster
hierarchies. The problem of incremental hierarchical clustering can be defined as fol-
lows:

Problem Definition 1. Given an item with N attributes and an existing cluster hier-
archy of items which the same attributes, how do we assign the item to the cluster in
the cluster tree that maximizes a predefined cluster quality measure.

At the heart of COBWEB is a cluster quality measure called Category Utility.
LetC1, . . . , CK be the child clusters of a clusterCp. The Category Utility ofC1, . . . , CK

is computed as

CUp[C1, . . . , CK] =

∑K
k=1 P (Ck)

∑
i

∑
j [P (Ai = Vij | Ck)2 − P (Ai = Vij | Cp)2]

K
,

(2.1)
where,

P (Ck) =Probability of a document belonging to the parent cluster Cp belongs to
the child cluster Ck.

Ai = The ith attribute of the items being clustered (say A1 ∈ {male, female}, A2 ∈
{Red, Green, Blue}; assumed to be a multinomial variable),

Vij = jth value of the ith attribute (say, V12 indicates “female”),
TheP (Ai = Vij | Ck)2 is the expected number of times we can correctly guess of the

value of multinomial variableAi to be Vij for an item in the cluster k when one follows
a probability matching guessing strategy. For example, if we have a variable that takes
values A, B and C with probabilities 0.3, 0.5 and 0.2, and we randomly predict that the
variable takes value A 0.3 fraction of the time, B 0.5 fraction of the time and C 0.2
fraction of the time, we would be correct in predicting A 0.3 × 0.3 = 0.09 fraction of
the time, B 0.25 fraction of the time and C 0.04 fraction of the time. A good cluster, in

2.2. LITERATURE REVIEW 19

Algorithm CobWeb (Adapted from Fisher’s original work)
function COBWEB(item, root)
Update the attribute value statistics at the root
If root is a leaf node
then
Return the expanded node that accommodates the new object

else
Find the best child of the root to host the item and perform the qualifying step (if any)
among the following:

1. Create a new node for the item instead of adding it to the best host, if that leads
to improved Category Utility.

2. Merge nodes if it leads to improved Category Utility and call COBWEB(item,
Merged Node)

3. Split node if it leads to improved Category Utility and call COBWEB(item, root)

If none of the above steps are performed then
Call COBWEB(item, best child of root)

end if
end if

Figure 2.1: COBWEB control structure.

which the attributes of the items take similar values, will have high P (Ai = Vij |Ck)
values, hence high score of

∑
j P (Ai = Vij | Ck)2. COBWEB maximizes sum of P (Ai =

Vij | Ck)2 scores over all possible assignment of a document to children clusters. When
the algorithm assigns a new item to a child node of the node p, it assigns the item in
such a manner that the total gain in expected number of correct guesses by moving
an item from p to its child node,

∑
i

∑
j [P (Ai = Vij | Ck)2 − P (Ai = Vij | Cp)2],

is maximized. In this manner the algorithm maximizes the utility function for each
node to which a new item is added.

The COBWEB control structure is shown in Fig 2.1.
An illustration of the clustering process is given in Figure 2.2.
Assume that there is only one attribute of interest called t and it takes values in

{A,B,C}. Also assume that we have three items a, b and c with t value A,B andC
respectively. Further assume that the objects are presented in the order specified, i.e.
first a followed by b which is followed by c.

After the first two items are presented the following cluster configuration is ar-
rived without any computation of category utility (First part of Figure 2.2).

C3 is the root cluster andC1 andC2 are two child clusters each containing one item.
P (C1) is the probability that a document randomly picked from its parent cluster of
C1, i.e., C3, belongs to C1. Similarly for C2.

2.2. LITERATURE REVIEW 20

(2)→ (1) =⇒

(3)

(1) (2) Addition of a new item (2) to a leaf node (1)

(104)→

(89)

(34) (67)

(23) (12)

Let (104) be a new item.
(@89) Which node should the new item be added to? (34) or (67)
or should it belong to a cluster of its own next to (34) and (67)?
Use Category Utility comparison as described in Fig 2.1. Let the answer be (67)
(@67) Which node should the new item be added to? (23) or (12)
...

Figure 2.2: COBWEB illustrated

C3 P (C3)= 1
(a and b)t =A, t = B

C1 P (C1)= 0.5

(a)t = A
C2 P (C2)= 0.5

(b)t = B

Figure 2.3: COBWEB: After first two items are added.

Let’s add the third item c to the root node. We can add it at the level of C1 and C2

(level 2) as another cluster C3, or we can add it in C1 or C2 that will delegate the item c
to the third (a new) level. So, our options are (omitting the cwithin (b, c) configuration
that is analogous to the c within (a, c) configuration described below):

At this point Category Utilities of the two configurations let us decide which con-
figuration to choose. Note that we need to compute category utility of the two parti-
tions of the root clusters. They can be computed using expression (2.1) as described
below.

For the first configuration in Figure 2.4 the parent cluster is C3 and the child clus-

2.2. LITERATURE REVIEW 21

C3 P (C3) =1
(a, b and c): t = A, t = B, t =C

C1 P (C1)= 1

3

(a): t = A

C2 P (C2) = 1

3

(b): t =B

C4 P (C4)= 1

3

(c): t = C

or
C3 P (C3)= 1

(a, b and c): t =A, t = B, t = C

C4 P (C4)= 2

3

(a and c): t =A, t = C

C1 P (C1)= 0.5

(a): t = A
C5 P (C5)= 0.5

(c): t =C

C2 P (C2)= 1

3

(b): t = B

Figure 2.4: COBWEB: Two partitions of the root cluster.

ters are C1, C2 and C4. The category utility of this configuration is:

CU1 =

∑
k={1,2,4} P (Ck)

[∑
Ai=t

∑
t={A,B,C} P (t|Ck)2 −

∑
Ai=t

∑
t={A,B,C} P (t|C3)2

]
3

=
1
3

[
1
3

{
12 −

((
1
3

)2

+
(

1
3

)2

+
(

1
3

)2
)}

+
1
3

{
12 −

((
1
3

)2

+
(

1
3

)2

+
(

1
3

)2
)}

+
1
3

{
12 −

((
1
3

)2

+
(

1
3

)2

+
(

1
3

)2
)}]

=
2
9

For the second configuration in Figure 2.4 the parent cluster isC3 and the child clusters
are C4 and C2.

CU2 =

∑
k={4,2} P (Ck)

[∑
Ai=t

∑
t={A,B,C} P (t|Ck)2 −

∑
Ai=t

∑
t={A,B,C} P (t|C3)2

]
2

=
1
2

[
2
3

{((
1
2

)2

+
(

1
2

)2
)
−

((
1
3

)2

+
(

1
3

)2

+
(

1
3

)2
)}

+
1
3

{
12 −

((
1
3

)2

+
(

1
3

)2

+
(

1
3

)2
)}]

=
1
6

2.2. LITERATURE REVIEW 22

1

2 3 4 =⇒

1

2 5

3 4 Merge (merging 3 and 4 into 5)
1

2 3

4 5 =⇒

1

2 4 5 Split (splitting 3 into 4 and 5)

Figure 2.5: Merge and split operations illustrated.

Since, CU1 > CU2 we select configuration 1 over configuration 2. Looking at the
Figure 2.4, it is intuitive to make a new cluster for the third item, because, it has an
attribute value not seen in any of the existing categories.

There is one more possible configuration, where c is added below C2 instead of C1,
but that is symmetrical to the second configuration in Figure 2.4. So, the analysis will
be identical to the one shown in previous paragraph.

Incremental clustering algorithms, such as COBWEB, are sensitive to the order in
which items are presented (Fisher 1987). COBWEB makes use of split and merge oper-
ations to correct this problem. In the merge operation the child nodes with highest
and second highest Category Utility are removed from the original node and made
child nodes of a new node, which takes their place under the parent node. In the split
operation the best node is removed and its child nodes are made children of the par-
ent of the removed node. Merge and split operations are only carried out if they lead
to a better Category Utility than obtainable by either assigning the item to existing
best node or to a new cluster of its own. By using these two operators, the algorithm
remains flexible on the face of change in property of data items in the subsequent
observations.

Incremental Hierarchical Clustering: Numerical Attributes

We now consider an extension of the COBWEB from nominal attributes to numer-
ical attributes. Gennari et al.(Gennari et al. 1989) has shown that in order to use COB-
WEB for data items with numeric, rather than nominal, attribute values we need to
make some assumption about the distribution of attribute values. When the values of
each attribute follow a normal distribution, they have shown that the Category Utility
function can be written as

CUp[C1, . . . , Ck] =

∑
k P (Ck)

∑
i

(
1
σik
− 1

σip

)
K

where,
σip = standard deviation of the value of the attribute i in parent node p, and

2.3. TEXT DOCUMENTS AND WORD DISTRIBUTIONS 23

σik = standard deviation of the value of the attribute i in the child node k.

This algorithm is known as the CLASSIT algorithm.

We have not seen any prior application of either of these algorithms to text cluster-
ing. Hence, their performance on text document data is uncertain at the time of this
work. Further, word occurrence counts, attributes of text documents that are com-
monly used to represent a document, follow a skewed distribution—unlike the Nor-
mal distribution (Figure 2.6). Also, Normal distribution assumes that the attributes are
Real numbers, but, word occurrence counts are Nonnegative Integers. They can not be
treated as nominal attributes either, because the occurrence counts are not contained
in a bounded set, which one would have to assume while treating them as nominal
attributes. A more suitable distribution for such count data is Negative Binomial, or
Katz’s distribution (Katz 1996).

Our work proposes to improve upon the original COBWEB algorithm using distri-
butional assumptions that are more appropriate for word count data.

2.3 Text Documents and word distributions

Text, as we commonly know it, is available in the form of unstructured documents.
Before we can use such documents for classification or clustering, we need to convert
them to items with attributes and values. A popular way of converting the document
to such a form is to use the words1 in a document as attributes and the number of
times the word occurs in the document, or some function of it, as the value of the
attribute. This is called the “Bag of Words” approach. One consequence of using such
a method to convert documents to an actionable form is that one foregoes information
contained in the order of the word. Despite this drawback, the bag-of-words approach
is one of the most successful and widely used method of converting text documents
into actionable form.

Several attempts has been made to characterize the distribution of words across
documents. This is useful in judging the information content of a word. For instance
a word that occurs uniformly in every document of the corpus, e.g., “the” is not as
informative as a word that occurs frequently in only a few, e.g., “Zipf”.

Occurrence statistics of a word in a document can be used along with the informa-
tion content of the word to infer the topic of the document and cluster documents of
similar topic into same group—as is done in this work. Manning and Schutze have
discussed several models to characterize the occurrence of words across different doc-
uments (Manning and Schütze 2000).

1Through out this chapter we shall use word and term interchangeably to refer to the same thing, i.e.,
a contiguous sequence of alphanumeric characters delimited by non-alphanumeric character(s). E.g. the
first word or term in this footnote is “Through”.

2.3. TEXT DOCUMENTS AND WORD DISTRIBUTIONS 24

2.3.1 Models based on Poisson distribution

Poisson

The Poisson distribution has been used to model number of times a word occurs in a
document. The probability of a word occurring k times in a document is given by

P (k) =
λke−λ

k!
(2.2)

where, λ is a rate parameter. However, from empirical observations, it has been found
that Poisson distribution tends to over estimate the frequency of informative words
(content words) (Manning and Schütze 2000).

Two Poisson Model

There have been attempts to characterize the occurrence of a word across documents
using a mixture of Poisson distributions. One such attempts uses two Poisson distri-
butions to model the probability of a word occurring a certain number of times in a
document. One of the distributions captures the rate of the word occurrence when the
word occurs because it is topically relevant to the document. The second distribution
captures the rate of the word occurrence when the word occurs without being topi-
cally relevant to the document. This mixture of two probability distributions has the
probability density function:

P (k) = α
λk1e
−λ1

k!
+ (1− α)

λk2e
−λ2

k!
(2.3)

where, α is the probability of the word being topically relevant and 1− α is the prob-
ability of the word being topically unrelated to the document.

It has been empirically observed that, although the two Poisson model fits the
data better than single Poisson model(Bookstein and Swanson 1975), a spurious drop
is seen for the probability of a word occurring twice in a document(Katz 1996). The
fitted distribution has lower probability for a word occurring twice in a document than
it occurring three times, i.e., it predicts that there are fewer documents that contain a
word twice than there are documents that contain the same word three times. But,
empirically it has been observed that document count monotonically decreases for
increasing number of occurrences of a word (see Figure 2.6).

Negative Binomial

A proposed solution to the above problem is to use a mixture of more than two Poisson
distributions to model the word occurrences. A natural extension of this idea is to use
a Negative Binomial distribution, which is a gamma mixture of infinite number of
Poisson distributions(Frederick Mosteller 1983). The probability density functions of
a Negative Binomial distribution is given below,

P (k) =
(
k + r − 1
r − 1

)
pr(1− p)k, (2.4)

2.3. TEXT DOCUMENTS AND WORD DISTRIBUTIONS 25

where p and r are parameters of the distributions.
Although the Negative Binomial distribution fits the word occurrence data very

well it can be hard to work with because it often involves computing a large number
of coefficients(Manning and Schütze 2000). This has been confirmed in our analysis
(see Expressions (2.28) and (2.29) in Section 2.4.2).

Zero inflated Poisson

When we observe the word occurrence counts in documents, we find that most words
occurs in only a few documents in the corpus. So, for most of the words, the count
of documents where they occur zero times is very large (see Figure 2.6). Looking
at the shape of the empirical probability density function we attempt to model the
occurrence counts using a Zero Inflated Poisson distribution, which assigns a large
probability mass at the variable value 0 and distributes the remaining probability mass
over rest of the occurrence counts according to a Poisson distribution.

The probability density function of Zero Inflated Poisson distribution is given by

P (k) = (1− α)δk + α
λkeλ

λ!
, k = 0, 1, 2 . . . (2.5)

where,

δk =
{

1, iffk = 0
0, otherwise

As we shall demonstrate in Section 2.3.3, this distribution does not fit text data as well
as the Negative Binomial or the Katz’s distribution.

2.3.2 Katz’s K-mixture model

This distribution, proposed by Katz(Katz 1996), although simple to work with, has
been shown to model the occurrences of words in the documents better than many
other distributions such as Poisson and Two Poisson, and about as well as the more
complex Negative Binomial distribution(Manning and Schütze 2000). Katz’s distri-
bution assigns the following probability to the event that word i occurs k times in a
document2.

P (k) = (1− α)δk +
α

β + 1

(
β

β + 1

)k
(2.6)

δk = 1 iffk = 0 and 0 otherwise .
The MLE estimates of parameters α and β are:

β =
cf −df

df
(2.7)

2In this section we shall discuss the case of one word, the ith word. Hence, we shall drop the subscript
i from the equations and expressions.

2.3. TEXT DOCUMENTS AND WORD DISTRIBUTIONS 26

result

frequency

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 2.6: The occurrence of a typical word (“result”) across different documents in
our test collection.

2.3. TEXT DOCUMENTS AND WORD DISTRIBUTIONS 27

α =
1
β
× cf
N

(2.8)

cf = collection frequency = number of times word i occurred in the document collection
obtained by adding up the times the word occurred in each document. Here, a collec-
tion can be whatever we deem our universe of documents to be. It can be the entire
corpus of documents or a subset of it.

df = document frequency = number of documents in the entire collection that contain
the word i.

From (2.6) it follows that

P (0) = 1− α+
α

β + 1

= 1− df
N

(2.9)

= 1− Pr (the word occurs in a document)
= Pr(the word does not occur in a document)

Also, it follows that

P (k) =
α

β + 1

(
β

β + 1

)k
, k = 1, 2, . . . (2.10)

Substituting p for β
β+1 , we have

P (k) = α(1− p)pk (2.11)

Let’s define a parameter p0 as
p0 = P (0) (2.12)

using (2.7) we find that

p =
cf − df

df
cf
df

=
cf −df

cf
(2.13)

=
Pr(the word repeats in a document)
Pr(the word occurs in a document)

=
Pr (the word repeats

⋂
the word occurs)

Pr(the word occurs)
= Pr (the word repeats — the word occurs)

Hence, 1−p can be interpreted as the probability of the word occurring only once. Or,
it can be thought of as a scaling factor used to make (2.11) and (2.12) together a valid
probability density function.

2.3. TEXT DOCUMENTS AND WORD DISTRIBUTIONS 28

We can write Expression (2.6) for k = 0, using p as

P (0) = (1− α) + α(1− p)
= 1− α+ α− αp

Hence, α in terms of p0 and p is

p0 = 1− αp
⇒ αp = 1− p0

⇒ α =
1− p0

p
(2.14)

Expression (2.11) can now be written as

P (k) = (1− p0) (1− p) pk−1 (2.15)

when k > 0.
Using Expressions (2.12) and (2.15), we can fully specify the Katz’s distribution.

The two parameters are p0 and p, which can be estimated as (see Expressions 2.9 and
2.13)

p̂0 = 1− df
N

(2.16)

and

p̂ =
cf −df

cf
(2.17)

It can be shown that if a distribution is defined by Expressions (2.12) and (2.15), then
the estimates (2.16) and (2.17) are the MLE of the parameters p0 and p (see Appendix
A.1).

2.3.3 Fitness comparison

We estimated the parameters of Zero Inflated Poisson and Negative Binomial using
the method of moment, and parameters for Katz’s distribution using the Maximum
Likelihood Estimate (MLE) method. The reason for using the method of moments and
not the MLE is that for the Negative Binomial and the Zero Inflated Poisson distribu-
tions the MLE can only be found numerically, which is computationally complex for
our task of incremental clustering. One can still use numerical methods to determine
MLEs of the parameters of the distribution, which admittedly have better properties,
if one is willing to pay the cost in terms of delay. In this work we shall limit ourselves
to the estimates that have closed form expressions and can be computed efficiently,
because our goal is to carry out the incremental document clustering in real time.

2.4. ALGORITHMS FOR TEXT 29

Zero Inflated Poisson

If the probability density function of a Zero Inflated Poisson distribution is given in
the form of Expression (2.5), then the method of moment estimates of its parameters
α and λ are

λ̂ =
Var(X)
X

+X − 1 (2.18)

and

α̂ =
X

λ
(2.19)

Negative Binomial

For the Negative Binomial distribution, parameters p and r can be estimated as

r̂ =
X̄2

Var(X)− X̄
(2.20)

p̂ =
X̄

Var(X)
(2.21)

For the Katz’s distribution we used Expressions (2.16) and (2.17) to estimate the pa-
rameters p0 and p.

We evaluated the fitness of these three distributions by computing the probabilities
of the word occurrences using the estimated parameters, on three different datasets.
For each dataset we selected the top 100 terms by their cf × log(N/df) score. The dis-
tribution that has a higher likelihood than another can be considered a better fit to
the data. For each term a pairwise comparison of fitness of different distributions is
carried out in this manner. The results are shown in the form of three dominance ma-
trices in Table 2.1. Each cell records the number of terms for which distribution for the
row has 10% or higher likelihood than the distribution for the column.

It can be observed from the table that Katz’s distribution, is not only easier to work
with as we will see in Section 2.4, it also fits better than Zero Inflated Poisson (ZIP)
and gives fitness comparable to Negative Binomial (NB) distribution.

2.4 Algorithms for text

2.4.1 COBWEB: when attribute values follow Katz’s distribution

Category utility

Using words as attributes, we can derive the Category Utility function assuming that
word occurrences follow Katz’s distribution. For reference, the Category Utility for-
mula as given in COBWEB is

1
K

∑
k

P (Ck)

∑
i

∑
j

(
P (Ai = Vi,j |Ck)2 − P (Ai = Vi,j |Cp)2

)

2.4. ALGORITHMS FOR TEXT 30

dataset dominance table

classic

NB Katz’s ZIP
NB 0 55 92

Katz’s 41 0 96
ZIP 7 4 0

tr41

NB Katz’s ZIP
NB 0 41 98

Katz’s 58 0 98
ZIP 2 2 0

k1a

NB Katz’s ZIP
NB 0 63 98

Katz’s 35 0 98
ZIP 2 2 0

Table 2.1: Likelihood comparisons, count of likelihood of row distribution > likeli-
hood of col distribution×1.1

Notice that for each attribute indexed i we need to compute∑
j

(
P (Ai = Vi,j |Ck)2 − P (Ai = Vi,j |Cp)2

)
(2.22)

where, j is an index of value of the attribute i. In this case Vi,j would take values 0, 1,
2 ... because we are working with count data.

Hence, the first part of Expression (2.22) can be written as

CUi,k =
∞∑
f=0

P (Ai = f |Ck)2 (2.23)

Let’s use CUi,k to refer to the contribution of the attribute i towards the Category Utility
of the cluster k.

Substituting Expressions (2.12) and (2.15) in Expression (2.23), we obtain

CUi,k =
∞∑
f=0

P (Ai = f |Ck)2 =
1− 2p0(1− p0)− p(1− 2p0)

1 + p
(2.24)

Substituting estimates of p0 and p from Expressions (2.16) and (2.17) in Expression
(2.24), and simplifying, we get

CUi,k =
∞∑
f=0

P (Ai = f |Ck)2 = 1−
2× df

(
N − cf × df

2×cf − df

)
N2

(2.25)

where, df , cf , and N are counted in the category k.

2.4. ALGORITHMS FOR TEXT 31

Expression (2.25) specifies how to calculate the Category Utility contribution of an
attribute in a category. Hence, the Category Utility of the CLASSIT algorithm, when the
distribution of attributes follows Katz’s model, is given by

CUp =
1
K

∑
k

P (Ck)

[∑
i

CUi,k−
∑
i

CUi,p

]
(2.26)

where, CUi,k is given by Expression (2.25).

2.4.2 COBWEB: when attribute values follow Negative Binomial distribu-
tion

The probability density function of the Negative Binomial distribution is

P (x) =
(
x+ r − 1
r − 1

)
pr(1− p)x (2.27)

p and r are the parameters of the distribution, which are to be estimated from the data.

Category utility

Substituting Expression (2.27) in (2.23), we obtain the contribution of a word in a child
cluster towards Category Utility

CUi,k =
∞∑
x=0

(
(x+ r − 1)!
x!(r − 1)!

pr(1− p)x−1

)2

(2.28)

This expression cannot be reduced to any simpler form, although, it can be written
using a hyper-geometric function in the following manner.

CUi,k =
p2r
2 F1

(
r, r, 1, (1− p)2

)
(1− p)2

(2.29)

One can use a library, such as the one available with Mathematica, to numerically
evaluate 2F1(r, r, 1, (1 − p)2). In our experience this computation is three orders of
magnitudes more resource intensive than computing (2.25), the equivalent expression
for Katz’s distribution. As we described in Section 2.3.3, in this work we shall limit
ourselves to the methods that will let us carry out incremental clustering in real time,
i.e., in the time available between arrival of two documents.

For this reason and the reasons cited in Section 2.3.1 and 2.3.3, we shall fully ex-
plore only Katz’s distribution and original CLASSIT algorithm based on Normal dis-
tribution in our work.

2.5. CLUSTER EVALUATION METHODS 32

2.5 Cluster Evaluation Methods

2.5.1 Evaluating the clusters

One commonly used cluster quality measure is the purity of clustering solution. Pu-
rity of a cluster is defined as

pk =
maxc{CFk(c)}

Nk
(2.30)

where,

- c is the index of classes

– class is a pre-specified group of items

- k is the index of clusters

– cluster is an algorithm generated group of items

CFk(c) = number of items from class c occurring in cluster k. Or, the frequency of class
c in cluster k.

Nk = number of items in class k.
Purity of the entire collection of clusters can be found by taking the average of the

cluster qualities. Here, there are two kinds of averages one might consider: weighted
or unweighted. If we assign a weight to each cluster proportional to the size of the
cluster and take the weighted average then it is called micro average, since each of the
documents get equal weight. If we instead want to give equal weight to each cluster,
we compute the arithmetic average instead. This is called macro average. The first one
is a document level evaluation, while the second one is a cluster level evaluation. Both
these purity are greater than 0 and less than 1.

The drawback of relying only on purity to evaluate the quality of a set of clusters,
becomes apparent in hierarchical clustering. When we collect clusters occurring at
or near the lowest level of the hierarchy, we get clusters with very few documents in
them. Hence, we obtain clusters with high purity score. In the limit, at the lowest
level there are N clusters each containing only one item. Hence, maxc{CFk(c)} is
1 for each k ∈ {1, . . . , N} resulting in purity score of 1. We get larger clusters at a
higher level in the hierarchy, which are more likely to contain documents belonging
to different classes, leading to a lower purity score. This illustrates how purity score
can be misleading when the number of clusters formed is different than the number
of classes in the dataset. If we make more number of clusters than there are in the
dataset we bias the purity score up. If we make less number of clusters than there are
in the dataset we bias the purity score down.

To correct this problem, we define another score of the clustering solution in the
following manner.

rc =
maxk{CFk(c)}

Nc

2.5. CLUSTER EVALUATION METHODS 33

where,Nc is the size of the class c. The other variables are as defined for the expression
of the purity score in Expression (2.30). Here, also we can compute the micro average
or the macro average to compute the score for the entire solution.

This is a purity computation with the clustering solution treated as the true classes
of the data items and the human generated clusters as the solutions to be evaluated.
Using this measure we evaluate how well the “true” classes in the datasets are repre-
sented in the clusters formed.

These metrics, pk and rc, have interpretations that parallel the precision and recall
metrics, respectively, in information retrieval literature. Precision is the fraction of the
retrieved documents that are relevant. Our pk has the precision interpretation when
we think of a cluster to retrieve documents from the class to which majority of its
elements belong. On the other hand recall is the fraction of all the relevant documents
that are retrieved. In the framework we described for pk, our metric rc has the recall
interpretation.

Taking a cue from the F measure commonly used in IR literature to combine preci-
sion and recall, we computed the F score as the harmonic mean of the PandR values:

1
F

=
1
2

(
1
P

+
1
R

)
(2.31)

The F score is the metric by which we shall measure the quality of our clusters.

2.5.2 Evaluating the hierarchy

Another question of interest when evaluating a hierarchical clustering algorithm is
“To what extent the generated cluster hierarchy agree with the class hierarchy present
in the data?”. As we shall describe in Section 2.6, the datasets we have used in our
experiments have a hierarchy of classes and provide us a rare opportunity to evaluate
our generated cluster hierarchy for correctness. As a reminder, a class is a document
category that has been provided to us as a part of the dataset. It is what the docu-
ments have been labeled with by an external entity and help us in evaluating how
good our algorithm is. On the other hand, a cluster is a grouping of documents that
our algorithm generates. It does so by grouping together the documents it considers
similar.

Matching the generated cluster hierarchy with the existing class hierarchy is a non-
trivial task. In stead, in this work we focus on measuring how often the sibling clusters
in the generated hierarchy have sibling classes, i.e, how often children clusters of a
parent cluster have children classes of the class that is assigned to the parent cluster.
For instance, consider the generated cluster subtree shown in Figure 2.7.

In this case we have already determined the classes of child clusters3. To be able to
measure if they are filed under the correct class, we need to find the class of the parent
cluster. To do this we tabulate the parent classes of the child clusters and assign the

3At the lowest level each cluster has only one document and its class can be read from the data
directly.

2.5. CLUSTER EVALUATION METHODS 34

K0

K1(C1.1) K2(C1.2) K3(C2.1) K4(C1.1.3)

Parent class frequency
C1 2
C2 1
C1.1 1

K0(C1)

K1(C1) K2(C1) K3(C2) K4(C1.1)

Figure 2.7: A sample subtree with the children nodes. Class labels of the children node
are given in parenthesis.

most frequent parent class to the parent cluster K0. So, in this case the parent cluster
K0 gets the label C1. Then we evaluate this cluster configuration as if K0 is merely a
cluster of four other smaller entities, each of which has a class label same as the parent
class of what they really have. This is equivalent of saying that as long as the children
clusters of K0 have children classes of the class of K0, i.e., C1 in this case, they are
correct. Clusters with all other class labels that occur under that parent cluster are
incorrect classifications by the algorithm. They should have been somewhere else.

So, in the above example the precision of K0 would be 2
4 = 0.5. We compute this

precision for all the internal nodes of the cluster tree and take their average (both micro
average and macro average) to compute the overall precision of the hierarchy. This
gives us a measure of how much the generated cluster hierarchy agree with the class
hierarchy present in the data. We call it sibling precision score of the cluster hierarchy.

We needed to make a few decisions while evaluating the hierarchy in this man-
ner. For instance, we used only the internal nodes to compute the precision of any
node. This is because, often times leaf nodes co-exist with internal nodes as children
of another internal node. In this case if we compute precision based on leaf nodes,
i.e., single documents, then we are mixing the precision of the kind we described in
Section 2.5.1 with the precision of the hierarchy and it is not clear how we should
interpret the resulting number. Another decision that needed to be made was, what
should we do if a child cluster has the broadest class label assigned to it? Since, we
can not find a parent class for these classes, we explored the possibility of

1. dropping such child clusters from our evaluation and

2. treating them as their own parent cluster since, they are the broadest level classes.

2.6. EXPERIMENT SETUP AND RESULTS 35

In our experiments the results do not change much if we take either of these strategy.
So, we shall report only the results we got by treating the broadest classes as their own
parent classes.

2.6 Experiment setup and results

We evaluate our algorithm over two text document collections, i.e., Reuters-RCV1
and OHSUMED (88-91). These datasets were picked because of the presence of human
labeled hierarchical class labels and reasonably large number of documents in them.
They are described in more detail in the following section.

2.6.1 Reuters-RCV1

Incremental clustering algorithms process the data points only once and in the order
in which they are presented and the order in which data points are present in the
dataset influences the clusters produced4. Therefore, it is imperative that we test the
incremental clustering algorithms with an ordering of data points that is similar to the
what they are expected to receive during their deployment. As we envision the two al-
gorithms in this work to be used to process streams of text documents from newswire,
newsgroups, Blogs, etc., the natural ordering among the documents is determined by
the time at which they are received. Therefore, we need a document dataset in which
the time order of the documents is preserved. Reuters-RCV1(Lewis et al. 2004) is one
such dataset.

Reuters-RCV1 dataset is a collection of over 800,000 English newswire articles col-
lected from Reuters over a period of one year(20th Aug 1996 to 19th Aug 1997). These
documents have been classified by editors at Reuters simultaneously under three cat-
egory hierarchies: “Topic” hierarchy, “Industry” hierarchy and “Region” hierarchy.
The Topic hierarchy contains four categories at the depth one of the tree, namely “Cor-
porate/Industrial”, “Economics”, “Government/Social” and “Market”. There are ten
such categories in the Industry hierarchy. Some of them are “Metals and Minerals”,
“Construction”, etc. The Region hierarchy has geographical locations, such as country
names, and economic/political groups as categories. There are no finer sub-categories
in the Region hierarchy.

The classification policy, also called The Coding Policy, requires that each docu-
ment must have at least one Topic category and at least one Region category assigned
to it. It also requires that each document be assigned to the most specific possible
subcategory in a classification hierarchy. A document might be, and often is, assigned
more than one categories from any one of the three category hierarchies. The docu-
ments are present in the dataset in the order in time in which they were collected.

4However, the ideal incremental clustering algorithm is expected to be insensitive to the order in
which it encounters the data points. Such, characteristic is partly achieved by the COBWEB algorithm by
its split and merge operators.

2.6. EXPERIMENT SETUP AND RESULTS 36

TopicRoot

Corporate/Industrial Economics Government/Social Market

Region Root

MEX USA UK INDIA

Figure 2.8: Three classification hierarchies.

number of documents 62935
number of unique words 93792
average document length 222

number of classes 259

Table 2.2: RCV1 dataset (First 30 days). Classes are the region classes

Evaluating clusters

Experiment setup For our experiments articles from the first 30 days of the Reuters-
RCV1 dataset were used. There were 62935 articles. Stop words were removed from
the documents and the terms were stemmed. Then the most informative terms were
selected by their cf × log (N/df) scores to represent the documents. We repeated the
experiments using 100 to 800 terms at step size of 100.

We have evaluated the clustering solutions for the correctness of assignment of
documents to the clusters using the region categories, because (i) in the region class
hierarchy all the assigned classes belong to one level and (ii) fewer articles are assigned
multiple region class labels than they are assigned other class labels, suggesting that
the region classes in the dataset do not overlap a lot. This allows us to evaluate out
algorithm on a dataset with well defined classes. There were 259 region categories
present in the selected documents. So, we have extracted 259 clusters from the den-
drogram constructed by the clustering algorithms and measured their quality using
the Region categories of the documents.

Results and Discussion The results of the clustering exercise is given in Table 2.3.
We can see that Katz’s distribution based CLASSIT algorithm dominates Normal dis-
tribution based CLASSIT algorithm across varying vocabulary sizes in both the micro
and macro average of F scores.

As we can see Katz based CLASSIT algorithm consistently performs better than
the Normal based CLASSIT algorithm on this dataset. However, we are cautious in
interpreting the micro averaged-F score. Both of these algorithms produce clusters of
widely different sizes, i.e., a few big clusters, a few more clusters of intermediate size
and a lot of smaller clusters. The micro-averaged F score, is affected by it. Because,
performance over a few good clusters dominates the entire performance metric. This

2.6. EXPERIMENT SETUP AND RESULTS 37

V

100
K N

micro 0.46 0.31
macro 0.83 0.60

200
K N

micro 0.45 0.43
macro 0.81 0.74

300
K N

micro 0.45 0.33
macro 0.85 0.67

400
K N

micro 0.45 0.42
macro 0.79 0.74

500
K N

micro 0.45 0.36
macro 0.84 0.69

600
K N

micro 0.45 0.42
macro 0.82 0.76

700
K N

micro 0.45 0.39
macro 0.81 0.74

800
K N

micro 0.45 0.30
macro 0.83 0.61

Table 2.3: Cluster quality comparison on RCV1 data

2.6. EXPERIMENT SETUP AND RESULTS 38

Vocabulary size Vocabulary size

M
ic

ro
 a

v
e
ra

g
e
 o

f
F
 s

c
o
re

M
a
c
ro

 a
v
e
ra

g
e
 o

f
F
-s

c
o
re

Figure 2.9: Cluster quality comparison on RCV1 data. The left panel shows the micro
average of F-score and the right panel shows the macro average of the F-score.

explains the flat nature of the plot of micro averaged F score with Katz based CLAS-
SIT. The larger of the clusters generated by the algorithm do not change much over
different vocabulary sizes, so, the micro-averaged F score remains nearly constant.
Therefore, we also compute the macro-averaged F score, where each cluster gets equal
weight, and find that Katz based CLASSIT performs better than Normal based CLAS-
SIT over a wide range of vocabulary sizes.

Evaluating hierarchy

We evaluate the generated cluster hierarchy using the topic hierarchy of classes5 as our
reference. There are 63 different topic codes in the documents we used, where as in
the entire topic hierarchy there are 103 topic codes.

We pre-processed the documents using the steps described in the previous sec-
tion. Evaluated the accuracy of the parent/child cluster configurations as described
in Section 2.5.2. The results are given in Table 2.4.

The values in the table cells are the average sibling precision of internal nodes of
the cluster hierarchy. As we can see there is no clear winner in this case, although,
both the algorithms do reasonably well in assigning sibling classes under the same
cluster. However, we must be careful to interpret these values as the correctness of the
sibling classes getting grouped together and not as recovering all of the original class
hierarchy.

5This can be obtained from (Lewis et al. 2004) Appendix 2.

2.6. EXPERIMENT SETUP AND RESULTS 39

V Normal Katz Normal Katz
Macro avg Macro avg Micro avg Micro avg

100 0.925 0.956 0.814 0.959
200 0.924 0.935 0.797 0.943
300 0.926 0.874 0.825 0.871
400 0.92 0.866 0.814 0.789
500 0.918 0.896 0.812 0.871
600 0.922 0.841 0.814 0.989
700 0.929 0.836 0.846 0.653
800 0.918 0.855 0.832 0.718

Table 2.4: Evaluation of the cluster hierarchy using RCV1 data

number of documents 196555
number of unique words 16133
average document length 167

number of classes 14138

Table 2.5: OHSUMED dataset (88-91)

2.6.2 OHSUMED (88-91)

The OHSUMED test collection is a set of 348,566 abstracts collected from 270 medical
journals over a period of 5 years. Each abstract is annotated with MeSH (Medical
Subject Heading) labels by human observers. This indicates the topic of the abstract.
Unlike the RCV1 dataset, these documents are not in temporal order. Another property
of this dataset is, being from a specific subject area, they contain words from a much
smaller vocabulary. Due to the presence of human assigned MeSH keywords over
such a large collection, this dataset provides us with an opportunity to evaluate our
algorithm over a large dataset and against real topic labels.

Evaluating clusters

Experiment Setup We used the Ohsumed 88-91 dataset from the TREC-9 filtering
track to evaluate our algorithm for the correctness of assignment of documents to
the classes. We selected only those articles for which both the MeSH labels and the
abstract text were present. There were 196,555 such articles. As with the RCV1 dataset
most informative words in the dataset were selected using cf × log

(
N
df

)
score of the

words. We repeated the clustering exercise using 25 to 200 words at a step size of
25. To determine the number of different topics present in this dataset one can look
at the unique MeSH labels present in the dataset. But, as there are tens of thousands
of such labels present we used fixed number of clusters to evaluate (see Table 2.6) the
algorithms.

2.6. EXPERIMENT SETUP AND RESULTS 40

Body Regions;A01
Abdomen;A01.047
Abdominal Cavity;A01.047.025
...

Figure 2.10: First three lines of MeSH labels file (filename: mtrees2005.bin)

Results and discussion The F-score results of the experiments are given in Table 2.6.
We can see from the table that Normal-CLASSIT is the most competitive when the

vocabulary size is small and the number of clusters formed is large. For all other
settings, i.e., when the size of the vocabulary used is larger or when the number of
clusters formed is smaller, Katz-CLASSIT performs better. This shows that the Katz-
CLASSIT algorithm is more robust as it performs well across a much larger range of
parameter values.

Performances of both the algorithms suffer when we create more number of clus-
ters, which makes sense because, there are fewer features based on which to distin-
guish between clusters.

Evaluating hierarchy

MeSH labels present in the OHSUMED collection has a hierarchical structure to it6. This
provides us with another opportunity to evaluate the correctness of our hierarchy.
This class hierarchy is much larger than the topic hierarchy of RCV1 dataset. There
are 42610 different MeSH labels. Each MeSH label has a code attached to it. The class
hierarchy information can be directly read from this code. For instance the first three
records of 2005 “ASCII MeSH collection” reads

This says that the topic labeled “Abdominal Cavity” (A01.047.025) is a child topic
of label with code A01.047, which we can find from the file as the topic “Abdomen”
(A01.047), which in turn is a child topic of a topic with code A01. We can find from the
file that this is the code of the label “Body Regions”. This “.” separated topic codes let
us easily find the parent topics by dropping the suffix of the code. Not all the MeSH
labels are seen in our dataset. There were only about 14138 different MeSH labels used
in document set we used for our experiments.

Documents were pre-processed as described in the previous section. Entire clus-
ter hierarchy was generated and the correctness of the hierarchy was evaluated as
described in Section 2.5.2. The precision values are reported in table

Here again both the algorithms do reasonably well in grouping classes with com-
mon parents under the same cluster with Katz-CLASSIT seems to have an advantage
over Normal-CLASSIT across all vocabulary sizes. But, we must be careful here not to
interpret these precision values as closeness of the entire cluster hierarchy to the ex-

6The entire collection of MeSH labels can be downloaded from the web-site of National Institute of
Health (http://www.nlm.nih.gov). We have used 2005 MeSH label collection for our purpose.

2.6. EXPERIMENT SETUP AND RESULTS 41

k→ V
↓

5
10

20
40

80
16

0
32

0
64

0

25
?

K
N

µ
57

55
M

62
62

?
K

N
µ

57
53

M
60

61

√
K

N
µ

57
53

M
63

62

?
K

N
µ

57
53

M
62

62

√
K

N
µ

55
38

M
60

54

×
K

N
µ

55
61

M
37

54

?
K

N
µ

36
34

M
49

52

×
K

N
µ

27
34

M
43

52

50

√
K

N
µ

70
57

M
74

65

√
K

N
µ

70
57

M
75

63

√
K

N
µ

69
57

M
75

65

√
K

N
µ

69
57

M
76

69

√
K

N
µ

69
57

M
76

70

√
K

N
µ

69
57

M
76

71

×
K

N
µ

48
51

M
60

65

×
K

N
µ

47
51

M
59

65

75
?

K
N

µ
70

70
M

71
71

?
K

N
µ

70
70

M
69

70

?
K

N
µ

70
70

M
73

77

×
K

N
µ

69
70

M
76

80

×
K

N
µ

69
70

M
77

81

×
K

N
µ

69
70

M
78

82

√
K

N
µ

69
39

M
78

56

√
K

N
µ

69
35

M
79

53

10
0

√
K

N
µ

70
62

M
72

69

√
K

N
µ

69
62

M
71

70

√
K

N
µ

69
62

M
75

73

√
K

N
µ

69
62

M
78

75

√
K

N
µ

68
62

M
78

76

√
K

N
µ

68
45

M
79

62

√
K

N
µ

69
45

M
80

62

√
K

N
µ

69
45

M
80

62

12
5

√
K

N
µ

71
61

M
74

68

√
K

N
µ

71
61

M
76

68

√
K

N
µ

69
61

M
77

71

√
K

N
µ

69
61

M
78

72

√
K

N
µ

69
61

M
80

74

×
K

N
µ

53
61

M
68

74

√
K

N
µ

53
47

M
69

61

√
K

N
µ

53
46

M
69

60

15
0

√
K

N
µ

72
54

M
72

65

√
K

N
µ

72
51

M
77

61

√
K

N
µ

59
51

M
72

64

√
K

N
µ

59
51

M
74

66

√
K

N
µ

55
51

M
71

66

√
K

N
µ

54
51

M
71

67

√
K

N
µ

54
51

M
71

67

×
K

N
µ

48
51

M
66

67

17
5

√
K

N
µ

71
52

M
74

64

√
K

N
µ

71
51

M
78

62

√
K

N
µ

71
51

M
81

64

√
K

N
µ

71
51

M
83

66

√
K

N
µ

59
51

M
75

67

√
K

N
µ

58
43

M
74

60

√
K

N
µ

54
43

M
71

60

√
K

N
µ

54
41

M
71

58

20
0

√
K

N
µ

62
52

M
72

63

√
K

N
µ

62
50

M
75

62

√
K

N
µ

62
50

M
77

65

√
K

N
µ

62
50

M
78

65

√
K

N
µ

62
50

M
79

66

√
K

N
µ

62
50

M
79

67

√
K

N
µ

62
50

M
79

67

√
K

N
µ

62
50

M
79

67

Ta
bl

e
2.

6:
C

lu
st

er
qu

al
it

y
co

m
pa

ri
so

n
on

O
H

SU
M

ED
da

ta
at

di
ff

er
en

tn
um

be
r

of
cl

us
te

rs
(k

)
an

d
vo

ca
bu

la
ry

si
ze

(V
).

Th
e

fig
ur

es
in

th
e

ta
bl

e
ar

e
F-

sc
or

e×
10

0.
K

st
an

ds
fo

r
K

at
z-

C
L

A
SS

IT
,N

fo
r

th
e

or
ig

in
al

C
L

A
SS

IT
.
µ

an
d

M
ro

w
in

th
e

sm
al

le
st

ta
bl

e
ho

ld
th

e
m

ic
ro

an
d

m
ac

ro
av

er
ag

e
of

th
e

F-
sc

or
e

re
sp

ec
ti

ve
ly

.
Th

e
ce

lls
w

he
re

K
at

z-
C

L
A

SS
IT

pe
rf

or
m

s
be

tt
er

ar
e

m
ar

ke
d

w
it

h
a
√

,t
he

ce
lls

w
he

re
N

or
m

al
-C

L
A

SS
IT

pe
rf

or
m

s
be

tt
er

ar
e

m
ar

ke
d

w
it

h
a
×

an
d

th
e

ce
lls

w
he

re
th

er
e

is
no

cl
ea

r
w

in
ne

r
ar

e
m

ar
ke

d
w

it
h

a
?.

Be
st

K
at

z-
C

L
A

SS
IT

an
d

th
e

be
st

N
or

m
al

-C
L

A
SS

IT
ha

ve
be

en
hi

gh
lig

ht
ed

by
gr

ey
ce

lls
.

2.6. EXPERIMENT SETUP AND RESULTS 42

V Normal Katz Normal Katz
Macro avg Macro avg Micro avg Micro avg

25 0.786 0.795 0.626 0.749
50 0.781 0.831 0.667 0.784
75 0.79 0.857 0.654 0.831

100 0.801 0.888 0.742 0.891
125 0.828 0.939 0.788 0.976
150 0.847 0.935 0.812 0.963
175 0.876 0.91 0.859 0.858
200 0.894 0.958 0.819 0.919

Table 2.7: Evaluation of the cluster hierarchy using OHSUMED data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18

Depth

Macro average

Normal
Katz

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18

P
re

ci
si

on

Depth

Micro average

Normal
Katz

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

Depth

Macro average

Normal
Katz

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25
P

re
ci

si
on

Depth

Micro average

Normal
Katz

Figure 2.11: Tracing the cluster sibling precision over the height of the tree. Vocabulary
sizes 25 and 75.

isting class hierarchy. Instead it is the accuracy of the algorithms in classifying sibling
classes under same parent cluster.

We also tracked the sibling precision score at different depths of the generated
cluster tree (Figure 2.11 to 2.12).

These plots show the general trend at different vocabulary sizes. As we can see
there is considerable variation in the sibling precision over different depths. Amidst
these variation we can observe that the sibling precision is higher and more consistent
when we look at the nodes occuring at the lower layers of the tree. Also, we find that
on these layers the Katz-CLASSIT usually performs better than the Normal-CLASSIT.

It is interesting to observe the general consistency at the lower levels of the tree
and lack of it at higher levels of the tree. At the lower levels we have a large number
of nodes at each layer. When we average the perfomance of each algorithm over these
large number of nodes we get a score that is robust to random mistakes. So, we get a
consistent score from layer to layer and it is easier to see which algorithm does better.

2.7. CONCLUSION 43

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

Depth

Macro average

Normal
Katz

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

P
re

ci
si

on

Depth

Micro average

Normal
Katz

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18 20

Depth

Macro average

Normal
Katz

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on

Depth

Micro average

Normal
Katz

Figure 2.12: Tracing the cluster sibling precision over the height of the tree. Vocabulary
sizes 125 and 175.

But, it is not so in the higher levels. In the higher levels we have only a few nodes
in each layer over which to average the score. So, the average is more sensitive to
random mistakes. Note that both the micro average and macro average are sensitive
to these random mistakes. The wrong nodes in the higher levels of the tree either get a
weight equal to other nodes (macro average) or they get a weight that is proportional
to the number of documents in them. Both of these weights are significant at these
levels of the tree. This is the reason why we find the plot of average sibling precision
fluctuating a lot at these levels and we do not get a clear winner across the layers in
the upper part of the tree.

2.7 Conclusion

This is the first attempt of incremental hierarchical clustering of text documents to
our knowledge. We have evaluated an incremental hierarchical clustering algorithm,
which is often used with non-text datasets, using text document datasets. We have
also proposed a variation of the same that has more desirable properties when used
for incremental hierarchical text clustering.

The variation of COBWEB/CLASSIT algorithm that we have demonstrated in this
work uses Katz’s distribution instead of Normal distribution used in the original for-
mulation of the CLASSIT algorithm. Katz’s distribution is more appropriate for the
word occurrence data as has been shown in prior work(Katz 1996) and empirically
observed in our work. We have evaluated both the algorithms over Reuters-RCV1
dataset, which allows us to carry out the experiments in a scenario very similar to the
real life. We tested the algorithms by presenting them Newswire articles from Reuters-
RCV1 dataset in time order and have shown that our algorithm performs consistently
better than the Normal based CLASSIT algorithm as measured by both the micro and

2.7. CONCLUSION 44

macro average of the F score over a range vocabulary sizes. We have also evaluated
both the algorithms using OHSUMED 88-91 dataset and have found that Katz-CLASSIT

performs better except for the narrow range of parameter values with small vocabu-
lary sizes and large number of clusters, where results are likely to be unreliable. This
shows that the performance of Katz-CLASSIT is more robust across broad parameter
settings.

We have also proposed a way to evaluate the quality of the hierarchy generated by
the hierarchical clustering algorithms, by observing how often children clusters of a
cluster get children classes of the class assigned to the cluster. We found that although,
both the existing algorithm and our proposed algorithm perform well in this metric,
our algorithm performs marginally better on OHSUMED dataset.

The most important contribution of this work is a separation of attribute distribu-
tion and its parameter estimation from the control structure of the CLASSIT algorithm.
Thus, one can use a new attribute distribution, which may be different from Normal
or Katz but is more appropriate for the data at hand, inside the well established con-
trol structure of the CLASSIT algorithm to carry out incremental hierarchical clustering
of a new kind of data. For instance, if it is considered that Negative Binomial could be
better fit for the word distribution than Katz distribution, and one can come up with
an efficient way to estimate the parameters of the distribution, it can be used in the
framework of the existing CLASSIT algorithm as demonstrated in this work. One can
also experiment using a Bayesian approach to estimate the parameters of the distribu-
tion and carry out incremental hierarchical clustering in this framework, which might
lead to better results due to more reliable parameter estimates for clusters with a small
number of documents.

CHAPTER 3

On Multi-component Rating and
Collaborative Filtering for Recommender

Systems: The Case of Yahoo! Movies

Abstract

Collaborative filtering algorithms learn from the ratings of a group of users
on a set of items to find recommendations for each user. Traditionally they
have been designed to work with one dimensional ratings. With interest
growing in recommending based on multiple aspects of items (Adomavi-
cius and Kwon 2007, Adomavicius and Tuzhilin 2005) we present an algo-
rithm for using multi-component rating data. This mixture model based
algorithm uses the dependency structure between the rating components
discovered by a structure learning algorithm and validated by the psy-
chometric literature on the halo effect. This algorithm is compared with
a set of model based and instance based one component rating collabora-
tive filtering algorithms and their variations for multi-component rating
collaborative filtering. We evaluate the algorithms using data from Yahoo!
Movies. Use of multiple components leads to significant improvements in
recommendations. However, we find that the choice of algorithm to use
depends on the sparsity of the training data. It also depends on whether
the task of the algorithm is to accurately predict ratings or retrieve relevant
items. In our experiments model based multi-component rating algorithm
was able to better retrieve items when training data is sparse. However,
if the training data is not sparse, or if we are trying to predict the rating
values more accurately then the instance based multi-component rating
collaborative filtering algorithms perform better. Beyond generating rec-
ommendations we show that the proposed model can fill-in missing rating
components. Theories in psychometric literature and the empirical evi-
dence suggest that rating specific aspects of a subject is difficult. Hence,
filling in the missing component values leads to the possibility of a rater
support system to facilitate gathering of multi-component ratings. We also
show that this allows recommendations to be generated for more users.

3.1. INTRODUCTION 46

Item type recommended Commercial Non Commercial
Music iTunes, Last.fm, Yahoo! Music iRATEradio.com, mystrands.com

Movies Netflix.com, blockbuster.com movielens.umn.edu, filmaffinity.com
Books StoryCode.com gnooks.com
Dating reciprodate.com

Webpages GiveALink.org, StumbleUpon.com
Aggregated Amazon.com, half.ebay.com

Table 3.1: Examples of Collaborative Filtering based recommender systems

3.1 Introduction

Recommender systems are increasingly used in online communities, e.g., shopping
sites, subscription service sites, and online meeting places (see Table 3.1). The recom-
mendations are generated from the collection of user preferences, yet they are person-
alized to each user. Recommender systems are especially useful when the user has too
many choices to explore; they assist the users in discovering items that may appeal to
them.

From the retailer’s perspective, recommender systems may be used to target-advertise
items to its customers. A merchant at an online marketplace can use a recommender
system to induce demand for the less-known items in the system. By using its pro-
prietary recommender system Netflix is able to effectively merchandise its collection
of more than 100,000 movies. They are able to create demand for older, and often
less-known, movies by advertising them to users who might like those movies. Given
the constraint on the number of movies a subscriber can rent at a time, increase in
demand for older movies reduces the demand for the newer releases which are more
expensive to stock. As reported in the annual SEC filing of the company in 2006, the
success of the Netflix business model depends, to certain extent, on effective use of,
and user satisfaction in relation to, their recommender system (Netflix 2006). Online
storefronts are not the only places where recommender systems can be used. There are
communities of users with common interests who use recommender systems to find
new items that they might enjoy. Some examples of such communities are Last.fm
and Pandora.com (Internet radio stations with music recommender systems), Stum-
bleUpon.com (a web page recommender system) and KindaKarma.com (a system to
get recommendation on authors, games, movies and music). These developments
suggest that recommender systems are important tools in mining collective user pref-
erences to help users better navigate large choice spaces.

A key input to recommender system is the ratings given by the users on the items
in the system. Ratings provide information about the quality of the item as well as
about the taste of the user who gave the rating. Most recommender systems have
been designed for single-valued ratings, i.e., for each (user, item) pair we have one
rating indicating how much the user liked the item. However, sometimes there are
multiple components to a rating. For instance, the popular Zagat survey (zagat.com)

3.1. INTRODUCTION 47

rates restaurants on four criteria: food, decor, services and cost. Similarly, a movie
could be rated for its plot, acting, visual effects, and direction. When such ratings are
available from users, it is plausible that a recommender system could be designed that
makes use of these component ratings and produces better recommendations for the
users.

Contributions of this chapter

In this chapter we extend a successful collaborative filtering approach for generating
recommendations from single component ratings to multi-component ratings. We do
this by discovering dependency structure among multi-component rating data using
Chow-Liu structure discovery algorithm. The discovered structure is validated by
psychometric analysis of the multi-component rating data for halo effect. We embed
this dependency structure in a flexible mixture model (FMM) (Si and Jin 2003). FMM
has been shown to work better than the traditional mixture models for collaborative
filtering. We evaluate a set of model based and instance based one component rat-
ing collaborative filtering algorithms and their extensions for multi-component rating
dataset. The algorithms were tested using multi-component rating data collected from
Yahoo Movies. The test results show a significant improvement from the use of mul-
tiple component ratings. We identify which multi-component rating algorithm per-
forms better in which scenario and provide some insight into the behaviors of model
based and instance based algorithms for collaborative filtering. We also show that the
proposed model can be used to fill-in the missing rating components for incomplete
records. This allows us to generate better recommendations for more users when there
are incomplete ratings in the data. This also raises the possibility of a rater support
system for helping the users in rating specific aspects of an item.

It is important to distinguish the current work from collaborative filtering in the
presence of multi-dimensional context information, such as finding a recommendation
for a movie to watch on a Sunday in the evening with children. Studies exist in the liter-
ature to incorporate multi-dimensional context information into the recommendation
generation process. Adomavicius et al. (2005) suggests a reduction based approach
where context specific recommendation is generated by using only the ratings col-
lected in the context of interest. In the current work we address a different research
question: how can we use the information in various components of a rating to make
better recommendations for the users?

Background

Given a user’s ratings on a subset of items and its peers’ ratings on possibly different
subsets of items, collaborative filtering algorithms predict which of the items the user
would like among the items that he/she has not yet rated. Collaborative filtering algo-
rithms recommend to each user, items that are popular among the group of users who
are similar to him. This can be thought of as automating the spread of information
through word-of-mouth (Shardanand and Maes 1995). Since, collaborative filtering

3.1. INTRODUCTION 48

algorithms do not use the content information of the items, they are not limited to
recommending only the items with content that the user has rated before.

The first group of collaborative filtering algorithms were primarily instance based
(Resnick et al. 1994). In the training step they build a database of user ratings that
is used to find similar users and/or items while generating recommendations. These
algorithms became popular because they are simple, intuitive, and sufficient for many
small datasets. However, they do not scale to large datasets without further approx-
imations. Also, because they do not learn any user model from the available prefer-
ences, they are of limited use as data mining tools (Hofmann 2004).

A second group of collaborative filtering algorithms, known as model-based algo-
rithms, surfaced later (Breese et al. 1998, Chien and George 1999, Getoor and Sahami
1999). They compile the available user preferences into a compact statistical models
from which the recommendations are generated. Notable model based collaborative
filtering approaches include singular value decomposition to identify latent structure
in ratings (Billsus and Pazzani 1998); probabilistic clustering and Bayesian networks
(Breese et al. 1998, Chien and George 1999); repeated clustering (Ungar and Foster
1998); dependency networks (Heckerman et al. 2001); latent class models (Hofmann
and Puzicha 1999) and latent semantic models (Hofmann 2004) to cluster the ratings;
and flexible mixture models to separately cluster users and items (Si and Jin 2003).
Unlike the instance based approach the model based algorithms are slow to train, but,
once trained they can generate recommendations quickly.

The model based algorithms are often described with the help of probabilistic
graphical models. Probabilistic graphical models provide a framework based on prob-
ability theory and graph theory to approximate complex distributions (Pearl 2000).
They graphically express conditional independencies among variables. The variables
are represented as nodes and dependence among them is expressed as edges in a
graph. The assumptions they encode about the distribution is: each node is indepen-
dent of the non-descendent nodes conditional on its parent nodes. This allows one to
use the chain rule of probability to factor the joint distribution over all the variables
into the product of small conditional distributions. These smaller distributions can be
individually estimated. This simplifies the operation on the joint distribution during
training and inference (Koller and Friedman 2009). The latent class models presented
in (Hofmann and Puzicha 1999) and the Flexible Mixture Model presented in (Si and
Jin 2003) are given in Figure 3.1 and 3.2 respectively.

Product recommendation systems have been explored in marketing science as
well. Often the goal is to predict the purchase outcome when the consumer is target
advertised. Recently, Moon and Russel have developed an Autologistic recommen-
dation model based on tools from the spatial statistics literature (Moon and Russell
2008). Their model uses the consumers purchase history to estimate the probability of
a future purchase.

Most of the algorithms in the literature are designed to use unidimensional ratings.
In a recent work Adomavicius and Kwon present approaches for multi-criteria rating
collaborative filtering(Adomavicius and Kwon 2007). Their work is instance-based in

3.1. INTRODUCTION 49

Z

U I

R

Z

U I

U

Z

I

R

Aspect model with two variables.
Aspect model with three variables.

Rating depends on User and latent class.

Figure 3.1: Aspect model in Hofmann and Puzicha, 1999. Latent variable nodes are
shaded and observed variable nodes are not shaded.

Zu Zi

U IR

Figure 3.2: Flexible Mixture model of Luo Si, Rong Jin, 2003. Latent variable nodes are
shaded and observed variable nodes are not shaded.

3.1. INTRODUCTION 50

identifying similar users, but model based in aggregating component ratings into one
overall rating. Lee and Teng use skyline queries to generate multi-criteria based rec-
ommendations from individual component rating predictions where each component
rating is predicted using traditional collaborative filtering algorithms (Lee and Teng
2007).

The multi-component rating collaborative filtering has some apparent similarity
with the conjoint analysis in marketing science (?). In conjoint analysis the objective is
to estimate a consumer’s preference function in terms of weight the consumer assigns
to the attributes of a product. However, collaborative filtering is effective for experi-
ence goods for which attributes can not be readily determined. For instance directorial
style of a movie is hard to express using an attribute-value system. It is worth noting
that high rating for directorial style of a particular movie does not mean the user puts
more weight on the directorial quality. Rather, it means that the user perceives a better
match of the directorial style, not part of the data, with her preference. In this regard
content based filtering strategies have more similarity with the conjoint analysis than
do the collaborative filtering strategies.

The current work is built upon the Flexible Mixture Model (FMM) for collaborative
filtering (Si and Jin 2003). FMM models the user and item distribution separately by
using two latent variables. It has been shown to work better than other latent class
models for collaborative filtering. We extend it for multi-component ratings taking
into account specific properties of these type of data.

Multi-component rating data exhibits high correlation among the rating compo-
nents. This is known as halo effect (Thorndike 1920, Wells 1907). Halo occurs in part
due to the failure of the raters to evaluate each component independent of the others
(Cooper 1981, Shweder 1975). The other reason often lies in the design of the ques-
tionnaire that collects multi-component ratings. If the definition of the components are
ambiguous or not sufficiently different from each other the collected ratings are likely
to be correlated (Kevin R. Murphy 1988). Although, there is some debate whether
halo is entirely bad (Cooper 1981, Fisicaro 1988), it is generally considered undesir-
able because correlated components provide less information than independent ones.
Halo can be reduced at the rating time by increasing the familiarity between rater
and subject (Heneman 1974, Koltuv 1962, Landy and Farr 1980), reducing the time
between observation and rating (E. F. Borgatta 1958, Shweder and D’Andrade 1980),
clever questionnaire designs that makes the rater aware of the difference between the
components (Rizzo and Frank 1977), and sensitizing the raters by training them to
observe and avoid halo (Borman 1979, G. P. Latham 1980, Ivancevich 1979).

Some halo is almost always present despite the precautions. Holzbach suggests
using a global component in the rating to collect each rater’s overall impression of
the subject and statistically remove its effect from each component rating (Holzbach
1978). Similar approaches are taken by Landy et al (Steele 1980) and by Myers (Myers
1965) to arrive at more accurate component ratings.

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 51

User Movie story acting visuals direction overall
u1 m1 4 1 2 1 2
u2 m1 2 1 1 4 2

Table 3.2: An example of multi-component rating. Ratings are on a scale of 0 to 4.

3.2 Multi-component rating recommender system

By rating multiple aspects of an item users provide more information about their pref-
erences. The variation in different users’ component ratings while they seemingly
agree on their overall impression of the item can be informative. For instance, con-
sider two users u1 and u2 who have given same overall ratings to the movie m1 (Table
3.2). But, they differ in how they rate the components of the movie. The user u1 likes
the plot of the movie, while the user u2 likes the direction in the movie. Without the
component ratings we would have concluded that the users would not particularly
like any movie similar to m1. But, the component ratings tell us more. They suggest
that the user u1 might like other movies that have a story similar to m1, while user
u2 might like a movie that has been directed by the same director or a director with
similar style. Therefore, if we can effectively use the information in the component
ratings we should be able to find more relevant items for the users. This would lead
to higher precision and recall in the top K items we recommend the user.

Our empirical work has been motivated by the availability of extensive multi-
component rating data from the Yahoo! Movies web-site. Although, the general
approach taken in this work is applicable for any data with component ratings, for
clarity we shall describe the methods of this work with the help of the Yahoo! dataset.
A description of the dataset follows.

3.2.1 Data description and preliminary analysis

The rating data was collected from Yahoo movies website using a custom written
program written in Java programming language.Each record of the rating data has
seven variables: item or movie id (I), user id (U), ratings on story (S), acting (A),
visuals (V), direction(D) and overall (O) quality of the movie. The ratings are on a
thirteen point scale (A+, A,A−, B+, B,B−, C+, C, C−, D+, D,D−, F). We recoded
them to a scale of 0 to 4 ({A+, A,A−} −→ 4, {B+, B,B−} −→ 3, {C+, C, C−} −→
2, {D+, D,D−} −→ 1, {F} −→ 0), so that there will be enough data points in each
rating bucket. This is especially important for the conditional probability tables esti-
mated in this chapter. The models are estimating the probability of observing certain
rating values when a user and a item probabilistically belong to some latent classes.
If there is not enough data points for a rating value, the probability estimates will be
unreliable. Although, there were 691,496 (user, item) pairs in the original dataset, the
user frequency in the data turns out to be skewed (Figure 3.3). Ratings from users
who have rated very few movies are not useful for collaborative filtering, since, we

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 52

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

Frequency of users with certain number of ratings

log(#movies rated)

lo
g

(f
rq

u
e
n

cy
 o

f u
se

rs
)

Figure 3.3: log-log plot of frequency of users who have rated a certain number of
movies. logs are calculated with base e.

F D− D D+ C− C C+ B− B B+ A− A A+
0

50000

100000

150000

200000

250000

Rating distribution

Rating

R
a

tin
g

 c
o
u
n

t

Figure 3.4: Movie rating distribution. Note the dip in the middle suggesting that
people with strong opinions rate more often.

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 53

S A D V O
S 1.00 0.79 0.82 0.74 0.87
A 0.79 1.00 0.81 0.73 0.83
D 0.82 0.81 1.00 0.79 0.88
V 0.74 0.73 0.79 1.00 0.80
O 0.87 0.83 0.88 0.80 1.00

Table 3.3: Correlation among components of rating

Component One Two Three Four Five
% variance explained 84.5 5.7 4.4 3.2 2.2

Table 3.4: Principal components

can not reliably know the preferences of a user from only a few of his ratings. Also,
we need enough ratings per individual to both train and test the model. Therefore, we
have retained only those records that contain users who have at least 20 ratings. After
this filtering there were 45,892 records, 1058 unique users and 3430 unique movies.

Examining the dataset for halo effect, we find that the components are highly cor-
related (Table 3.3). One way to detect halo is by Principal Component Analysis (PCA)
and Factor Analysis (Morrison 1967). If most of the variance in the components can
be explained by one principal component or one factor then it suggests the presence
of halo (D. Kafry 1979). Principal Component Analysis of the ratings show that there
is one component that explains 84.5% variance. Factor Analysis of the components
produced a factor structure dominated by one factor (Table 3.5). These indicate that
there is halo error in the collected ratings.

3.2.2 Modeling component ratings for collaborative filtering

The information contained in the multi-component rating has two parts: the overall
component captures the overall impression of the user about the item and the varia-
tion among the components after partialling out the effect of the overall component
tells us how the user evaluates aspects of the item. Traditionally, only the overall com-
ponent has been used to carry out collaborative filtering, e.g., in (Si and Jin 2003). In

Factor 1 Factor 2 Uniquenesses
S 0.91 0.23 0.11
A 0.87 −0.02 0.21
V 0.93 −0.08 0.10
D 0.84 −0.12 0.25
O 0.95 0.03 0.07

Table 3.5: Factor loadings after quartimax rotation

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 54

U

S

A

V

D

O IZu Zi

?

?

?

?

Figure 3.5: Flexible Mixture model for component rating collaborative filtering

this section we show how to use the additional information in components along with
the overall component.

We use a mixture model similar to the Flexible Mixture Model (Si and Jin 2003)
(Figure 3.2). FMM proposes that the rating an item receives from a user is governed
by a small number of latent classes for the users and a small number of latent classes
for the items. Given the latent classes, the rating is independent of the particular user
and the particular item. We can start by embedding all the five rating components in
the graphical model in place of the only overall component used in FMM. However,
rating components are highly correlated as shown in Table 3.3. An incorrect indepen-
dence among the component ratings in the model would mislead us to believe that
each rating component provides completely new additional information about the
user preferences.

Therefore, one would do well to find the dependency structure among the five
components of the rating (Figure 3.5). This can be posed as a search problem where the
goal is to find the dependency graph that maximizes the probability of the data. Just as
during maximum likelihood estimation the parameter that maximizes the probability
of data is deemed to be closest to the true parameter, the structure that maximizes the
probability in this exercise is deemed the best approximation of the true dependency
(Koller and Friedman 2009). To estimate the number of different subgraphs among
the five components note that there are ten unique pairs, each of which can have an
edge between them in either direction or have no edge at all. Discarding structures
containing cycles we have 29,281 candidate structures to search through. This is time
consuming. Another problem with a complete model search is that the configurations
with multiple parents will lead to large conditional probability tables for which we do
not have enough data to estimate the probabilities reliably.

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 55

Mutual Information Chow-Liu tree
S A V D O

S − 0.61 0.72 0.51 0.88
A 0.61 − 0.68 0.47 0.73
V 0.72 0.68 − 0.64 0.92
D 0.51 0.47 0.64 − 0.66
O 0.88 0.73 0.92 0.66 −

MST
=⇒

O

A V DS

Figure 3.6: Discovered structure in the sub ratings

We strike a balance between having completely independent rating variables with
no edge between them and accommodating fully connected rating variables that ac-
count for all possible dependence. We restrict ourselves to a category of structures
that can capture much of the dependency among the rating variables while being
amenable to fast and reliable parameter estimation. Chow and Liu have shown that
if we have only discrete variables and we restrict ourselves to only those structures
in which there is at most one parent node for each node, i.e., trees, we can efficiently
search through them to find the tree that maximizes the probability of data. When the
probability distribution is factored according to a tree dependency structure the graph
that maximizes the log probability of the data is the one that maximizes the sum of
pairwise mutual information1 over each edge in the graph. Hence, the tree can be
found by a maximum weight spanning tree algorithm (Chow and Liu 1968).

Such an exercise over the five component ratings leads to the structure shown in
Figure 3.6. The structure states that the strongest of the dependencies among the com-
ponents of the ratings is between the Overall rating and the components, as can be
verified from the pairwise mutual information table in Figure 3.6. This shows the
strong influence of a user’s Overall impression of a movie on the perception of the
other aspects of the movie. In the data we would find evidence of dependence be-
tween any pair of variables, but changing the parent for any of the components from
O to any other variable (under the tree structure restriction one variable can have
at most one parent) would lead to a lower probability of the data. Another way of
reading this discovered structure is: given the Overall rating the components are in-
dependent. Note that this dependency structure says that if we do not condition on
the Overall rating, then the S,A,D, V variables are dependent or correlated, which is
consistent with the expectation we started with.

3.2.3 Parallels

It is interesting to compare the approach taken in the psychometric literature (Holzbach
1978, Myers 1965, Steele 1980) with the discovered Chow-Liu tree dependency struc-
ture among the movie rating components.

1Mutual information is a metric to measure the strength of the dependence between two vari-
ables(MacKay 2003)

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 56

rRiRj .O S A D V
S 1.00 0.25 0.26 0.15
A 0.25 1.00 0.32 0.22
D 0.26 0.32 1.00 0.33
V 0.15 0.22 0.33 1.00

Table 3.6: Partial correlations controlling for Overall rating

Following a procedure like Holzbach’s when we statistically remove the halo ef-
fect of the Overall component on the other components through partial correlation, the
average inter-component correlation among variables S,A,D, V reduces from 0.78 to
0.26. As all correlations are positive some reduction in correlation is expected when
computing partial correlations. However, the average partial correlation among the
variables is the least when we control for the variable O among the possible five vari-
ables. The average partial correlations when we controlled for S,A,D, V are 0.47,
0.53, 0.35 and 0.60 respectively. These observations are in accordance with Holzbach’s
proposition that by controlling for Overall rating we can peer beyond the halo effect
at more accurate component ratings.

The dependency structure given in Figure 3.6 says that if we condition on the
Overall rating (O), then the components should be independent of each other. Strictly
speaking, this assertion of the Chow-Liu tree is correct only if the assumption that
the dependency among the rating components can be described by a tree structure is
correct. However, a weaker assertion that states that among all possible variables that
we might have conditioned on, conditioning on O leads to least residual dependency
among the remaining components is still true. We found that the discovered structure
persists over different random subsets of the data, suggesting that it is robust.

This result empirically validates the approach taken by (Holzbach 1978), (Myers
1965) and (Steele 1980) using a much larger dataset. It is interesting to note that the
Chow-Liu tree structure discovery method, which is agnostic to the meaning of the
rating components, arrives at a conclusion based on the empirical distribution of the
data that agrees with the what researchers in psychometric literature arrived at based
on the general impression theory of the halo effect. We believe this agreement adds to
the validity of both the approaches.

3.2.4 Model estimation using EM algorithm

Using the discovered structure between the components of the ratings we construct
the model shown in Figure 3.7 for collaborative filtering. As we have hidden variables
the parameters need to be estimated using an indirect method. We propose an algo-
rithm based on the EM framework (Dempster et al. 1977). The algorithms based on
EM framework have two alternating steps that monotonically increase probability of
the data or the likelihood of the parameters:

E (expectation) step where one computes the distribution of the unobserved variable

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 57

S

V

D

U IZu ZiO

A

Figure 3.7: Flexible Mixture Model with component rating dependency structure

given all the observed variables. This is same as doing an inference on the graph-
ical model for the hidden variables. It can be shown that among all distribu-
tions over the hidden variables the posterior distribution given the observed
data maximizes the expected log-probability. Intuitively, the posterior distribu-
tion over the hidden variables given the observation is our best guess about the
values of the hidden variables.

M (maximization) step where one estimates the parameters of the complete distribu-
tion (consists of observed and unobserved variables) using the standard maxi-
mum likelihood estimation. This operation maximizes the expected log proba-
bility given the posterior distribution of the unobserved variables.

The E and the M steps in our case are:

E-step

P (Zu, Zi| ~X) =
P (Zu)P (Zi)P (I|Zi)P (U |Zu)

∏5
j=1 P

(
Rj |Zu, Zi,PaRj

)∑
Zu

∑
Zi
P (Zu)P (Zi)P (I|Zi)P (U |Zu)

∏5
j=1 P

(
Rj |Zu, Zi,PaRj

)(3.1)

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 58

M-step

P (Zu) =
1
L

∑
l

∑
Zi

P (Zu, Zi|
−−→
X(l)) (3.2)

P (Zi) =
1
L

∑
l

∑
Zu

P (Zu, Zi|
−−→
X(l)) (3.3)

P (U |Zu) =

∑
l:U(l)=U

∑
Zi
P (Zu, Zi|

−−→
X(l))∑

l

∑
Zi
P (Zu, Zi|Xl)

(3.4)

P (I|Zi) =

∑
l:I(l)=I

∑
Zu
P
(
Zu, Zi|

−−→
X(l)

)
∑

l

∑
Zu
P
(
Zu, Zi|

−−→
X(l)

) (3.5)

P
(
Rj |Zu, Zi,PaRj

)
=

∑
l:Rj(l)=Rj&PaRj(l)=PaRj

P
(
Zu, Zi|

−−→
X(l)

)
∑

l:PaRj(l)=PaRj
P
(
Zu, Zi|

−−→
X(l)

) (3.6)

where,
Zu = Latent class variable to cluster the users
Zi = Latent class variable to cluster the items
Rj = jth rating node. Rj ∈ {S,A, V,D,O}
PaRj = parent rating node of Rj
L = number of records in the dataset
l = record index−−→
X(l) = record numbered l. It consists of observations for U, I, S,A, V,D,O
U(l) = variable U in the record numbered l
I(l) = variable I in the record numbered l
Rj(l) = rating variable Rj in the record numbered l
PaRj(l) = rating variable PaRj in the record numbered l
The E-step shown above is the conditional distribution computed by dividing joint

distribution of all variables, factored using the conditional independencies, by the
joint distribution of only the observed variables, obtained by marginalizing out the
hidden variables. The M-step in the EM algorithm estimates the MLE of the param-
eters using both the observed and the unobserved variables. If we could observe all
variables, we could find the MLE of parameters of each conditional probability table
by dividing the number of records with matching values for all the variables in the
conditional probability table by the total number of records with matching values of
the conditioning variables. But, we do not observe the hidden variables. Therefore,
we have to use our best guess about their number of occurrences or their expected
occurrence counts at a record given the observations of other variables in the same
record. This is obtained from the posterior distribution of the hidden variable. Since
this conditional distribution is multinomial the expected number of times a hidden
variable takes a certain value in one record is same as the probability of the hidden
variable taking that value given the value of the observed variables. All equations of

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 59

U

S

A

V

D

O IZu Zi

Figure 3.8: Flexible mixture model with independent component ratings

the M-step can be obtained by tabulating the values of the observed variables and, for
the hidden variables, using the expected number of times the hidden variables take a
certain value.

We compare this model with discovered dependency structure with the model that
assumes independence among the component ratings conditional on the latent classes
(Figure 3.8). The E and the M steps for the case when all components are assumed
independent are derived in a similar manner.

E-step

P (Zu, Zi| ~X) =
P (Zu)P (Zi)P (I|Zi)P (U |Zu)

∏5
j=1 P (Rj |Zu, Zi)∑

Zu

∑
Zi
P (Zu)P (Zi)P (I|Zi)P (U |Zu)

∏5
j=1 P (Rj |Zu, Zi)

(3.7)

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 60

M-step

P (Zu) =
1
L

∑
l

∑
Zi

P (Zu, Zi|
−−→
X(l)) (3.8)

P (Zi) =
1
L

∑
l

∑
Zu

P (Zu, Zi|
−−→
X(l)) (3.9)

P (U |Zu) =

∑
l:U(l)=U

∑
Zi
P (Zu, Zi|

−−→
X(l))∑

l

∑
Zi
P (Zu, Zi|Xl)

(3.10)

P (I|Zi) =

∑
l:I(l)=I

∑
Zu
P
(
Zu, Zi|

−−→
X(l)

)
∑

l

∑
Zu
P
(
Zu, Zi|

−−→
X(l)

) (3.11)

P (Rj |Zu, Zi) =

∑
l:Rj(l)=Rj

P
(
Zu, Zi|

−−→
X(l)

)
∑

l P
(
Zu, Zi|

−−→
X(l)

) (3.12)

Note that the key difference between these two sets of expressions is the absence
of any parent node in the conditioning part of the conditional probability of the com-
ponent ratings (Expressions 3.6 and 3.12). The intuition behind these equation are
similar to those described for the previous set.

We also compare these approaches with the baseline case where there is only one
rating: the Overall rating on the movie. The E and the M steps can be borrowed from
(Si and Jin 2003) or derived following the approach used to arrive at Equation 3.1–3.12.

E-step

P (Zu, Zi|U, I,O) =
P (Zu)P (Zi)P (I|Zi)P (U |Zu)P (O|Zu, Zi)∑

Zu

∑
Zi
P (Zu)P (Zi)P (I|Zi)P (U |Zu)P (O|Zu, Zi)

(3.13)

M-step

P (Zu) =
1
L

∑
l

∑
Zi

P
(
Zu, Zi|U(l), I(l), O(l)

)
(3.14)

P (Zi) =
1
L

∑
l

∑
Zu

P
(
Zu, Zi|U(l), I(l), O(l)

)
(3.15)

P (U |Zu) =

∑
l:U(l)=U

∑
Zi
P
(
Zu, Zi|U(l), I(l), O(l)

)
L× P (Zu)

(3.16)

P (I|Zi) =

∑
l:I(l)=I

∑
Zu
P
(
Zu, Zi|U(l), I(l), O(l)

)
L× P (Zi)

(3.17)

P (O|Zu, Zi) =

∑
l:O(l)=O

∑
Zu
P
(
Zu, Zi|U(l), I(l), O(l)

)∑
l P
(
Zu, Zi|U(l), I(l), O(l)

) (3.18)

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 61

In each of these approaches the number of the classes (levels of Zu and Zi) is a user
specified parameters. The more the number of classes the better will be the fit of the
model to the data resulting in larger probability of data, but, that will increase the risk
of overfitting the model to the training data. Another factor to keep in mind is that
increasing the number of classes by n times leads to n2 times more multiplications
in the E − step and n times more additions in the M − step. In our experiments the
time taken to complete with higher levels of classes has been the bottleneck. We have
experimented with 4, 8, 16 classes and found that the results improve with the number
of classes. The time taken to complete the experiments were approximately 2.5 hours,
17 hours, and 92 hours respectively on a 3.0GHz pentium processor computer. In the
reported results we are using 16 classes for each of the model based approaches.

Smoothing of parameter estimates using BDe prior(Koller and Friedman 2009)

To guard against over-fitting to the training data we smooth the parameter estimates
in the M-step using a Dirichlet prior, which is a multivariate generalization of a Beta
distribution and conjugate prior for multinomial distribution. A parameter (θ1, . . . , θK)
following a Dirichlet distribution with the hyper-parameters (α1, . . . , αK) has the prob-
ability distribution

P (θ1, . . . , θK) ∼
∏
k

θαk−1
k

The expected value of θk = αkPk=K
k=1 αk

. If we update this prior using multinomial data

with counts M1, . . . ,MK , then we obtain the posterior that is another Dirichlet distri-
bution with hyper parameters (α1 +M1, . . . , αK +MK). Thus, the expected values of
the components can be obtained by adding the counts to the numerator and denomi-
nator of the original formula.

E(θk) =
Mk + αk

(
∑

kMk) + (
∑

k αk)
(3.19)

Therefore the α’s can be thought of as a pseudocounts and the sum of α’s is a measure
of the weight of the prior. Note that for each combination of values of the parent
nodes there is a different set of parameters and priors. If the same Dirichlet prior
is used for each conditional distribution the nodes with more parent configurations
would have larger weights of the priors. BDe prior is a Dirichlet prior constructed
so that the weight of the prior would be the same for each node: irrespective of how
many parent configurations and, thus conditional probability tables, there are for each
of them (Nir Friedman 1998). We use a BDe prior to smooth the parameter estimates
during the model training phase.

3.2.5 Predicting the Overall rating

The goal is to predict the rating a user would give to an item he has not yet rated.
Hence, the partial observation consists of the user and the item, and we are trying to
predict the rating.

3.2. MULTI-COMPONENT RATING RECOMMENDER SYSTEM 62

The joint distribution over all variables (observed and latent) is product of the con-
ditional probability table estimated in Section 3.2.4 from which we need to marginal-
ize away those variables that we are not interested in. In this section we focus on our
ability to predict the overall rating. So, we need to marginalize all variables except
U, I andO. For the three models discussed in the previous section the distribution
over the variables U, I and O is:

P (U, I,O) =
∑
Zu

P (Zu)P (U |Zu)
∑
Zi

P (O|Zu, Zi)P (Zi)P (I|Zi) (3.20)

Although the expression for all three models is the same the parameters estimated are
different due to different conditional independence assumptions.

For user ua and item i we are interested in the conditional distribution of the over-
all rating, namely,

P (O|ua, i) =
P (ua, i, O)∑
O P (ua, i, O)

(3.21)

The mode of this distribution of O is predicted as the output2.

3.2.6 Instance based approaches

We compare the performance of these proposed algorithms with several of the existing
one component and multi-component instance based methods. As a baseline we use
the framework proposed by (Breese et al. 1998):

R̂tj = R̄t +
1∑Nu

i abs(sim(t, i))

Nu∑
i

sim(t, i)(Rij − R̄i) (3.22)

Where, the expected rating a user t would give to item j is computed by ratings of
other users weighted by similarity of those users to the target user t. One of several
metrics can be used for computing the similarity between two users who are repre-
sented by the vectors of ratings they have given. Some choices are cosine, correlation,
inverse eucledian distance etc. We use correlation coefficient for obtaining baseline
results since it has been often used in the literature.

(Adomavicius and Kwon 2007) has generalized the similarity measure in Equation
3.22 to the case of ratings with multiple components. Their predicted rating can be
summarized as

sim(t, i) =
1

1 + distu(t, i)
(3.23)

distu(t, i) =
1

|Ut ∩ Ui|
∑

l∈Ut∩Ui

distr(Rtl, Ril) (3.24)

Several distance metrics are explored for distr between two multi-component rat-
ings, such as :

2Use of expectation of O to predict did not change the conclusions of the experiments.

3.3. RESULTS AND DISCUSSION 63

1. Manhattan distance ∑
k

|Ri(k)−Rj(k)|

2. Euclidean distance √∑
k

(Ri(k)−Rj(k))2

3. Chebyshev distance
maxk|Ri(k)−Rj(k)|

They found that Chebyshev distance based approach performs best among the
distance based approaches considered. Therefore, we compare our results with the
results obtained by using Chebyshev distance to compute user similarities.

Because of the correlation among the component ratings, it is worth considering
if it would suffice to isolate the principal rating component through a principal com-
ponent analysis and use that in a single component rating collaborative filtering algo-
rithm. We obtain the principal component of the multi-component rating through a
PCA rotation and compute the correlation between pairs of users based on their thus
identified principal component ratings on movies. After computing the similarity be-
tween the users we use original ratings in Equation 3.22 to compute the predicted
value of a user’s rating on a movie.

The distance metrics proposed in (Adomavicius and Kwon 2007) for multi-component
rating collaborative filtering do not take into account correlation between rating com-
ponents. One multi-dimensional distance measure that takes into account correlation
between dimensions is Mahalanobis distance (?). Mahalanobis distance between two
random vectors ~x and ~y, that are assumed to be drawn from one common distribution,
is:

distmaha(~x, ~y) =
√

(~x− ~y)TS−1(~x− ~y) (3.25)

Where S is the covariance of the distribution. In one set of experiments we use Ma-
halanobis distance to compute recommendations. This is done by using Equation 3.25
in Equation 3.23 and 3.24 to compute recommendations. We compute the covariance
matrix from the ratings used in the training data.

The set of collaborative filtering methods compared are summarized in Table 3.7.

3.3 Results and discussion

3.3.1 Experiments with Random Training Sample

To compare the effectiveness of the three models we use a fraction of the user ratings
to train our models (training set) and use the remaining to test the prediction (test
set). A certain fraction of each user’s records were randomly selected to include in
the training data to make sure that there is some training data for each user in the test

3.3. RESULTS AND DISCUSSION 64

Model based Instance based
Multi-
component • 5 dependent subratings

• 5 independent subratings

• Chebyshev

• Mahalanobis

• PCA

One component Flexible Mixture Model User-User correlation

Table 3.7: Set of metrics compared

set. For each user-item pair in the test data we predict their overall rating (O) using
each model. We calculate the Mean Absolute Error (MAE) of the predictions with
the help of the known ratings. We also evaluate the algorithms’ ability to select the
highest rated items. These two results need not be correlated (Herlocker et al. 2004).
Appropriateness of each depends on the application environment.

In an application where the user is recommended the items along with the ratings
they might assign to the items it is important to be able to predict the numerical val-
ues of these ratings accurately. One example of such application environment can be
found in the movie recommender system of Netflix. The rating prediction accuracy
can be measured using Mean Absolute Error of the predictions.

MAE =
1

Ltest

Ltest∑
l=1

|ol − ôl|

where, Ltest = the number of records in the test data
ol = the true rating
ôl = the predicted rating
However, in many other applications the user is only presented the top few items

he is likely to rate highly. The numerical values of the items are deemed of no inter-
est. One example of such an application environment can be found at Amazon.com.
Here, if the recommender system can identify the top few items for the user with little
noise then it can be considered to have fulfilled the requirement. It does not matter
if all the predicted ratings are biased up or down, as long as the predicted ratings
order the items in the same way as the user would, i.e., assign a relatively higher rat-
ing for items that the user would rate A followed by lower ratings to items that the
user would rate B and so on. This correctness of such ordering of items for users can
be evaluated using Precision-Recall plots. To describe this briefly, let’s assume for a
moment that the user would be only interested in the items rated A. Consider the
top-N item predictions. Precision is the fraction of the N items that the user would
have given rating A. Recall is the fraction of items that the user would have rated A
that are in the top-N . With increasing N more A-rated items are fetched, improving

3.3. RESULTS AND DISCUSSION 65

recall. But, at the same time, more of those items that are rated less than A are also
retrieved, damaging the precision score. A good recommender system should be able
to retrieve much of the A-rated items while maintaining high precision. Hence, a plot
of precision at 11 standard recall levels (0%, 10%, 20%, . . . , 100%) is commonly used to
compare the performance of different systems (Baeza-Yates and Ribeiro-Neto 1999).

Often times in retrieval and recommendation tasks the quality of only the top few
recommendations is of interest, becasue, users typically don’t look beyond the first
few items recommended. We measure the quality of top items recommended using
two metrics:

1. Mean precision of the top-5 items recommended

2. Mean reciprocal rank of the first relevant item recommended (?)

MRR =
1

#users

#users∑
i

1
rankfirstrelevant

Mean reciprocal rank measures how soon a person gets a relevant recommenda-
tion from the algorithm.

Accuracy in rating prediction

The average MAE score using 30 different random train/test partitions are shown in
Figure 3.9. As expected, the overall error for each model decreases with increasing
amount of training data. However, we see that in this set of results using Chebyshev
and Mahalanobis distance metrics in an instance based multi-component framework
does best in predicting the rating values. Using the principal component after a PCA
rotation of the 5 component ratings, does not do any better or worse than simply using
the overall rating in a single component correlation based instance based approach.

However, one of the advantage of model based approaches is that after training
the models, the rating prediction step is quick. Therefore, they are more suitable for
online recommendation generations. If one is interested in using a model based rec-
ommender system we have the following insights. Naively extending the existing
Flexible Mixture Model for collaborative filtering with component ratings without
considering the existing correlation among the component ratings does not lead to any
improvement in the prediction of overall ratings over using only one component. As
discussed in Section 3.2.2, components of the ratings are correlated and assuming in-
dependence among them given latent class leads to over counting of evidence. When
we capture the dependence among the rating components through the Overall rating
and explicitly model for it, the prediction accuracy improves. Error-plots of the two
model based algorithms, one using only the overall rating and the other using 5 com-
ponents with dependency, show that there is an advantage of using multi-component
ratings when the training set is small—up to about 40% of the available dataset for
training in this case. But, when there is enough training data, using only the overall

3.3. RESULTS AND DISCUSSION 66

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5 dependent subratings
5 independed subratings
5 subrating (Chebyshev)

1 Overall rating (FMM)
1 Overall rating (Corr)

5 subratings PCA-rotation
5 subratings Maha

Figure 3.9: Plot of errors by amount of training data used, for different models.

3.3. RESULTS AND DISCUSSION 67

rating leads to more accurate prediction of Overall rating. This suggests that when we
have a user’s Overall rating over a large number of items adding component ratings
does not lead to any further improvement in the ability to predict the Overall rating
the user might place on a new item.

To verify that the difference in the average MAE seen in Figure 3.9 are significant
and not a result of chance, we performed a pairwise t − test using MAE obtained at
the 30 different train/test splits. We found that the differences are indeed significant
except where the error lines in Figure 3.9 cross.

Accuracy in retrieving top-N items

The seven algorithms were trained as described in Section 3.2.4 at different training
set sizes. Then the ratings for each user-item pair in the test set were computed using
the prediction function of each method. This creates an ordering over the test item set
for each user. A recommender system would recommend items from this list in de-
creasing order of predicted rating. The goal of the precision-recall curve is to find out
how the precision of the recommendation is affected as more items are included from
this list in the pursuit of retrieving all the relevant items. In this set of experiments we
treat movies with rating 4 in the test set to be relevant. The precision vs recall curve
is given in the Figure 3.10. A separate experiment that treats movies with rating 3 or
higher in the test set to be relevant returns similar results albeit with a higher precision
value at each recall level due to the presence of more relevant items.

When the training fraction is low the model with discovered structure gives the
highest precision at each recall level. However, when we have more training data the
instance based multi-component rating algorithms using Chebyshev or Mahalanobis
distance do better. Instance based approaches using only the overall component or
the principal component have the worst precision. The model with independence
assumption among the component rating returns lowest precision among the model
based approaches. However, as we use more training data the difference between
the model based approaches diminishes. The interesting point to note here is that al-
though when using only Overall as we use more training data we get a lower Mean
Absolute Error than using all components in the model, it does not perform better in
selecting top-N items. As pointed out in (Herlocker et al. 2004) these metrics measure
two different aspects of the performance of the models and are often not correlated.
One must use the appropriate evaluation metric to measure the suitability of an mod-
els for the task at hand.

We also compute the mean precision after top-5 retrievals and mean reciprocal
ranks of each algorithm at these training fractions. The results shown in Figure 3.11
agree with the general observation made in the precision-recall curves in Figure 3.10.
Among the model based approach the model with dependency structure performs
best. However, as we use more training data instance based multi-component rat-
ing approaches that use Chebyshev or Mahalanobis distances out perform the model
based approaches.

One possible reason for better performance of model based approaches over the

3.3. RESULTS AND DISCUSSION 68

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
Precision-Recall curve @ training fraction=0.025

5 dependent subratings
5 independent subratings
5 subrating (Chebyshev)

5 subrating (Maha)
5 subrating (PCA)

1 Overall rating (FMM) rating
1 Overall rating (corr)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Precision-Recall curve @ training fraction=0.05

5 dependent subratings
5 independent subratings
5 subrating (Chebyshev)

5 subrating (Maha)
5 subrating (PCA)

1 Overall rating (FMM) rating
1 Overall rating (corr)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Precision-Recall curve @ training fraction=0.075

5 dependent subratings
5 independent subratings
5 subrating (Chebyshev)

5 subrating (Maha)
5 subrating (PCA)

1 Overall rating (FMM) rating
1 Overall rating (corr)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Precision-Recall curve @ training fraction=0.1

5 dependent subratings
5 independent subratings
5 subrating (Chebyshev)

5 subrating (Maha)
5 subrating (PCA)

1 Overall rating (FMM) rating
1 Overall rating (corr)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Precision-Recall curve @ training fraction=0.15

5 dependent subratings
5 independent subratings
5 subrating (Chebyshev)

5 subrating (Maha)
5 subrating (PCA)

1 Overall rating (FMM) rating
1 Overall rating (corr)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Precision-Recall curve @ training fraction=0.3

5 dependent subratings
5 independent subratings
5 subrating (Chebyshev)

5 subrating (Maha)
5 subrating (PCA)

1 Overall rating (FMM) rating
1 Overall rating (corr)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Precision-Recall curve @ training fraction=0.5

5 dependent subratings
5 independent subratings
5 subrating (Chebyshev)

5 subrating (Maha)
5 subrating (PCA)

1 Overall rating (FMM) rating
1 Overall rating (corr)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Precision-Recall curve @ training fraction=0.8

5 dependent subratings
5 independent subratings
5 subrating (Chebyshev)

5 subrating (Maha)
5 subrating (PCA)

1 Overall rating (FMM) rating
1 Overall rating (corr)

Figure 3.10: Precision-Recall curve for Three methods

3.3. RESULTS AND DISCUSSION 69

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean precision at top-5

Dependency model (5)
Independent model (5)

Cheby (5)
Overall rating model (1)

Corr (1)
PCA

Maha (5)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean reciprocal rank

Dependency model (5)
Independent model (5)

Cheby (5)
Overall rating model (1)

Corr (1)
PCA

Maha (5)

Figure 3.11: Mean precision at top-5 and Mean reciprocal rank

3.3. RESULTS AND DISCUSSION 70

instance based approaches when the training fraction are low is that instance based
approaches are based on pairwise similarity computations. When the training data is
sparse the pairwise comparisons of users are unreliable. However, the model based
approaches suffer less from these problems because each user is effectively compared
with a model of a group of users that is less sparse. Thus the users are classified
into the correct class more accurately. However, when there is more training data the
pairwise user-to-user comparisons can be done more reliable. This leads to improved
performance of the instance based multi-component approaches.

Hence, the takeaway from these tests is that we can improve the rating predic-
tion accuracy by using multi-component rating, although, the right algorithm to use
depends on the sparsity of the training data. It also depends on whether the recom-
mender system is being used to predict the ratings accurately or retrieve the most
relevant items quickly.

3.3.2 Experiments with time ordered data

In the previous section we used randomly selected subset of ratings for training and
the remaining for testing. The advantage of using random partitions for training and
testing is that by repeating this exercise multiple times we can evaluate the algorithms
on the entire dataset. Moreover, the average result over multiple random train/test
partitions is resistant to the peculiarity of any one partition. But, such data is not often
available in real life. Ratings become available in time order and the only option is to
use the past ratings to predict future ratings. To complicate matters, raters might be
less consistent in their ratings when they start rating than they are after a while. So,
using past ratings to predict future ratings may be harder than using random sample of
ratings to predict remaining ratings. In the current set of experiments we address this
question. We train our algorithms on the first few ratings collected from each person
and test the predictions on her later ratings. Although, this does not measure the
performance of the algorithm on the entire dataset, it simulates the real life scenario
more closely than the random train/test split does.

Also, in the experiments described in Section 3.3.1 each user contributes a different
number of ratings to the training set. So, it was hard to answer the question: until how
many training points is there a benefit from using five components and after what
point it is good to use only Overall? To answer this we use only the first 20 ratings of
each user in this experiment. There were 22920 records, 2331 movies and 1146 users.
After sorting the ratings by time order the algorithms were trained using first 1, 2, . . . ,
18 ratings for each user and tested using the remaining ratings. Comparing results
from training data randomly selected with the results with training data selected by
time order, we see that the random selection leads to lower MAE—as hypothesized
(Figure 3.12).

The conclusion of the earlier comparison of the models is still valid in this more re-
alistic test (Figure 3.13 and 3.14). When there are up to 5 training instances modeling
for the dependency between all 5 components leads to lower MAE than using only
overall rating. In the presence of 5-11 training instances they perform about equally

3.3. RESULTS AND DISCUSSION 71

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 2 4 6 8 10 12 14 16 18

M
A

E

Training fraction

Independent subratings in random order
Independent subratings in time order

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 2 4 6 8 10 12 14 16 18

M
A

E

Training fraction

Dependent subratings in random order
Dependent subratings in time order

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 2 4 6 8 10 12 14 16 18

M
A

E

Training fraction

Only overall in random order
Only overall in time order

Figure 3.12: MAE comparison using randomly selected training data, vs., using train-
ing data as they are received.

3.3. RESULTS AND DISCUSSION 72

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 2 4 6 8 10 12 14 16 18

M
A

E

Training fraction

Dependenct subratings in time order
Only overall in time order

Independent subratings in time order

Figure 3.13: Three algorithms compared by using data in time order for training

well. When there are more than 11 training instances using only overall ratings leads
to lower MAE. However, we find that the results are sensitive to the particular parti-
tion used. The MAE trend in this case is not as smooth as they are when the results
with multiple random training and testing partitions are averaged. This variability
is also observed in the precision and recall curves while top-N relevant items are re-
trieved (Figure 3.14). However, there is an advantage of using five dependent compo-
nents as can be observed from the figure.

3.3.3 Filling-in missing component ratings

Raters find it easier to form an overall impression about their subject than to objec-
tively evaluate specific aspects of it (Feeley 2002). This leads to two kinds of problems
while collecting multi-component rating data:

1. Halo Effect If they choose to rate the components without deliberating over it
enough to evaluate it objectively rating values get biased by their overall im-
pression of the subject. This, known as the halo error, is treated in Section 3.1,
3.2.1, and 3.2.3.

2. Missing Values If the raters choose to skip rating the components, we have a
missing data problem for rating components. In our dataset 34% of the records
(235,659 out of 691,495) had incomplete rating information and thus needed to

3.3. RESULTS AND DISCUSSION 73

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.1

dependent subratings
only overall rating

independent subratings

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.2

dependent subratings
only overall rating

independent subratings

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.3

dependent subratings
only overall rating

independent subratings

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.4

dependent subratings
only overall rating

independent subratings

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.5

dependent subratings
only overall rating

independent subratings

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.6

dependent subratings
only overall rating

independent subratings

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.7

dependent subratings
only overall rating

independent subratings

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.8

dependent subratings
only overall rating

independent subratings

Figure 3.14: Precision-Recall curves using prior data for training and later data for
testing

3.3. RESULTS AND DISCUSSION 74

Complete 66% Some components 2%

Only Overall 32%

Available Ratings

Complete
Some components
Only Overall

Figure 3.15: Records with partial information

With unfilled components Filled in components % Increase
Number of User 1058 1680 59%
Number of Item 3430 3926 14%

Number of Records 45892 74110 61%

Table 3.8: Increase in dataset size after filling in missing components

be discarded for the experiments described in the previous sections. Of those
235,695 incomplete records 225,515 (95%) have only the Overall rating. This
indicates the difficulty in obtaining component ratings from the users.

There are two opportunities for contribution here:

1. If we can predict the harder aspect ratings for a user for an items taking the
user’s Overall rating into account then we can design a rating support system.
One use case is: the user gives his Overall rating on the item and the system
pre-fills the component ratings. Then the user confirms them or modifies them
if he feels they are different from how he would rate.

2. If we can fill in the missing values in the dataset we can generate recommenda-
tions for more users. Since we need a minimum number of ratings per user in the
dataset, discarding incomplete records eliminates many users, and consequently
many of their records even with complete ratings. Table 3.8 shows the difference
between sizes of the dataset when we discard the incomplete records and when
we fill-in the missing values using the method described in this section.

We showed in Section 3.2 that the probability distribution over all the variables
can be factored as:

P (U, ~R, I) =
∑
Zu,Zi

P (Zu)P (Zi)P (I|Zi)P (U |Zu)
5∏
j=1

P
(
Rj |Zu, Zi,PaRj

)
(3.26)

3.3. RESULTS AND DISCUSSION 75

Method MAE
Multi-component FMM 0.353

SPSS EM 0.368
SPSS Regression 0.569

CF predicting Components 0.701

Table 3.9: Comparison of different methods filling in missing rating components.

Since, we always have Overall rating in our data we focus on predicting missing com-
ponent ratings. To make an inference about one of the component ratings such as
S using the values of U , I and O variables we need to carry out two operations on
distribution given in Eq 3.26:

1. Marginalize away the variables we do not need, i.e., Rj ∈ A,D, V

2. Plug-in the values of the variable we have. Let’s denote them as u, i and o.

The operations result in the following

P (U, I, S,O) =
∑
Zu

P (Zu)
∑
Zi

P (Zi)P (O|Zu, Zi)P (I|Zi)P (U |Zu)P (S|Zu, Zi, O)

⇒ P (u, i, S, o) =
∑
Zu

P (Zu)
∑
Zi

P (Zi)P (o|Zu, Zi)P (i|Zi)P (u|Zu)P (S|Zu, Zi, o)

∝ P (S|u, i, o)

The result is a function of S that is proportional to its posterior distribution given
the variable values u, i and o. The mode of this distribution is output as the predicted
value of S.

Experiments and Results

First we use only complete records in this experiment to be able to predict the miss-
ing components and verify the predictions. The component ratings are hidden in the
test data. Only U, I andO variable values were used from the test data to predict the
hidden component ratings. We predicted each of the component ratings (S,A, V,D)
for every record in the test set and computed Mean Absolute Error. 10-fold 3 cross
validation was used to generate the training and testing samples (Mitchell 1997). We
compared our results with the performance of the Missing Value Analysis (MVA) rou-
tines of SPSS. The Error values are given in Table 3.9.

MAEs in predicted missing values are close to 0.36 on a scale of length 5. When we
predict the component ratings using only the U and I values as done with traditional
collaborative filtering the MAE values are between 0.6 − 0.7. This suggests that our
method is able to extract considerable benefit from the additional available informa-
tion in the Overall rating. The regression approach to predict missing values, part of

3Experiments with 2, 3 and 5 fold cross validations yield similar results

3.3. RESULTS AND DISCUSSION 76

� 4 � 3 � 2 � 1 0 1 2 3 4

0

10

20

30

40

50

60

70

80

Error distribution

Error

P
e
rc

e
n
ta

g
e

Figure 3.16: Error distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
A

E

Training fraction

MAE when trained and tested in time order

Five dependent subratings
Only Overall

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
A

E

Training fraction

MAE when trained and tested in random order

Five dependent subratings
Only Overall

Figure 3.17: Accuracy of collaborative filtering after filling in missing components

3.3. RESULTS AND DISCUSSION 77

Training and testing in time order Training and testing in random order

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.1

dependent subratings
only overall rating

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.1

dependent subratings
only overall rating

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.2

dependent subratings
only overall rating

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.2

dependent subratings
only overall rating

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.4

dependent subratings
only overall rating

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.4

dependent subratings
only overall rating

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.8

dependent subratings
only overall rating

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision-Recall curve @ training fraction=0.8

dependent subratings
only overall rating

Figure 3.18: Precision recall curves for filled in data

3.4. CONCLUSIONS 78

the SPSS MVA module, was not very successful at an error of about 0.6. However, the
EM algorithm used in the SPSS MVA module produced results almost as good as ours.
The algorithm takes an iterative approach that alternates between the following two
steps until convergence. Starting with random initialization of the missing values,

1. Regress each variable in turn against all other remaining variables and estimate
the co-efficients,

2. Predict missing variable values of the incomplete records using linear regression
model with the help of the co-efficients estimated so far and the other variables
in the record.

Examining the error distribution of our method, we found that the errors are well
behaved, with very few predictions off by a large margin (Figure 3.16). In about 70%
of the cases we were accurate in our prediction of missing value and in about 96% of
the cases the prediction was within one rating from the true value.

In the second part of the experiment, we used this method to fill in the missing
component ratings in the dataset. We then used the completed dataset to generate
recommendations. We found that our prediction accuracy is similar to what we get
when we use only complete records (Figure 3.17 vs Figure 3.9). The advantage of
using multiple components for collaborative filtering when small amount of training
data is available is preserved as well (Figure 3.17, 3.18). Admittedly, it is less clear
from the MAE scores when the data is used in time order, where, using only Overall
ratings has an advantage when there is large amount of training instances.

To summarize: the proposed imputation method can extend the use of multi-
component rating collaborative filtering algorithms to datasets consisting of records
with missing rating components while preserving the algorithms’ advantages over
the single component rating collaborative filtering algorithm. It can also be used as a
rater support system that uses a rater’s Overall rating, that is easier to get, to make a
knowledgeable prediction of the component ratings, that are harder to get.

3.4 Conclusions

We started this study with the following question:

Can the recommendations by collaborative filtering algorithms be im-
proved by using multiple component ratings?

To answer this question we collected multi-component movie rating data from
Yahoo! Movies. Since component ratings are correlated due to halo effect a structure
discovery exercise was carried out to find the dependency tree that captures most of
the dependencies among the components. The discovered structure is interesting in
itself. It says that the component ratings provided by the users are more correlated
to the Overall ratings than they are to other component ratings. This suggests the
possible relation between the Overall impression of the user and the ratings given

3.4. CONCLUSIONS 79

to the components. In this context, we draw a connection to the work on the halo
effect in the psychometric literature. The body of work on halo effect indicates that
component ratings are influenced by the presence of other strong factors and by the
overall impression.

We develop a mixture model based collaborative filtering algorithm incorporat-
ing the discovered dependency structure. In addition several one component algo-
rithms and their variations for multi-component ratings were evaluated on the col-
lected dataset. The multi-component rating algorithms lead to better performance
than the one component rating algorithms in both predicting the rating values accu-
rately and in retrieving the most relevant movies quickly. The model based algorithm
using dependency structure leads to better retrieval performance when the training
data is sparse. However, when more training data is available, using instance based
multi-component rating approaches, that use Chebyshev or Mahalanobis distance to
measure distance between two ratings, perform better. In addition these two instance
based multi-component rating algorithms are able to predict the ratings more accu-
rately than other algorithms that we tested.

One of the advantages of the model based approaches is that after the model is
calibrated, it can be used to quickly generate recommendations. This makes them
suitable for scenarios like shopping web sites where real time recommendation gener-
ation is important. When the training data is sparse, a common problem faced by real
world scenarios, there is an advantage of using multi-component ratings in a model
that accounts for the Halo effect among the components. However, if we have more
training data one component rating flexible mixture model is able to better predict the
ratings than other model based approaches.

Another constraint of real life implementation of recommender systems is that
we can only train our algorithms on past ratings to predict future ratings. Such pre-
diction can be harder than using random partitions of the entire dataset for training
and testing, because, raters could be inconsistent in their ratings early on. Although,
each algorithm performs worse when ratings are used in time order, the advantage
of multi-component rating–especially when using small amount of training data–is
preserved.

The proposed multi-component model can be used to predict values of the miss-
ing component ratings. This is useful because in the current dataset approximately
one third of the records have one or more of the component ratings missing. We show
that the missing values can be filled in reliably. This allows us to generate recommen-
dations for 59% more users and recommend 14% more items.

Multi-component rating collaborative filtering algorithms can suffer because of
poor data. One can argue that objectively rating aspects of an item requires delibera-
tion that only be expected from professional critiques. This can cause halo and reduce
the information in the components. In this work we provide an approach to use the
limited but important information in the components to make better recommenda-
tion. However, with increased emphasis on user generated content and on valuable
services using them we expect the quality of such data to improve. The proposed

3.4. CONCLUSIONS 80

algorithm will be even more valuable in such a scenario.
Our work suggests several future research directions. One of foremost importance

is the evaluation of the proposed method in other multi-component rating datasets.
Also, in the presence of adequate number of ratings a more complete dependency
graph among the ratings might be discovered and used as it will better capture the
dependency among the rating components. We have shown that the proposed model
can be used to fill in the missing rating components. Such an approach can be used to
design a rater support system that predicts a user’s component ratings using his over-
all rating. But, such a system might bias the rater. The implementation and evaluation
of such a rater support system is an interesting topic to explore.

CHAPTER 4

Socio-temporal analysis of conversations in
intra-organizational blogs

Abstract

Blogs have been popular on the Internet for a number of years and are
becoming increasingly popular within the organizations as well. The anal-
ysis of blog posts is a useful way to understand the nature of expertise
within the firm and identify opinion formation and the opinion leaders in
organization. In this chapter, we are interested in understanding the topics
of conversations that evolve through the blog posts and the replies to blog
posts. While keywords within blog posts can be used to characterize the
topic being discussed, the timestamps permits one to distinguish among
the objects of the discussion, and the authors of posts provide a mean of
separating different perspectives on the matter. Based on this observation
we define topics of conversation using keywords, people, and timestamps of the
blog posts and replies. We use tensors to capture these multiple modes of
the blog data. We generalize the idea of importance by association that has
been extensively used in social networks and other two-dimensional data
analysis to multi-modal data. We show that such importances can be cal-
culated by an operation of tensor factorization. This approach is illustrated
by applying it to a dataset extracted from the blog network within a large
globally distributed IT services provider over 30 months. We discuss im-
plications of this work for monitoring opinion developments and detect-
ing opinion leaders within the organization. Finally tensor factorization is
applied to discover communities from the online social conversation and
the effectiveness is measured with the help of author provided community
labels on the conversations.

4.1 Introduction

Increasingly organizations are creating private blogs to promote peer-to-peer com-
munication and collaboration among employees. With the advent of Enterprise 2.0
employees, who used to be end users of information, are playing a larger part in gen-
erating and disseminating knowledge with the help of blogs and user forums. The

4.1. INTRODUCTION 82

activities in the blog network permit monitoring employee opinion, identify leaders
or experts in different topics and enable an organization to develop a map of the ex-
pertise that is available within the organization. The automated analysis of large scale
blog data to stay on top of happenings within the firm and gather organizational in-
telligence is a topic of considerable interest to managers and decision makers.

The Knowledge Management community has done a lot of work in developing Ex-
pert Finder systems to identify experts within the information system of an organiza-
tion (Yimam 2000, Becerra-Fernandez 2006). The dominant theme of the expert finder
systems is indexing expertise in a database and providing an interface for the manager
to query it. However, it has grown to include user referrals (Kautz and Selman 1998)
and personalized agents to identify experts (Vivacqua 1999). The data used in build-
ing such system include user response to expertise surveys, their posts in discussion
groups(Krulwich et al. 1996), and the technical documents they produce (Streeter and
Lochbaum 1988a,b).

On the other hand sociologists have been interested in identifying people with
higher status, prestige, and influence in intra-organizational social networks (Brass
1992, Bonacich 1987, Bonacich and Lloyd 2001). They have proposed a number of cen-
trality measures such as eigenvector centrality, betweenness, closeness etc. Usually,
such measures are computed on networks with ties of one type that varies in intensity
for different pairs of nodes, e.g., number of times a person seeks advice from another
in an advice network, strength of friendship in a friendship network, etc. Only a few
have looked at differing content of the ties in the network (Burt and Schøtt 1985).

Due to the adoption of online social media at the enterprise level employees are
participating in creating and disseminating a wide variety of knowledge. Some of
which could be of interest to organization, such as organizational practice, technical
developments; where as others fall in domains outside of organizational interest, such
as sports, politics etc. Therefore, to identify people who have high status in topics of
particular interest to the organization as a whole or to groups of people within the
organization, one needs to look into the content of the social exchange taking place
in the online social network within the organization. This is the domain of text data
mining literature.

The text data mining community has made considerable progress over last decade
in analyzing and tracking topics in public text posts. The Topic Detection and Track-
ing initiative (Allan et al. 1998, Yang et al. 1998, Franz et al. 2001, Doddington et al.
2000), extension of the Latent Dirichlet Allocation (LDA) for temporal topic modelling
(Wang and McCallum 2006), construction of patterns of statistically significant word
occurrences (Swan and Jensen 2000) in news streams are important examples of work
in this area. Another group of works have ventured beyond using just the word oc-
currence in text documents to include the author of the documents and the social en-
vironment in which they post. The author-recipient-topic model (ART) extends LDA
to incorporate sender and recipient information for modeling email topics (McCallum
et al. 2004). The content-community-time model is a two step probabilistic cluster-
ing approach for identifying time bound news topics in blogosphere (Qamra et al.

4.1. INTRODUCTION 83

2006). The modeling of co-voting records by various senators is yet another example
of socio-textual analysis for detecting groups of actors associated with certain topics
(Wang et al. 2005).

Another stream of research has taken a matrix/tensor factorization approach to
uncovering topics and trends in online social media. Eigen-trend is a method of track-
ing the importance of a keyword in the blogosphere taking into account weights of
different blogs in which they are mentioned (Chi et al. 2006). They also propose a
higher order singular value decomposition approach to compute hubs and authority
scores of a set of blogs specific to a particular keyword. (Zhu et al. 2007) has proposed
a technique to simultaneously factorize a web linkage matrix and web-page content
matrix to generate a parsimonious representation of the original matrices. They have
shown on WebKB and Cora dataset that using this parsimonious representation of
one can perform page classification with accuracy as good or better than other state-
of-the-art classification algorithms. TOPHITS is an approach to compute topical hub
and authority in a set of web pages by representing the hyperlinks labeled by anchor
text in a from×to×keyword tensor and factorizing the tensor(Kolda and Bader 2006).

Dynamic modeling of relations in a social network has seen recent interest as well.
(Chi et al. 2007) present a non-negative matrix factorization approach to model in-
teraction between blogs over time as sum of interaction within communities of blogs
whose intensities vary over time. A three way nonnegative tensor factorization ap-
proach has been applied in (Bader et al. 2007) for tracking relationship between em-
ployee from the Enron email dataset using the number of emails exchanged between
them. They have also applied tensor factorization on international trade data for track-
ing trade relation between countries. A latent space model to track relation between
authors in NIPS publication network has been presented in (Sarkar and Moore 2005).

Despite such progress in tracking social interaction and topic developments in
news streams, topical analysis of social interaction over time has not been well ex-
plored. This could be of considerable interest for detecting and tracking significant
topics of conversation between actors in a social network. Here we define conversation
as set of messages exchanged between two or more people. Since, the significance of
a topic of conversation depends not only on the content of the conversation, but, on
the significance of the people participating in the conversation, we need an analysis
framework that can handle actors at both side of the conversation, text content, and
time stamp on the conversation. Author-recipient-topic model is based on one such
framework, but, at the current stage it does not track topics or actors over time. The
current chapter aims to fill this gap. However, we will follow a tensor based frame-
work as opposed to probabilistic graphical modeling framework that ART is based
on.

Objective

The objective of this chapter is to detect significant topics in conversations occurring in
an online social network along with the important actors in those topics and important
time periods when those topics developed.

4.2. IMPORTANCE OF ENTITIES IN INTRA-ORGANIZATIONAL BLOGS 84

The contributions of this work are:

1. A tensor based framework for representing the multi-modal data that is part of
social conversation

2. An interpretation of tensor factorization that defines significance of entities in a
multi-modal online conversation dataset

3. Proposal and evaluation of a tensor factorization approach for community dis-
covery and tracking in blogosphere

4.2 Importance of entities in intra-organizational blogs

Importance by association is behind the calculation of many importance computations.
Eigen centrality has been used to defined status in a social network (Wasserman

and Faust 1994). The centrality of an actor is determined by the centrality of other
actors in the network that it is connected to. This follows the intuition that if a person
is affiliated with other people who has high status in the network the person also has
high status because of it. The adjacency matrix representation of such social networks
are symmetric and its elements are positive. On such a matrix the centralities of the
actors are given by the leading eigenvector. The leading eigenvector can be computed
by singular value decomposition.

Singular value decomposition of an adjacency matrix (from × to) of a network
of directed hyperlinks between a set of web pages produces the hub and authority
scores of the pages(Pagerank (Brin and Page 1998), HITS (Kleinberg 1999)). The lead-
ing left singular vector gives the hub scores whereas the leading right singular vector
gives the authority scores. The node with high hub scores are the ones that link to
nodes with high authority scores and the nodes with high authority scores are the
ones linked to by nodes with high hub scores. Usually the leading singular vector
pair is used since they explain most of the variations in the data, however subsequent
singular vector pairs can also be used if their singular values indicate that they explain
substantial portion of the data as well. Subsequent pairs have the same relation be-
tween the hubs and the authorities. Each pair corresponds to a different community
sub-structure over the nodes. The first k pairs of singular vectors provide a decom-
position of the two dimensional data matrix into k rank-1 matrices. This method is
unsupervised: topics are determined solely from the co-occurrence patterns in the
data. Although, HITS and Pagerank use SVD to identify authoritative pages in a set
of hyperlinked webpages, they differ in their interpretation and in the adjacency ma-
trices they operate on. HITS takes a more traditional network factorization approach
to identify hubs and authorities. It focuses on a smaller sub-network identified by lo-
cal crawling around a root web-page. However, Pagerank works on the entire WWW
network. It views the authority of a webpage as the probability of a random surfer
being at the webpage after a long time. The random surfers transition from one page
to another can be modeled by a Markov process. The authorities of the web page is

4.2. IMPORTANCE OF ENTITIES IN INTRA-ORGANIZATIONAL BLOGS 85

K
e
y
w
o
rd
s

From

To

Fr
o
m

To

Re
pl

y
co

un
ts

"Cricket"

"Java"

"Testing"2

5

1

8

Keyword counts

Figure 4.1: Tensor representation of the conversation

the stationary probabilities at the webpages. This is obtained by SVD on a transition
probability matrix over the entire network.

Outside the network analysis literature SVD has been applied to the co-incidence
matrix of documents and terms. This is known as Latent Semantic Indexing (LSI)(Deerwester
et al. 1990). LSI produces a parsimonious representation of the original document-
term matrix where each document has certain weight on a small number of semantic
topics and each word has some weight on those semantic topic. In each topic, the
weight of the document is determined by the weight of the keywords in the docu-
ment and the weight of each keyword is determined by the weight of the documents
in which it occurs.

Not all datasets can be satisfactorily represented by a two dimensional matrix. In
a blog network where relations are indicated by citations and replies, encoding the
relation by a single number would lose the content and the context of the relation. Or,
in the case of an evolving network, where a timestamp is associated with each edge, a
two dimensional representation of the relational data would have to be at the expense
of temporal information. Such data is better represented and analyzed in a tensor.
For example text messages exchanged between people in the social networks can be
represented in a from× to× keyword tensor (Figure 4.1).

Each cell of the tensor contains co-occurrence count, or a value derived thereof,
of the three corresponding author, recipient, and keyword. The cell value indicates
the strength of association between the three. Other similar examples can be found in
TOPHITS (Kolda and Bader 2006) and three way DEDICOM (Bader et al. 2007). The
current work builds on this literature using tensors for encoding semantic graphs and
focuses on identification of significant themes along with important actors and impor-
tant dates in each as part of the larger investigation into mapping expertise within an
enterprise blog network.

4.2. IMPORTANCE OF ENTITIES IN INTRA-ORGANIZATIONAL BLOGS 86

4.2.1 Summary of notations

Here is a list of notations used in this chapter.
a, b, c . . . are used to represent scalars.
a,b, c . . . are used to represent a vector.
A,B,C . . . are used to represent two dimensional matrices.
A,B,C . . . are used to represent tensors that have more than two dimensions or

modes.
a ◦ b is the outer product between vector a and vector b. The result is a matrix

whose ith row and j th column contains aibj . This can be extended to outer product
between more than two vectors. Outer product of three vectors a,b, c would result in
a tensor whose i, j, kth element contains aibjck.
‖·‖F represents the Frobenious norm of a matrix or a tensor. This is equal to square

root of the sum of square of the elements in the matrix or the tensor.
×k is the k mode multiplication of a tensor with a vector (Kolda and Bader 2008).

It is defined as

Y = X×k v

⇔ Yi1,i2,...,ik−1,ik+1,...,iM =
∑
ik

xi1,i2,...,ik−1,ik,ik+1,...,iM × vik

Notice that (1) the length of v must equal to the size of the kth mode of X and (2) Y has
M − 1 modes. This is similar to multiplication of a matrix with a vector: multiplying
dimensions of the matrix and the length of the vector must match; and the result is a
vector of length equal to the non-multiplying side of the matrix.

The last one is the Kruskal operator J·K defined by (Kolda 2006) as

Jλ; A(1), . . . ,A(M)K =
R∑
r=1

λr × a(1)
r ◦ · · · ◦ a(M)

r

Each A(k) matrix has R columns. The matrices are of equal width, but, they need
not have equal height. The Kruskal operator adds together R outer products of M
vectors to produce is a M mode tensor. The length of the kth side of the tensor is
equal to the height of A(k).

4.2.2 Importance definition for multi-modal data

Definition 1. Generalizing importance by association to tensors we propose that the
importance of an entity in a multi-modal dataset captured in a co-incidence tensor de-
pends on the importance of the entities in the other modes it is co-incident with.

If we assume that each mode makes a multiplicative contribution of importance
for each co-incidence, as is done in many matrix based importance calculations, we
can formalize the definition in the following way.

4.2. IMPORTANCE OF ENTITIES IN INTRA-ORGANIZATIONAL BLOGS 87

For a co-incidence tensor X of M modes let the importance of entities along kth
mode be a(k). a(k) satisfies the following condition

a
(k)
j =

∑
i1

∑
i2

· · ·
∑
ik−1

∑
ik+1

· · ·
∑
iM

xi1,i2,...,ik−1,j,ik+1,...,iMa
(1)
i1
a

(2)
i2
. . . a

(k−1)
ik−1

a
(k+1)
ik+1

. . . a
(M)
iM

;∀k

(4.1)
Using tensor multiplication notation the Equation 4.1 can be compressed to

a(k) = X
∏
i 6=k
×ia(i) (4.2)

Notice that after the sequence of multiplications X reduces to a vector of length
equal to the kth side of the tensor X. This gives the weight of the entities along kth
mode of the tensor X.

Applied iteratively for all k, a(k)s converge to minimize ‖X − a(1) ◦ · · · ◦ a(M)‖F
(De Lathauwer et al. 2000). In other words

X ≈ a(1) ◦ · · · ◦ a(M) (4.3)

or, a(1) ◦ · · · ◦ a(M) is the rank-1 approximation of X. {a(1), . . . ,a(M)} is the most
dominant factor in X.

One can compute the best rank-R approximation of X by using parallel factoriza-
tion of the tensor (Harshman 1970)—often abbreviated to PARAFAC. Denoting the
kth mode vector of rth factor by a(k)

r , the rank-R approximation can be expressed as:

X ≈
R∑
r=1

λr × a(1)
r ◦ · · · ◦ a(M)

r = Jλ; A(1), . . . ,A(M)K (4.4)

λr is a normalizer to keep norm of each weight vector a(k)
r equal to 1. Each of R

sets of {a(1), . . . ,a(M)} importance weights satisfy 4.2.
The popular approach to compute PARAFAC is based on Alternating-Least-Square

error minimization (ALS). The error ‖X− Jλ; A(1), . . . ,A(M)K‖F is minimized by suc-
cessively optimizing one of the M matrices while keeping the remaining M − 1 matri-
ces constant. The detailed ALS algorithm can be found in (Kolda and Bader 2008). An
implementation is available in their TensorToolbox matlab package (Bader and Kolda
2007).

We illustrate two applications of this method for blog data analysis next.

4.2.3 Blog post developments

One view of the blogs is that they are self-publication media where bloggers write on
topics of their interest. If the goal is to identify important developments of a topic
in the posts, we posit that we need to look beyond the word occurrences in the blog
posts. We also need to consider the importance of the author of the post. The post
made by an authority in a subject is a stronger signal of a development in the topic,

4.2. IMPORTANCE OF ENTITIES IN INTRA-ORGANIZATIONAL BLOGS 88

than a post that is made by someone who is not an authority in the subject. Therefore,
to identify different topic developments in blog posts, the relevant variables are the
authors, timestamps and keywords of the blog posts. This data can be represented as
a author × keyword × timestamp co-incidence tensor X, where, each cell of the ten-
sor contains tf − idf weighted and length normalized counts of the word occurrences.
This value indicates the strength of association of the three variables. Spelling out Def-
inition 1 for author×keyword× timestamp tensor we obtain the following reinforcing
definition of authority of bloggers, importance of keywords and intensity of a topic at a
given time period for a particular topic:

1. The authority of a blogger in a topic can be judged from her participation during
the period when the intensity of the topic is high and from her use of important
keywords.

2. The importance of a keyword in a topic can be judged from its use by the author-
ities in the topic and from its use during the period when the intensity of the
topics is high.

3. The intensity of a topic during a time period can be measured from the number of
posts made by authorities and the presence of important keywords in the topic.

This is a higher order extension of hub and authority computation. When we want to
identify only the most dominant topic, the importance of pth blogger in this topic can
be calculated according to the definition as:

ap =
∑
q

∑
r

xpqrkqtr ⇐⇒ a = X×2 k×3 t (4.5)

Similarly

k = X×1 a×3 t (4.6)
t = X×1 a×2 k (4.7)

where, X ∈ <|a|×|k|×|t|; a, k, and t are the vectors of importance of the authors,
keywords and time periods; ×j is the j-mode product of a vector with a tensor. Ap-
plied iteratively the vectors a, k, and t converge to minimize the error ‖X−a◦k◦ t‖F .
Thus a ◦ k ◦ t is the rank-1 approximation of the tensor X. Extending from one dom-
inant topic to R topics and using a set of normalizers λ to make each vector of unit
length, the approximation can be expressed as sum of R rank-1 tensors:

X ≈
R∑
r

λr × ar ◦ kr ◦ tr = [λ; A,K,T] (4.8)

where, A,K,and T are the three modal matrices each with R ar, kr, and tr as
column vectors respectively.

4.3. DATASET 89

Blog post and reply data
Bloggers 4.8K

Commentors 16K
Blogs 4.7K

Blog posts 71.5K average length 300 words
Comments 286K average length 33 words
Date range Apr ’06–Oct ’08

Table 4.1: Blog data description

4.2.4 Blog conversation development

In this extension we take into account the conversational nature of the blog posts.
A comment to a blog post or a post with a citation has an author and a recipient.
Subject of the post not only depends on who is making the post but also who it
is targeted to. To capture this we represent the blog data in a fourth order tensor
(author × recipient × kewords × timestamp). The idea behind evaluating the impor-
tance of a variable is similar to that in blog topic development analysis. The extension
is that the importance of the recipient of the conversation influences the importance
of the variables in other modes.

4.2.5 Comparison with the existing methods

The HITS algorithm (Kleinberg 1999) separates a blog network into multiple layers of
network. But, it does so based on the pattern of links—not taking into account the
content. One could envision an approach where first the blog posts are clustered into
topics and then HITS is performed in each to find important people in the group. Al-
though, this approach separates conversations into topics based on the content of the
documents, it does not take into account the importance of the words said in iden-
tifying the important bloggers. This Blog conversation development work has more
similarities with the TOPHITS (Kolda and Bader 2006) where a from× to× term ten-
sor was constructed for hyperlinked web pages. TOPHITS uses the anchor text as the
description of the link. We use text in the blog posts and replies that are much longer;
and require more cleanup and normalization of the term vectors. Our work is also
different in its extension with a time dimension to track topic intensities over time.

4.3 Dataset

The data for this study is extracted from an employee-only blog network in a large IT
services firm. It contains the blog posts and replies along with timestamps and de-
mographic information about the bloggers. A subset of the blog articles are posted in
one of the 25 communities by their authors. These 25 communities have been further
classified as work related and non-work related by experts at the firm(Table 4.3).

4.3. DATASET 90

Total # of posts 71.5K
In community Outside

44K
Work Non-Work

posts 15K 29K
communities 11 14

27.7K

Table 4.2: Posts in different communities

Non work Work
Photography Senior Management

CorporateSocialResponsibility Testing
Fun KM

Puzzles Feedback
Sports FLOSS

Poetry-Stories BusinessDevelopment
Education-Motivation CorporateFunctions

Geographies Project Management
Movie-TV-Music Technology

Religion-Spiritual-Culture Domains
Miscelleneous Practices Programs Accounts

History-Culture
Arts

Books

Table 4.3: Different communities

All Unique (reader, post)
4.5M −→ 2.5M
↓ ↓

In communities 2.4M −→ 1.4M
Non work

Work
2M

0.4M
1.2M
0.24M

Table 4.4: Blog reading counts obtained from the web access logs. The raw data often
contains one person accessing a post multiple times. For some purposes it might be
more meaningful to consider only the unique instances of a person reading a blog
post.

4.4. APPLICATION OF TENSOR FACTORIZATION 91

Total # of posts made Average # of unique readers per post
639 3
534 4
532 3
512 1
480 3

Table 4.5: Average number of people who read posts of the most frequent bloggers.
Average over the entire blog dataset is 22

We also have collected web access logs from the blog hosting server. The log con-
tains the reading activity of the employees in the firm. This dataset is prepared to
contain reader id, time stamp of reading, and blog post URL. The reading counts are
summarized in Table 4.4.

From the examination of the blog posts we found that a majority of the posts are
chatters: collection of jokes, quotes, and interesting news items etc. that form no
consistent pattern and generate interest for only a short duration. Often they are of
limited value to the organization. In a random sample of 50 blog posts we found 31 to
be collected joke, quote, or news item and 16 to be original and work related (2 of the
remaining were non-English, 1 was empty post). In fact the bloggers who post most
frequently exhibit this behavior. However, their posts are not read by many (Table 4.5).
Therefore, the bloggers who are the most active in the blogosphere are not necessarily
the experts or the most popular bloggers1. In order to determine the expertise of a
person one needs to consider the content of her posts along with other signals from
the blogosphere such as the people from whom the post derives a response.

Buried in the chatters there are long running topics driven by one or a small group
of bloggers who could be considered authorities in the subject (See Table 4.6). In this
chapter, one of our objectives is to identify such topics along with the bloggers who
are driving such topics.

4.4 Application of tensor factorization

4.4.1 Data preparation

We used two subsets of the data for the two methods described in Section 4.2 for
blog data analysis. For blog post development analysis we used the text of the blog
posts, author-ids, and the timestamp on the post. Texts of the posts are converted to
vectors of term weights by removing the stopwords from them and tokenizing them.
Only the terms/words that occurred in a certain minimum number of posts (10 in the
reported results) were kept. This helps in keeping the vocabulary size small while
removing very rare words. Then occurrence counts of the terms in a post are tf − idf

1Spam was not an issue in this dataset, since, no one outside the firm had access to the blog network

4.4. APPLICATION OF TENSOR FACTORIZATION 92

Id: xxx081 Date: 2007-
09-05

Id: xxx991 Date: 2007-
11-09

Id: xxx368 Date: 2007-
10-10

Diodes can be classified by
the functions of the circuit
in which it is being used,
or more commonly, by the
shape that is demanded by
the size of the products in
which it will be mounted.
The complicated point is
that there is no direct rela-
tion between the two and
you must keep them both
in your mind at all times.
. . .

Benefits of Automated
Testing. If you have
ever tested applications
or Web sites manually,
you are aware of the
drawbacks. Manual test-
ing is time-consuming
and tedious, requiring
a heavy investment in
human resources. Worst
of all, time constraints
often make it impossible
to manually test every
feature thoroughly . . .

20 Minute Home Work
Out. If you are busy, not
able to get up early morn-
ing or have no time for
gym just follow this 20
minute home work out to
stay healthy and fit. 1.
Jog in one place for 3 min-
utes. Simple light jogging
on the spot. 2. Jumping
jacks: 25 repeats. When
landing, bend your knees
slightly to reduce the im-
pact on knee . . .

(125 more posts by
xxx081 in next ten days
on “voltage”, “diodes”
and “semiconductors”)

(150 more posts by
xxx991 in next eight
weeks on “software”,
“test”, “automation”)

(190 more posts by
xxx368 in next hundred
days on “exercise”,
“muscle”, “weight”)

Table 4.6: Some of the topics in a blog network along with posting pattern of people
behind them.

4.4. APPLICATION OF TENSOR FACTORIZATION 93

Number of replies 260K
to blog posts 176K

to other replies 84K
to multiple post/reply 12K

Table 4.7: Descriptive statistics of the reply network

weighted and normalized for document length before using them as term weights.
The timestamps were coalesced to a granularity of a day. This data is stored in a
author× keyword× timestamp tensor. Each cell of the tensor contains total weight of
a keyword used by an author on a particular day. This resulted in a 4.6K×900×22.5K
tensor with 4.4M nonzero entries (sparsity = 6.6× 10−5).

For the blog conversation development analysis we used only the words in the
reply text, the author-id, the id of the target blogger and the timestamp. The reason
for excluding the blog posts is that it is not clear who the initial blog post is targeted
to. To determined the target of a reply we searched for mentions of names of authors
who have written the blog post or replied to the blog post prior to the current reply.
If one or more names are mentioned in the current reply, then the reply is taken to be
targeted to latest posts or replies in the enclosing reply chain by the named authors. If
a reply does not contain any name then it is taken to be directed at no one other than
the person who wrote the original blog article. The resulting reply statistics is shown
in Table 4.7.

We carried out the same transformation of text and the timestamp as done in
the case of blog-post-development, but, this time we stored the data in a author ×
recipient × keyword × timestamp tensor. Each cell of this tensor contains the sum of
the weight of a word said by the author to the recipient on a particular day. This re-
sulted in a 16.8K × 3.8K × 900× 11.8K tensor with 1.6M nonzero entries (sparsity =
3.4× 10−9).

4.4.2 Illustrative results

Each tensor was decomposed into 25 rank-1 tensors using PARAFAC, because evi-
dence from community labels suggest that there are 25 communities in the data. Some
of the resulting factors are displayed in Figures 4.2 and 4.3. For each factor the top five
keywords are shown along with the importance of the top-authors in descending or-
der and the daily intensity of the topic.

As we can see from Figure 4.2 the decomposition is separating activities in differ-
ent topics. The intensities of the topics over time gives us insight into how the topic
has evolved. Posts about “software testing” have generated interest for much shorter
period compared to the conversations about “new technology companies”. The im-
portance scores of the top authors also give insight into the nature of the conversation.
Posts about physical exercise have seen activity over about 100 days, but, they are pri-
marily made by one person. On the other hand more people have contributed to

4.4. APPLICATION OF TENSOR FACTORIZATION 94

Figure 4.2: Trends of topics and importance of top bloggers in each topic. Four identi-
fied topics are illustrated. The top-left one is about software testing. The top-right one
is about Indian politics. The bottom-left one is about physical exercise. The bottom-
right one is about new technology companies. The histograms of the actor impor-
tances show different degree of participation of actors in the topic. For example, the
topic of physical exercise can be seen to be driven primarily by one person.

4.4. APPLICATION OF TENSOR FACTORIZATION 95

“software testing” and “Indian politics” topics, though they were active for a shorter
period. The “Indian politics” topic has one well defined spike. Given our start point
of the time axis is 21st April 2006, it turns out that this activity starts around middle of
July 2007 which coincides with the Indian presidential election in 2007. The predomi-
nance of non-work related posts in the plots shown can be traced to the predominance
of non-work related posts in the dataset. Among the posts that were made into any
community two-third were non-work related posts.

Analysis of comments on the blog posts reveals a different set of factors. These
are usually the factors that generate more than average amount of reactions from the
bloggers, e.g., open source softwares (Figure 4.3a), religion (Figure 4.3b), mythology
(Figure 4.3c), and Hinduism (Figure 4.3d). In these sets of plots we have a set of most
significant reply recipients in addition to the most significant keywords, authors, and
days that were present in the previous set of plots. The effectiveness of the decompo-
sition is illustrated by the latent semantic separation of “mythology” and “religion”
that can be thought of as a part of broader topic of religion. There were several factors
in the result that are about the same overall topic.

We further analyzed the posts made into individual communities separately. For
illustration we present some of the sample topics detected in the community “Sports”
(Figure 4.4) and “FLOSS” (Free Linux Open Source Software, Figure 4.5). The topics
in the Sports community are largely event driven as can be observed from the inten-
sity of the cricket and soccer topics. The topics in FLOSS community reveal another
characteristic. By comparing the distribution of participation of source bloggers to the
word description of the topic we can see that topic related to Linux file systems draws
a very skewed audience than the topic of multimedia in Linux. This could be because
the topic of multimedia applications is popular, but the topic involving file system
issues has a niche audience in the FLOSS community.

4.4.3 Comparison with content independent hub and authority

We compare the hubs and authorities identified by tensor factorization with those
identified by the HITS algorithm. Since, hubs are measure of the quality of the sender
of the responses, we also compare these to the most frequent response makers. For
illustration we show the size of the overlap of the top-10 author list identified by these
three methods. These are given in Table 4.8. As we can see HITS algorithm, that does
not consider the content of the reply or the timestamp of the replies, tends to sample
more from the set of most vocal bloggers than the PARAFAC tensor factorization algo-
rithm does. Similar behavior is also observed when we compare the top-10 authorities
identified by the two factorization algorithms with the top-10 bloggers who received
most responses (Table 4.9).

To shed more light on the hubs and authorities identified by PARAFAC and HITS
we compare them to the writers and readers that are central in the blog reading network.
To compute centrality of the readers and writers over the reading network, the reading
data is represented as a reader × writer matrix (Table 4.10).

Reading can be considered a vote towards the goodness of a writer’s writing qual-

4.4. APPLICATION OF TENSOR FACTORIZATION 96

(a) Free Linux Open Source Community (b) Cast system in India

(c) Mythology (d) Hinduism

Figure 4.3: Trends of topics and importance of topic specific hubs and authorities in
each. The plots from the top-left to bottom-right can be roughly described to be on
topics “Free Linux open source community”, “Cast system in India”, “Mythology”,
and “Hinduism”. The histogram of source bloggers show the extent to which the top
bloggers have posted in the topic. The histogram of target bloggers show the extent
to which they are the recipient of messages in the topic—presumably because of their
prior participation in the topic.

4.4. APPLICATION OF TENSOR FACTORIZATION 97

Figure 4.4: Analysis of messages exchanged in the Sports community reveals Cricket
and Soccer topics

Figure 4.5: Discussion of file systems and Linux medial players in FLOSS community

4.4. APPLICATION OF TENSOR FACTORIZATION 98

Factor |HH ∩Hv| |HP ∩Hv| |HH ∩HP |
1 8 4 4
2 5 4 4
3 5 2 3
4 6 2 2
5 4 3 4
6 4 2 2
7 7 2 4
8 4 4 0
9 3 2 1

10 0 1 0
11 6 6 3
12 0 3 0
13 4 3 1
14 2 0 0
15 3 3 0
16 2 3 0
17 2 2 2
18 2 7 0
19 2 6 0
20 3 1 2
21 4 6 2
22 0 1 0
23 2 4 1
24 0 3 0
25 0 4 0

Where, HH is the set of top 10 hubs identified by HITS,
HP is the set of top 10 hubs identified by PARAFAC,
and Hv is the top 10 bloggers who wrote most replies.

The table cells show the number of common bloggers in a pair of top-10 bloggers.

Table 4.8: Comparison of hubs.

4.4. APPLICATION OF TENSOR FACTORIZATION 99

Factor |AH ∩Ap| |AP ∩Ap| |AH ∩AP |
1 6 1 2
2 4 3 2
3 4 1 1
4 4 3 0
5 4 3 2
6 8 2 1
7 6 1 0
8 4 3 0
9 2 2 0
10 8 1 1
11 6 2 1
12 7 2 1
13 0 3 0
14 1 2 0
15 2 2 0
16 1 1 0
17 1 3 0
18 0 6 0
19 3 3 2
20 0 4 1
21 1 2 0
22 1 1 0
23 0 3 1
24 1 4 0
25 0 3 0

Where, AH is the set of top 10 authorities identified by HITS,
AP is the set of top 10 authorities identified by PARAFAC,
Ap is the set of top 10 bloggers who received most replies.

The table cells show the number of common bloggers in a pair of top-10 bloggers.

Table 4.9: Comparison of authorities.

writer1 writer2 writerN
reader1 10 15 . . .
reader2 1 0 1
.

readerM
Cells have the number of times a reader has read a post by a writer.

Table 4.10: Reader writer adjacency matrix

4.4. APPLICATION OF TENSOR FACTORIZATION 100

Factor cor(AH , AR) pval cor(AP , AR) pval
1 -0.0024 0.8931 -0.0018 0.9173
2 -0.0016 0.9283 -0.0002 0.9932
3 0.7279 0 0.1019 0.0000
4 0.0484 0.0058 0.0022 0.8984
5 0.2574 0 0.1258 0.0000
6 0.4358 0 0.1585 0
7 0.4876 0 0.2309 0
8 0.5407 0 0.1390 0.0000
9 0.4604 0 0.2060 0
10 0.4685 0 0.1480 0
11 0.3399 0 0.0424 0.0156
12 0.1221 0.0000 0.0332 0.0588
13 0.1819 0 0.3336 0
14 -0.0014 0.9355 0.0019 0.9137
15 0.2960 0 0.1401 0.0000
16 0.1251 0.0000 0.0614 0.0005
17 0.4833 0 0.0977 0.0000
18 0.3510 0 0.2220 0
19 0.5183 0 0.1699 0
20 0.4733 0 0.1486 0
21 0.1700 0 0.0191 0.2770
22 0.1217 0.0000 0.0604 0.0006
23 0.2910 0 0.1896 0
24 0.3356 0 0.1608 0
25 0.4894 0 0.0656 0.0002

Table 4.11: Correlation of authorities identified by HITS and PARAFAC with centrali-
ties of the writers (AR) on the reading network.

4.4. APPLICATION OF TENSOR FACTORIZATION 101

ity. However, there are some readers who are indiscriminate in their reading and read
a lot, where as there are others who are selective and follow only a few bloggers who
they consider to be good. To measure the goodness of the writers in the reading net-
work taking into account the goodness of the readers who follow them we compute
hubs and authorities through an SVD of the reading adjacency matrix.

It is worth noting that the reading activity at the blogs is often invisible on the
World Wide Web. Therefore, such a quality metric is often not available. However,
in this particular dataset since we have access to the server access log we can identify
who is reading whose posts and compute this quality metric.

The correlation of the authorities from HITS and PARAFAC with the authorities in
the reading network is given in Table 4.11. The correlation values that are significant
at p-value < 0.05 are given in bold.

We see that authorities on the reply network obtained by HITS, that does not take
into account the words used, have a higher correlation with the authoritative writers
on the reading network. It instructive to note that both HITS on from × to reply net-
work and SVD on the reader × writer reading network are content free methdods,
whereas PARAFAC takes into consider not only who replied to who but also the con-
tent of the reply in calculating the authority of the blog authors.

4.4.4 “On topic” quality of the top hubs’ response

Tensor factorization simultaneously determines the significant words, authors and re-
cipients in a blog reply network. We illustrate the benefits of such an approach over
the existing methods such as HITS that do not take into account the words exchanged
between the authors. For this we need a quality metric for the hubs identified by dif-
ferent methods. We decided to measure the quality of the hub by the closeness of the
reply to the target post. The idea behind this measure is that a good responder would
contribute positively to the topic of discussion by keeping his responses within the
topic of discussion as opposed to someone who makes offtopic comments. There are
several approaches for computing the distance of a text post from another, e.g., Co-
sine correlation, Jaccard index, Dice coefficient, KL-divergence etc. We decided to use
KL-divergence in this evaluation.

The KL-divergence of probability distributions Q from probability distribution P
is (Kullback and Leibler 1951)

DKL(P‖Q) =
∑
i

P (i) log
P (i)
Q(i)

(4.9)

To measure the closeness of an authors replies to the targets of the replies we create
two probability distribution for each author.

Q : Distribution of the words in all of the replies written by the author

P : Distribution of the words in all the posts and replies that are targets of the replies

4.4. APPLICATION OF TENSOR FACTORIZATION 102

A reply could be targeted to the blog article that started reply thread. It could also
be targeted to one of the replies within the thread that occurred at a time before the
current reply was written. If the name of one of the authors who wrote the blog article
or any subsequent reply occurs in the current reply then the current reply is deemed
to be targeted to that particular author.

Then the KL-divergence of Q from P are computed for each author. We compare
this score for the top hubs identified by the Tensor factorization with the top hubs
identified by the HITS algorithm over the entire reply network.

In addition we compare these to a simpler topic specific HITS algorithm. In this
approach we identify keywords in the reply set by Latent Semantic Indexing (LSI). For
each factor identified by LSI the top 10 words were chosen as the keywords. Hub and
Authority scores were computed over the replies that contain these keywords. This
approach produces a overlapping but different sets of Hubs and Authorities than the
previous two approaches.

It is worth noting that these three approaches form a continuum of methodolo-
gies where keyword information in the replies are used to different extents. In the
HITS over the entire reply network only the reply count between two authors is used.
No keyword information is used in this approach. In the simpler topic specific HITS
approach a two step approach is followed. First a set of keywords are selected and
then Hub and Authority is computed on the reply network on which those keywords
occur. In the tensor factorization approach the keywords, hubs, and authorities are
determined simultaneously.

The average KL-divergence of the hubs identified by all three methods are plotted
in Figure 4.6. The confidence interval is drawn at two standard deviation from the
mean using dashed lines.

From this figure we note that by using keywords in the responses while computing
hubs and authorities we can identify hubs that are closer to the target of their response.
For the hubs identified by HITS the KL divergences of their replies from the targets
is the largest. Thus they can be considered to be most off topic in their replies. The
KL divergences of the responses made by the hubs identified by the keyword specific
HITS algorithm is lower. So, they can be thought of being closer to the target posts
in their response. The hubs detected by the Tensor factorization have the lowest KL-
divergence of response from the target posts. Therefore, they can be considered to be
most on topic in their response to another post or reply.

4.4.5 Community discovery

We evaluate the effectiveness of the tensor factorization by applying it to discover
communities in the blog conversation data. Communities in an online social network
are based on user interests that manifest in the text exchanged between the users over
the network. We hypothesize that because of its use of multi-modal data a tensor
based approach is better suited for discovering communities than methods that do not
use the multi-modal data that constitutes conversation within online communities.

4.4. APPLICATION OF TENSOR FACTORIZATION 103

Figure 4.6: Average KL divergences of the top hubs identified by HITS, keyword spe-
cific HITS, and Tensor factorization

4.4. APPLICATION OF TENSOR FACTORIZATION 104

Definition 2. We define a conversation in the blog network to be a set of replies to a
blog post from one or more bloggers in the network. Conversation data consists of
text, author, target, and timestamp of the replies.

Conversations are different from text documents in that each of them is a set of
text messages with author, target, and timestamp.

Task We define the community discovery task as given a set of conversations to dis-
cover the clusters of similar conversations in them.

To perform this task using tensor factorization we follow two steps:

1. Identify the predominant factors in the entire blog conversation dataset by ten-
sor factorization (Section 4.2.4). Each factor consists of a set of weights over the
authors, recipients, keywords, and days.

2. Map each conversation to the factor it most closely aligns with by an operation
of tensor query

Tensor Query

We pose each conversation as a query to retrieve the factor most similar to it. This
is done by approximating each conversation, represented as a tensor C, by a linear
combination of the R factors in the original tensor. C is assigned to the factor with the
highest coefficient.

If A(1), . . . ,A(M) are the M modal matrices obtained from the factorization (Equa-
tion 4.4) then the approximation is

C ≈
∑
r

βr × a(1)
r ◦ · · · ◦ a(M)

r (4.10)

Let V (·) be the vectorization operator that reshapes a tensor to a column vector in
a given order. Let vr = V (a(1)

r ◦ · · · ◦ a(M)
r) . Then, Equation 4.10 can be expressed as:

V (C) ≈
∑
r

βr × vr (4.11)

V (C) ≈ [v1, . . . ,vr] ∗ β (4.12)

where, ∗ is the left product of a matrix with a vector. Equation 4.12 is a least square
problem of which β is the solution. Magnitude of the elements of β indicate how
closely C is aligned to the corresponding factors.

The factor with the largest βr is the factor that C aligns most closely with. There-
fore, we assign the conversation to that factor. Repeating this for each conversation in
the dataset gives us a set of clusters of conversations. These clusters of conversations
can be evaluated using one of many cluster evaluation techniques if we have some
kind of true label on each conversation. We use the author provided “community
labels” that is part of the blog dataset (Table 4.3) for this purpose.

4.5. CONCLUSION 105

Macro average Micro average
Tensor Document Tensor Document

factorization clustering factorization clustering
P 0.4 0.46 0.25 0.37
R 0.73 0.35 0.71 0.27
F 0.51 0.40 0.37 0.31

Table 4.12: Precision recall of community discovery

Experiment setup and results

For community discovery we used only the part of the dataset that has community
labels on it, so that we can evaluate the resulting communities. Only the reply data is
used to form conversations among bloggers. This dataset has 180K responses forming
21.5K conversations. We cluster these conversations into 25 communities using tensor
factorization. To obtain a baseline to compare with we clustered the response text
using repeated bisection document clustering algorithm. Using the author provided
community labels we computed the precision (P), recall(R), and the F -score for the
clusters formed (Section 2.5.1). The scores are shown in Table 4.12.

As we can see the tensor factorization has a lower P score meaning the communi-
ties it is uncovering have more of the other community conversations than the com-
munities uncovered by document clustering algorithm. However, tensor factoriza-
tion is keeping conversations in each community together in one cluster more so than
document clustering algorithm (reflected in larger R value). This leads to a higher
F score for the tensor factorization approach for community discovery. The results
show that the conversation clusters generated by tensor factorization agrees with the
author provided labels on the blog articles more than the clusters generated by docu-
ment clustering do.

4.5 Conclusion

In this chapter an importance definition is proposed for multi-modal data is part of
online social conversations. The definition is a higher order extension of importance
computation approaches already seen in the literature, namely in eigenvector cen-
trality computation, latent semantic indexing, etc. This higher order computation re-
quires a multi-modal representation of the data that is not possible with matrices. We
use tensors to represent the multi-modal data and perform operations on it.

We show that the proposed importance of the entities in the multi-modal data can
be computed by a process of tensor factorization. To illustrate our results we collect
blog data from the corporate Intranet of a large IT services firm. We capture the blog
data in two different tensors representing two views of the blogosphere: 1. Blogs
are self publication media, 2. Blogs are also a place to discuss topics and exchange
ideas for people with common interests. We apply tensor factorization to illustrate

4.5. CONCLUSION 106

significant topics of conversation, important bloggers in each, and the development
of the topic over time.

We also assess the quality of the hubs identified by tensor factorization vis-a-vis
HITS on the entire network and keyword specific HITS. For each author we measure
the closeness of the replies from the target posts of their replies using KL-divergence.
The lower the KL-divergence the more on topic the authors’ replies are. The hubs
identified by Tensor factorization had the smaller KL-divergence from their targets
than the hubs identified by keyword specific HITS. HITS on the entire reply network,
without taking into account the content of the replies, produces hubs with highest
KL-divergence from the target.

To evaluate the tensor factorization approach we apply it to discover communities
in the conversations occurring in the blog network. Conversations are defined as a set
of messages exchanged in response to a blog post. The idea behind this task is that
if we can identify important actors in different communities and important keywords
used by the people in those community we should be able to identify different com-
munities using these information. To achieve this objective we propose a tensor query
operation to retrieve the factor most similar to a conversation posed as a query. This
operation takes into account the weight of entities in each mode of the data to compute
the similarity of the conversation to a factor. Using author provided community labels
on the conversations we show that tensor factorization performs better than document
clustering on conversation text in identifying communities in the conversation.

The primary limitation of this study is that the claimed importance definitions
have not been directly validated. Obvious importance measures, such as number of
times a blogger’s posts are read, importance of a blogger based on importance of peo-
ple who read the blogger’s post, are content independent. In our experiment we found
them to be better predicted by simpler eigenvectors of the adjacency matrix contain-
ing number of replies between the bloggers. The importance of a blogger in a specific
topic, although makes intuitive sense, is difficult to obtain as part of a dataset. One
approach to obtain such information is by asking experts about the important topics
in a given blog network and who are the important bloggers in them. Since, the data
used in this study is collected from a private blog network of an IT services firm we
have to leave this measurement for a future study.

Tensors are a natural extensions of matrices for capturing and analyzing multi-
modal datasets. We have shown their application for community discovery in on-
line conversations. However, there are several future research directions. One of the
assumptions in this work is the multiplicative endowment of importance due to as-
sociation. Although, it allows us to use existing tensor factorization techniques for
importance computation the assumption may not be valid in all situations. For ex-
ample (Bonacich 1987) has shown that being surrounded by powerful actors in a net-
work might reduce the leverage and power of an actor. Another direction of research
is the application of non-negative tensor factorization to obtain entity weights that
are non-negative. Non-negative weights are are easier to interpret in many real word
scenarios.

CHAPTER 5

Conclusion

This thesis develops data mining applications focusing on three areas of enterprise
information system.

The first chapter develops an algorithm to organize and discover topics from streams
of unstructured text documents. Most organizations are faced with these kinds of data
from newswires, press releases, external blogs and online social networks: sources
they must track to be cognizant of the competitive landscape they are conducting
business in. We extend an existing incremental hierarchical clustering algorithm in the
literature, namely COBWEB/CLASSIT for clustering text document. This was achieved
by a conceptual separation of the control flow of the CLASSIT algorithm from the pa-
rameter estimation for the data attributes and modifying the parameter estimation for
the specific case of word occurrence distribution in documents.

The second chapter develops a collaborative filter to recommend products to con-
sumers based on the consumers’ prior ratings on a subset of products. Collaborative
filters are used by many online merchants to identify promising target customers to
promote a product to and to help customer shift through large number of product
offerings to identify the ones they like. Traditionally collaborative filters use one di-
mensional ratings from customers evaluating the overall quality of the product as
perceived by them. Often there are multiple aspects to a product experience, such as,
acting, directorial style etc. of a movie; food quality, ambience, service at a restaurant
etc. However, we find that user ratings along these different aspects of a product are
highly correlated. In this chapter we discover the dependency structure among the
rating components in a movie dataset and use the structure in a mixture model that
is then used to recommend movies to customers. We compare it to several one com-
ponent and multi-component algorithms to show the effectiveness of the proposed
algorithm.

The third chapter proposes a framework to represent and analyze conversations in
an intra-organizational online social network. With the advent of Enterprise 2.0 orga-
nizations are creating internal blogs and online social networks to effectively engage
with their employees. In an online social network the relation between people devel-
ops through the exchange of text messages that form online conversations. The ability
to observe and analyze such messages between employees allows us to monitor de-
velopment of topics and identify significant actors. Most of the literature on topic
discovery and the literature on discovering significant actors in a network focuses

108

Chapter Method Data Application

1 Incremental
document
clustering

Unstructured text
documents

Topic discovery and
organization from a
stream

2 Dependency
structure discovery
and mixture model

User-Item multi
component ratings

Recommender system
using multiple aspects of
rating

3 Tensor
factorization

Text messages with
author, recipient
and timestamp

Detect topics and
significant people from
online conversation
analysis

Table 5.1: Thesis summary

on two dimensional co-occurrence data. We extend the significance definitions intro-
duced in the two dimensional document analysis and network analysis methods to
the higher order tensors capturing author, recipient, keywords, and timestamps. This
chapter shows that such a definition can be applied via a process of tensor factoriza-
tion to discover communities in the blog network and identify important responders
in the network who happen to be more focused in their discussion of a given topic.

These three chapters are outlined in Table 5.1.

Future directions

Information systems in enterprises are rife with interesting data mining opportunities.
There are several logical extensions of the presented work. The probabilistic model for
collaborative filtering can be extended with user attributes to further guide the recom-
mendations. In an enterprise setting recommending the right sets of work related doc-
uments and posts to employee is an important application. In such an application the
user attributes of interest might include the department, roles, and skillsets. Another
promising extension of multi-component rating collaborative filter is in the context of
online reviews and ratings. In many online review sites consumers provide text re-
views along with the ratings. Text reviews are inherently multi-dimensional as they
contain potential information about more than one aspect of the product. Once such
dimensions present in the reviews are identified through text analysis, the proposed
model for multi-component rating collaborative filtering can be used to incorporate
such multi-dimensional information.

Tensors are natural extensions of matrices for representing and analyzing multi-
modal data. However, several interesting open research problems still remain. Fac-
torization of tensors with time dimensions need special handling because as opposed
to two different authors, data collected from two different days are likely to have a
continuity among them. Alternating Least Square for tensor factorization can be ex-
tended to impose this continuity over the data values along time dimension. In the
work completed as part of this thesis validation of the importances computed is pro-
vided through a topic discovery exercise and by measuring how on-topic the hubs are

109

in their responses. However, direct validation of the importance of the identified hubs
is still an open research problem. Such a validation can be carried out in an enterprise
setting by collecting the official status of the employees in the enterprise.

APPENDIX A

Document Clustering

A.1 MLE of Katz’s distribution parameters

The Katz’s distribution is defined as:

P (0) = p0

P (k) = (1− p0)(1− p)pk−1; when k > 0 (A.1)

where, p0 and p are the parameters of the distribution.
Let us discuss about the distribution of only one word or term. The data is the

count of occurrences of the word in each document in the text collection. So, if we
have N documents in the dataset we have N observations, each of which is a count.

Let us also define nk to be the number of observations equal to k, i.e., number of
documents in which the term occur k times. Let’s assume the maximum value of k is
K.

Hence,

• document frequency df = N − n0 =
∑K

k=1 nk and

• collection term frequency cf =
∑K

k=1 knk

The likelihood L(p, p0) of the parameters given data is

=
N∏
i=1

Pr (the word occurs xtimes in document i)

=
N∏
i=1

[
δ(x)p0 + (1− δk)(1− p0)(1− p)px−1

]
;x ∈ 1 . . .K

= pn0
0

K∏
k=1

(1− p0)nk(1− p)nk(pk−1)nk

where, δ(·) is the indicator function that is 1 if argument is zero and 0 otherwise.

A.1. MLE OF KATZ’S DISTRIBUTION PARAMETERS 111

Log of likelihood is

LL(p, p0)
= n0 log(p0)

+
K∑
k=1

[nk log(1− p0) + nk log(1− p) + nk(k − 1) log(p)]

Taking the partial derivative of the log likelihood with respect to p0 and equating it to
0:

∂ LL
∂p0

=
n0

p̂0
+

K∑
k=1

nk
−1

1− p̂0
= 0

⇒ n0

p̂0
=

1
1− p̂0

K∑
k=1

nk =
1

1− p̂0
(N − n0)

⇒ 1− p̂0

p̂0
=

N − n0

n0

⇒ 1
p̂0
− 1 =

N

n0
− 1

⇒ p̂0 =
n0

N
=
N − df
N

= 1− df
N

(A.2)

We can find the MLE of p in a similar manner.

∂ LL
∂p

=
K∑
k=1

nk
−1

1− p̂
+
nk(k − 1)

p̂
= 0

⇒ 0 =
1
p̂

K∑
k=1

nk(k − 1)− 1
1− p̂

K∑
k=1

nk

⇒ 0 =
1
p̂

(
K∑
k=1

knk −
K∑
k=1

nk

)
− 1

1− p̂

K∑
k=1

nk

⇒ 0 =
1
p̂

(cf −df)− 1
1− p̂

df

⇒ 1− p̂
p̂

=
df

cf −df

⇒ 1
p̂

=
cf

cf −df

⇒ p̂ =
cf −df

cf
(A.3)

Expressions (A.2) and (A.3) are the MLE of the parameters of Katz’s distribution de-
scribed in Expression

APPENDIX B

Multi-component Rating Collaborative
Filtering

B.1 Derivation of marginal distributions

This involves calculating the sum over the large joint distribution exploiting the con-
ditional independencies. Marginalizations for each of the three models are shown
below.

B.1.1 P (U, I, O) for the model with dependency among the ratings

The characteristic of this model is Overall rating is a parent node of the component
rating variables in addition to the Zu and Zi latent class variables.

P (U, I,O) =
∑
Zu

∑
Zi

∑
S

∑
A

∑
V

∑
D

P (Zu, Zi, U, I, S,A, V,D,O)

=
∑
Zu

∑
Zi

∑
S

∑
A

∑
V

∑
D

P (Zu)P (Zi)P (I|Zi)P (U |Zu)P (S|Zu, Zi, O)

P (A|Zu, Zi, O)P (V |Zu, Zi, O)P (D|Zu, Zi, O)P (O|Zu, Zi)
=

∑
Zu

∑
Zi

P (O|Zu, Zi)P (Zu)P (Zi)P (I|Zi)P (U |Zu)
∑
S

P (S|Zu, Zi, O)

∑
A

P (A|Zu, Zi, O)
∑
V

P (V |Zu, Zi, O)
∑
D

P (D|Zu, Zi, O)

=
∑
Zu

∑
Zi

P (O|Zu, Zi)P (Zu)P (Zi)P (I|Zi)P (U |Zu)

=
∑
Zu

P (Zu)P (U |Zu)
∑
Zi

P (O|Zu, Zi)P (Zi)P (I|Zi) (B.1)

The conditional probability terms for S,A, V andD could be marginalized and elimi-
nated, since those probabilities sum to 1.

B.1. DERIVATION OF MARGINAL DISTRIBUTIONS 113

B.1.2 P (U, I, O) for the model with independent component ratings

The characteristic of this model is that all component ratings and Overall rating are
independent of each other conditional on the Zu and Zi latent class variables.

P (U, I,O) =
∑
Zu

∑
Zi

∑
S

∑
A

∑
V

∑
D

P (Zu, Zi, U, I, S,A, V,D,O)

=
∑
Zu

∑
Zi

∑
S

∑
A

∑
V

∑
D

P (Zu)P (Zi)P (I|Zi)P (U |Zu)P (S|Zu, Zi)

P (A|Zu, Zi)P (V |Zu, Zi)P (D|Zu, Zi)P (O|Zu, Zi)
=

∑
Zu

∑
Zi

P (O|Zu, Zi)P (Zu)P (Zi)P (I|Zi)P (U |Zu)
∑
S

P (S|Zu, Zi)∑
A

P (A|Zu, Zi)
∑
V

P (V |Zu, Zi)
∑
D

P (D|Zu, Zi)

=
∑
Zu

∑
Zi

P (O|Zu, Zi)P (Zu)P (Zi)P (I|Zi)P (U |Zu)

=
∑
Zu

P (Zu)P (U |Zu)
∑
Zi

P (O|Zu, Zi)P (Zi)P (I|Zi) (B.2)

B.1.3 P (U, I, O) for the model with only the overall ratings

P (U, I,O) =
∑
Zu

∑
Zi

P (Zu, Zi, U, I, O)

=
∑
Zu

∑
Zi

P (O|Zu, Zi)P (Zu)P (Zi)P (I|Zi)P (U |Zu)

=
∑
Zu

P (Zu)P (U |Zu)
∑
Zi

P (O|Zu, Zi)P (Zi)P (I|Zi) (B.3)

B.2. HALO IN MULTI-CRITERIA MOVIE RATING 114

B.1.4 P (U, I, S, O) from the complete joint distribution

P (U, I, S,O) =
∑
Zu

∑
Zi

∑
A

∑
V

∑
D

P (Zu, Zi, U, I, S,A, V,D,O)

=
∑
Zu

∑
Zi

∑
A

∑
V

∑
D

P (Zu)P (Zi)P (I|Zi)P (U |Zu)P (S|Zu, Zi, O)

P (A|Zu, Zi, O)P (V |Zu, Zi, O)P (D|Zu, Zi, O)P (O|Zu, Zi)
=

∑
Zu

∑
Zi

P (O|Zu, Zi)P (Zu)P (Zi)P (I|Zi)P (U |Zu)P (S|Zu, Zi, O)

∑
A

P (A|Zu, Zi, O)
∑
V

P (V |Zu, Zi, O)
∑
D

P (D|Zu, Zi, O)

=
∑
Zu

P (Zu)
∑
Zi

P (Zi)P (O|Zu, Zi)P (I|Zi)P (U |Zu)P (S|Zu, Zi, O)

⇒ P (u, i, S, o) =
∑
Zu

P (Zu)
∑
Zi

P (Zi)P (o|Zu, Zi)P (i|Zi)P (u|Zu)P (S|Zu, Zi, o)

∝ P (S|u, i, o)

B.2 Halo in multi-criteria movie rating

B.2.1 Halo Effect

The phenomenon of observing a higher than expected correlation between ratings
collected from human subjects is known as the Halo effect. It was first identified by
Wells as a constant error in rating because raters seem to rate subjects for the general
merits at the time of rating them for their individual qualities (Wells 1907). Wells has
indicated that this constant error is probably not a serious concern and it is difficult
to see how it could have been avoided ((Wells 1907) page 21). After about a hundred
years of research we still do not have an agreed upon way to prevent, measure or
correct halo effect. And there is disagreement in the research community whether
Halo is a completely harmful phenomenon (Cooper 1981, Fisicaro 1988).

Thorndike was the first to term this error as Halo error (Thorndike 1920). The pa-
per makes many interesting correlation observations. Correlation between rating of
general ability and technical ability of aviation officers was found to be 0.67 where as
the author states that the true correlation could not be more than 0.25 after attenuation
correction. Students’ ratings of the voice of their teachers was found to be correlated
at 0.50 with the teachers’ interest in community service and at 0.67 with the intelli-
gence. Thorndike asserts that since, these correlations are much higher than the corre-
lation that can be expected between true scores, this is something added by the raters.
Although, this universal observation of very high correlation makes a case for some-
thing systematic affecting the correlation between the rating components, the manner
in which the problem is highlighted indicates a problem that will resurface again and

B.2. HALO IN MULTI-CRITERIA MOVIE RATING 115

again: we collect ratings—in most of the cases—when the true scores are impossible to
collect, e.g., leadership quality of an officer, lucidity of a teacher’s discourse, direction
quality of a movie. Therefore, how do we compare the observed rating correlations
with a true score correlation and possibly measure the halo effect? Thorndike himself
lamented that although this halo effect seems large, we lack an objective criteria by
which to determine its exact size.

Sources of Halo

Since, halo is the higher than expected correlation between two rating variables it can
be due to two reasons. One reason lies with the raters’ behavior, who due to their
cognitive distortion add to the correlation of the rating attributes. This is known as
illusory halo. Cooper (1981) has outlined five related factors that might lead to this
behavior(Cooper 1981):

1. Rater’s lack of familiarity with the target might prompt him to rely on his global
impression and give component ratings based on how he thinks the categories
co-vary,

2. Rater might assume that the rating components co-vary with his global impres-
sion or with salient components,

3. Components might not be well defined, which would lead the raters to group
together somewhat related evidences to generate ratings,

4. Rater might be unwilling to put in enough effort to distinguish between the
components or be sensitive to the fact that he might be committing Halo error,

5. If there is a time gap between the observation and rating collection, then the
rater might forget the details and add his bias about how rating components
co-vary (Shweder 1975).

The second reason could be in the design of the rating components. They may be
truly correlated—even before the rater added their error. This is known as the true
halo. Traditionally (Thorndike 1920, Wells 1907) when one refers to the halo error, it is
understood that they are referring to the illusory halo. But, it is important to be aware
of the difference between the two since, often they co-occur (with true halo possi-
bly affecting the illusory halo(Kevin R. Murphy 1988)) and the metrices that claim to
measure the halo are unable to distinguish between the two and measure a combined
effect.

Yet another perspective on Halo is provided by (Murphy 1992). They have found
from several laboratory experiments that the Halo effect is not a property of the rater
or ratee, but, a property of the unique rating situation. If this is true, then an appro-
priate method of measuring halo should measure the halo on for each rating instead
of measuring Halo present in a set of ratings.

B.2. HALO IN MULTI-CRITERIA MOVIE RATING 116

Measuring Halo

The main methods discussed in literature to detect and/or measure halo are:

1. Noticing the difference between observed correlation and estimated true cor-
relation. This method was used by Thorndike. Although, this is probably the
most direct way to access the halo effect, the problem with this method is that
true correlations are often not available.

Even when it is possible to compute the correlations from the true
scores, the random measurement error attenuates the computed corre-
lation to a value lower than the true correlation. This would inflate the
perceived Halo. Hence, we must make correction for this attenuation
(Fisicaro 1990).

2. Computing standard deviation across the rating components. The lower the
standard deviation, the higher the halo effect. This method does not work very
well when the rating components have naturally different mean, in which case
it will show a inter-component standard deviation even when the components
are perfectly correlated (J. T. Lamiell 1980, Elaine D. Pulakos and Ostroff 1986).

3. Identifying inter-component factor structure. If there is one dominant factor
then it suggests that the ratings are generated from this one factor and the rater
does not distinguish between various rating components. This suggests pres-
ence of halo (D. Kafry 1979).

4. Carrying out a rater×ratee×category anova. If there is a rater×ratee effect then
halo is said to be present (M. J. Kavanagh 1971).

Method 1, 2 and 3 has been discussed without a clearly laid out criteria for detecting
the halo effect. None of the above methods distinguish illusory halo from true halo.
There has been limited attempt at examining the true halo and illusory halo by using
certain manipulated rating components for which true halo can be computed (Cooper
1981).

Reducing Halo at rating time

It has been observed that increasing the rater-target familiarity reduces the effect of
the halo because it gives the rater a larger sample of target attribute or behavior to
base the component ratings on and not fallback on his general impression ((Koltuv
1962), (Heneman 1974), (Landy and Farr 1980)).

Sometimes halo effect is observed because of the raters making judgment based on
factors that are not relevant to the components they are rating. It has been found that
by explicitly asking the raters to rate key irrelevant factors, i.e., the factors that might
influence the component ratings but should not, such effect can be reduced (Rizzo and
Frank 1977).

B.2. HALO IN MULTI-CRITERIA MOVIE RATING 117

Shewder and D’Andrade has shown that halo is consistently higher when ratings
are collected for older observations(Shweder and D’Andrade 1980). Borgatta et al. has
shown that the rating collected during the observation of target is consistently less
haloed than the ratings collected after observations (E. F. Borgatta 1958). Therefore,
another strategy to reduce halo in rating could be to collect the ratings at the time of
observation or as soon as possible after the observation.

Training the rater through lectures and discussion groups to reduce halo in their
ratings have given mixed results. The only method that has given any consistent gain
is the use of workshops to sensitize the raters to the halo error they might commit by
giving them feedback on their ratings (G. P. Latham 1980, Borman 1979, Ivancevich
1979).

Correcting Halo after collecting the ratings

It has been found that average over the component ratings obtained from multiple
raters has lower halo than the individual rater’s ratings (J. S. Berman 1976). However,
this solution is not always feasible due to lack of adequate raters (Cooper 1981). More-
over, this might lead to more accurate ratings, but, averaging does not help when we
are interested in correcting halo occurring for a rater-target pair (e.g. for the purpose
of collaborative filtering).

Another method to remove excessive correlation among the components due to
the presence of a dominant component is by statistically removing the effect of the
component, usually a global rating component (Holzbach 1978). Holzbach observes
that it is almost impossible to collect ratings that are free from Halo. However, if we
can collect the rating on a global impression component then we might be able to
remove the effect of this global component from other components. In a study con-
taining ratings along six job related behaviors and a global rating, he found that if
we remove the effect of the global component from the six behavior ratings we can
reduce the inter behavior component correlation. To remove the effect of the global
component he regresses the six behavior ratings against global component and com-
putes the correlation among the residuals. This is equivalent to computing the partial
correlation between the behavior components while holding the global component
constant. The component residuals remaining after the regression were less corre-
lated than the components themselves. This by itself may not be a significant result,
because, controlling for any variable that is not perfectly uncorrelated with the com-
ponent ratings would reduce the component correlations when the correlations are all
positive: as was the case in Holzbach’s work. What is interesting is that this correction
leads to a more understandable factor structure among the components instead of a
general component dominated one. Holzbach also reanalyzed three of the previously
published studies using his proposed statistical correction method and found that he
was able to reduce the effect of the halo. Landy et al., used Holzbach’s method to
remove halo from a rating set of 15 job related behavior and a global rating compo-
nent and found that median of inter-component correlation reduced from 0.36 to 0.07.
Also, the factor analysis results of the ratings changed from a general factor dominated

B.2. HALO IN MULTI-CRITERIA MOVIE RATING 118

s a v d o
s 1.00 0.79 0.82 0.74 0.87
a 0.79 1.00 0.81 0.73 0.83
v 0.82 0.81 1.00 0.79 0.88
d 0.74 0.73 0.79 1.00 0.80
o 0.87 0.83 0.88 0.80 1.00

Table B.1: Correlation among components of rating—suggesting the presence of a
Halo effect

rRiRj .O S A V D
S 1.00 0.25 0.26 0.15
A 0.25 1.00 0.32 0.22
V 0.26 0.32 1.00 0.33
D 0.15 0.22 0.33 1.00

Table B.2: Partial correlation given Overall. Ri, Rj ∈ {S,A, V,D}

three factor structure to a more interpretable six factor structure(Steele 1980). Before
Holzbach, Myers had taken a similar approach to reduce halo where he used job levels
as control variable to reduce correlation among job dimensions (Myers 1965).

B.2.2 Halo in movie rating data

Correlation structure

Looking at the correlation matrix we find that the components are highly correlated.
This indicates that there probably is a halo effect in the collected ratings. However,

following a procedure like Holzbach’s where we statistically remove the effect of the
Overall component by taking partial correlation we find that the effect of halo is much
less.

The average inter-component correlation among variables S,A, V,D has reduced
from 0.78 to 0.26. As all correlations are positive we should expect some reduc-
tion in correlation when computing partial correlations. However, the average par-
tial correlation among the variables is the least when we control for the variable O
among the possible five variables. The average partial correlations when we con-
trolled for S,A,V,D were 0.47, 0.53, 0.35and0.60 respectively. These results confirms,
using a much larger dataset, Holzbach’s findings that controlling for Overall rating
reduces the Halo. It also shows that this reduction is consistently more than the re-
ductions obtained by controlling for variables other than Overall rating.

There are factors other than the Overall impression that might be responsible for
dependency among ratings. For instance, perhaps some pairs of components are
harder to distinguish between, because of ambiguity in those component definitions.
That would lead to correlation among that pair of components (3rd point in Cooper’s

B.2. HALO IN MULTI-CRITERIA MOVIE RATING 119

list and to some extent 4th point too). From the partial correlation matrix it seems
that there is some ambiguity between Visuals and Direction quality (0.33 partial cor-
relation), Story and Direction (0.32 partial correlation). Or may be there is some true
correlation among these pairs. Cooper’s point 1, 2, and 5 supports a “general impres-
sion leading to higher correlation between all pairs” theory and his 3rd and 4th reason
makes it possible to have higher inter-component correlation between specific pairs of
components.

PCA

Another method to detect Halo is to carry out a Principal Component Analysis of the
correlation matrix and look for the presence of a dominant component. If we take a
linear combination of the five variables using weights given by eigen vectors of the
correlation matrix or covariance matrix to create new variables, then the five new
variables will have zero correlation between themselves and will have variance equal
to the corresponding eigen values. Another important property is that if we order the
new variables in the decreasing order of their eigen values, then the first new variable
will have the highest possible variance among all variables that one may construct
by linear combination of the original variables. The second new variables will have
the highest variance among all possible variables that we may construct by linearly
combining the original variables while keeping it uncorrelated to the first constructed
variable. And similarly for the remaining new variables. These variances are same
as the eigen values and the sum of these variances is exactly equal to the sum of the
variances of the original variables. So, we can find out how much of the entire variance
is explained by these newly constructed variance (Morrison 1967).

The eigenvalues of the correlation matrix (Table B.1) are:

Factor One Two Three Four Five
Eigen values 4.22 0.28 0.22 0.16 0.11

% variance explained 84.5 5.7 4.4 3.2 2.2

Table B.3: Eigen values of the correlation matrix

This suggests that if we construct uncorrelated variables by linear combination of
these five variables so that they have maximum variance then we can find one variable
that will have 84.5% of the total variance. A second variable can be constructed by
linear combination of the five original variables that has 5.7% of the total variance,
while being under the constraint that this second variable has zero correlation with
the first. Similarly the remaining variables can be constructed. In other words, if we
perform a rigid rotation of the axes—they stay perpendicular to each other—of the five
dimensional rating space, 84.5% of the variance would lie along one of the new axis,
5.7% of the variance along another and so on (Morrison 1967). The dominant presence
of one component that explains a large amount of variance indicates the presence of a
Halo effect among the rating components(Holzbach 1978).

B.2. HALO IN MULTI-CRITERIA MOVIE RATING 120

Factor One Two Three Four
Eigen values 1.77 0.86 0.73 0.63

% variance explained 44.3 21.6 18.3 15.8

Table B.4: Eigen values of the partial correlation matrix

Factor 1 Factor 2 Uniquenesses
S 0.91 0.23 0.11
A 0.87 −0.02 0.21
V 0.93 −0.08 0.10
D 0.84 −0.12 0.25
O 0.95 0.03 0.07

Table B.5: Factor loadings after quartimax rotation

However, after partialing out the Overall component, i.e., using the Table B.2 we
find that the largest component becomes much less dominant—suggesting a reduction
in halo.

Factors

Yet another way of detecting the presence of a Halo effect to look for the presence of
a factor structure that is dominated by one factor (Holzbach 1978). In factor analysis
we try to express each observed rating component as a linear combination of some
hidden variables and an error term unique to the component. In this analysis several
rotations of the factor loading matrices were tried. Quartimax rotation, which tries to
reduce the number of factors for each variable, gives the following structure.

This is dominated by one factor, which points to the presence of a halo. It is inter-
esting to note that most of the variation in the Overall component can be explained by
these underlying factors (low uniqueness), but, not as much of the variation in other
component variables can be explained by these underlying factor. This suggests that
these underlying factors are the closest to the Overall rating1.

Effect of experience in rating

Studies have shown that training the raters to sensitize them to the halo error can
reduce the halo error in their ratings(William T. Hoyt 1999). But, it is not clear whether
more experience in rating leads to a lower Halo error. To examine this the halo effect in
the ratings of people who have rated different amount of movies were measured using
the proportion of variance explained by principal components and by the average
inter-component correlation.

1The limitation of existing Chi-square test prevents us from using more than two hidden variables to
in our Factor analysis of five variables (Morrison 1967)

B.2. HALO IN MULTI-CRITERIA MOVIE RATING 121

Users with fraction of variance
of ratings # of records explained by components avg . corr

6 5
> 5& 6 10
> 10& 6 20
> 20& 6 40

> 40

346973
37473
27378
18519
25493

0.877 0.042 0.035 0.026 0.02
0.862 0.048 0.039 0.029 0.021
0.848 0.053 0.042 0.033 0.024
0.837 0.057 0.045 0.036 0.026
0.855 0.050 0.041 0.031 0.022

0.84
0.82
0.80
0.79
0.82

Table B.6: Fraction of variance explained by the principal components and average
correlation among the components.

The variance explained by the principal components and the average correlation
among components for different groups of users are not very different. Therefore, it
does not seem like users with more experience make less halo error. One possible ex-
planation could be that traditionally when people rate a lot of subjects they learn more
about rating by receiving some kind of feedback. But, in movie rating it is hard to see
how the rating behavior would change since the raters don’t get any feedback. Cooper
has indicated that among rater training programs that consists of lectures, group dis-
cussion and workshops, only workshops have produced any consistent reduction in
halo. He has indicated that the reason might be that the workshops monitor raters
and give them corrective feedback when they commit error (Cooper 1981).

References

Adomavicius, G., Y.O. Kwon. 2007. New Recommendation Techniques for Multicriteria Rating
Systems. IEEE Intelligent Systems 22(3) 48–55. 45, 48, 62, 63

Adomavicius, Gediminas, Ramesh Sankaranarayanan, Shahana Sen, Alexander Tuzhilin.
2005. Incorporating contextual information in recommender systems using a multidi-
mensional approach. ACM Trans. Inf. Syst. 23(1) 103–145. doi:http://doi.acm.org/10.
1145/1055709.1055714. 47

Adomavicius, Gediminas, Alexander Tuzhilin. 2005. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng 17(6) 734–749. URL http://doi.ieeecomputersociety.org/10.
1109/TKDE.2005.99. 45

Allan, James, Ron Papka, Victor Lavrenko. 1998. On-line new event detection and tracking.
Proceedings of the 21st annual international ACM SIGIR conference on Research and develop-
ment in information retrieval. ACM Press, 37–45. doi:http://doi.acm.org/10.1145/290941.
290954. 13, 16, 17, 82

Bader, Brett W., Tamara G. Kolda. 2007. Matlab tensor toolbox version 2.2. URL http://
csmr.ca.sandia.gov/˜tgkolda/TensorToolbox/. 87

Bader, B.W., R.A. Harshman, T.G. Kolda. 2007. Temporal analysis of semantic graphs using
ASALSAN. Proceedings of the 2007 Seventh IEEE International Conference on Data Mining-
Volume 00. IEEE Computer Society Washington, DC, USA, 33–42. 83, 85

Baeza-Yates, Ricardo A., Berthier A. Ribeiro-Neto. 1999. Modern Information Retrieval. ACM
Press / Addison-Wesley. URL citeseer.ist.psu.edu/baeza-yates99modern.
html. 65

Banerjee, J., A.; Ghosh. 2003. Competitive learning mechanisms for scalable, incremental and
balanced clustering of streaming texts. Proceedings of the International Joint Conference on,
Neural Networks, vol. 4. 2697– 2702. 17

Becerra-Fernandez, I. 2006. Searching for experts on the Web: A review of contemporary
expertise locator systems. ACM Transactions on Internet Technology (TOIT) 6(4) 333–355.
82

Billsus, D., M.J. Pazzani. 1998. Learning collaborative information filters. Proceedings of the
Fifteenth International Conference on Machine Learning, vol. 54. 48

Bonacich, P. 1987. Power and centrality: A family of measures. American Journal of Sociology
1170–1182. 82, 106

Bonacich, P., P. Lloyd. 2001. Eigenvector-like measures of centrality for asymmetric relations.
Social Networks 23(3) 191–201. 82

Bookstein, Abraham, Don R. Swanson. 1975. A decision theoretic foundation for indexing.
Journal of the American Society for Information Science 45–50. 24

Borman, W. C. 1979. Format and training effects on rating accuracy. Journal of Applied Psychol-
ogy 64 410–421. 50, 117

http://doi.ieeecomputersociety.org/10.1109/TKDE.2005.99
http://doi.ieeecomputersociety.org/10.1109/TKDE.2005.99
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
citeseer.ist.psu.edu/baeza-yates99modern.html
citeseer.ist.psu.edu/baeza-yates99modern.html

REFERENCES 123

Brass, D.J. 1992. Power in organizations: A social network perspective. The Political Conse-
quences of Social Networks: The Political Consequences of Social Networks: 1992 4 295–323.
82

Breese, J.S., D. Heckerman, C. Kadie. 1998. Empirical analysis of predictive algorithms for
collaborative filtering. Tech. rep., Microsoft Research. 48, 62

Brin, S., L. Page. 1998. The anatomy of a large-scale hypertextual web search engine. Sev-
enth International World-Wide Web Conference (WWW 1998). URL http://ilpubs.
stanford.edu:8090/361/. 84

Burt, R.S., T. Schøtt. 1985. Relation contents in multiple networks. Social Science Research 14(4)
1985. 82

Chakrabarti, Soumen. 2002. Mining the Web: Discovering Knowledge from Hyper-
text Data. Morgan-Kauffman. URL http://www.cse.iitb.ac.in/˜soumen/
mining-the-web/. 15

Cheeseman, P., J. Stutz. 1996. Bayesian classification (AUTOCLASS): Theory and results. Ad-
vances in Knowledge Discovery and Data Mining . 16

Chi, Yun, Belle L. Tseng, Junichi Tatemura. 2006. Eigen-trend: trend analysis in the blogo-
sphere based on singular value decompositions. CIKM ’06: Proceedings of the 15th ACM
international conference on Information and knowledge management. ACM, New York, NY,
USA, 68–77. doi:http://doi.acm.org/10.1145/1183614.1183628. 83

Chi, Yun, Shenghuo Zhu, Xiaodan Song, Junichi Tatemura, Belle L. Tseng. 2007. Structural and
temporal analysis of the blogosphere through community factorization. KDD ’07: Pro-
ceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, New York, NY, USA, 163–172. doi:http://doi.acm.org/10.1145/1281192.
1281213. 83

Chien, Y.H., E.I. George. 1999. A bayesian model for collaborative filtering. Proceedings of the 7
thInternational Workshop on Artificial Intelligence and Statistics . 48

Chow, C. K., C. N. Liu. 1968. Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory 14(3) 462–467. 55

Cooper, William H. 1981. Ubiquitous halo. Psychological Bulletin 90 218–244. 50, 114, 115, 116,
117, 121

Cutting, Douglass R., David R. Karger, Pedersen Pedersen, John W. Tukey. 1992. Scat-
ter/gather: A cluster-based approach to browsing large document collections. Proceed-
ings of the Fifteenth Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. Interface Design and Display, 318–329. 12, 14

D. Kafry, S. Zedeck, R. Jacobs. 1979. Discriminability in multidimensional performance evalu-
ations. Applied psychological measurement 3 187–192. 53, 116

De Lathauwer, L., B. De Moor, J. Vandewalle. 2000. On the Best Rank-1 and Rank-(R, R,..., R)
Approximation of Higher-Order Tensors. SIAM Journal on Matrix Analysis and Applica-
tions 21 1324. 87

Deerwester, S., S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman. 1990. Indexing by
latent semantic analysis. Journal of the American society for information science 41(6) 391–
407. 85

Dempster, A. P., N. M. Laird, D. B. Rubin. 1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society 39 1–38. 56

Doddington, George, Jaime Carbonell, James Allan, Jonathan Yamron, Umass Amherst, Yim-
ing Yang. 2000. Topic detection and tracking pilot study final report. 13, 16, 82

http://ilpubs.stanford.edu:8090/361/
http://ilpubs.stanford.edu:8090/361/
http://www.cse.iitb.ac.in/~soumen/mining-the-web/
http://www.cse.iitb.ac.in/~soumen/mining-the-web/

REFERENCES 124

E. F. Borgatta, J. H. Mann, L. S. Cottrell. 1958. The spectrum of individual interaction charac-
teristics: An interdimensional analysis. Psychological Reports 4 279–319. 50, 117

Elaine D. Pulakos, Neal Schmitt, Cheri Ostroff. 1986. A warning about the use of a standard
deviation across dimensions within ratees to measure halo. Journal of Applied Psychology
1 29–32. 116

Feeley, Thomas Hugh. 2002. Comment on halo effects in rating and evaluation research. Hu-
man Communication Research 28(4) 578–586. 72

Figueiredo, M. A. T., A. K. Jain. 2002. Unsupervised learning of finite mixture models. IEEE
Trans. on Patt. Analysis and Machine Intell. 24(3) 381–396. 16

Fisher, Douglas H. 1987. Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning 2 139–172. 18, 22

Fisicaro, Charles E., Sebastiano A.; Lance. 1990. Implications of three causal models for the
measurement of halo error. Applied Psychological Measurement 14(4). 116

Fisicaro, Sebastiano A. 1988. A reexamination of the relation between halo error and accuracy.
Journal of Applied Psychology 73 239–244. 50, 114

Franz, Martin, Todd Ward, J. Scott McCarley, Wei-Jing Zhu. 2001. Unsupervised and super-
vised clustering for topic tracking. SIGIR ’01: Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in information retrieval. ACM Press,
310–317. doi:http://doi.acm.org/10.1145/383952.384013. 13, 16, 82

Frederick Mosteller, David L. Wallace. 1983. Applied Bayesian and Classical Inference The case of
The Federalist Papers. Springer series in Statistics, Springer-Verlag. 24

G. P. Latham, E. D. Pursell, K. N. Wexley. 1980. Training managers to minimize rating errors
in observation of behavior. Journal of Applied Psychology 60 550–555. 50, 117

Gennari, J. H., P. Langley, D. Fisher. 1989. Models of incremental concept formation. Journal of
Artificial Intelligence 40 11–61. 18, 22

Getoor, L., M. Sahami. 1999. Using probabilistic relational models for collaborative filtering.
Workshop on Web Usage Analysis and User Profiling (WEBKDD’99) . 48

Harshman, R.A. 1970. Foundations of the PARAFAC procedure: Models and conditions for
an” explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics 16(1)
84. 87

Heckerman, D., D.M. Chickering, C. Meek, R. Rounthwaite, C. Kadie. 2001. Dependency net-
works for inference, collaborative filtering, and data visualization. The Journal of Machine
Learning Research 1 49–75. 48

Heneman, H. G. 1974. Comparision of self and superior ratings of managerial performance.
Journal of Applied Psychology 59 638–642. 50, 116

Herlocker, Jonathan L., Joseph A. Konstan, Loren G. Terveen, John T. Riedl. 2004. Evaluating
collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1) 5–53. doi:http:
//doi.acm.org/10.1145/963770.963772. 64, 67

Hofmann, T. 2004. Latent semantic models for collaborative filtering. ACM Transactions on
Information Systems (TOIS) 22(1) 89–115. 48

Hofmann, Thomas, Jan Puzicha. 1999. Latent class models for collaborative filtering. Dean
Thomas, ed., Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI-99-Vol2). Morgan Kaufmann Publishers, S.F., 688–693. 48

Holzbach, R. L. 1978. Rater bias in performance ratings: Superior, self, and peer ratings. Journal
of Applied Psychology 63 579–588. 50, 55, 56, 117, 119, 120

REFERENCES 125

Ivancevich, J. M. 1979. Longtudinal study of the effects of rater training on psychometric error
in ratings. Journal of Applied Psychology 64 502–508. 50, 117

J. S. Berman, D. A. Kenny. 1976. Correlational bias in observer ratings. Journal of Personality
and Social Psychology 34 263–273. 117

J. T. Lamiell, P. Cavenee, M. A. Foss. 1980. On the relationship between conceptual schemes of
and behavior reports: A closer report. Journal of Personality 48 54–73. 116

Jain, A. K., M. N. Murty, P. J. Flynn. 1999. Data clustering: a review. ACM Computing Surveys
31(3) 264–323. URL citeseer.ist.psu.edu/jain99data.html. 12, 14, 16

Katz, Slava M. 1996. Distribution of content words and phrases in text and language mod-
elling. Nat. Lang. Eng. 2(1) 15–59. doi:http://dx.doi.org/10.1017/S1351324996001246.
23, 24, 25, 43

Kautz, H., B. Selman. 1998. Creating models of real-world communities with ReferralWeb.
Working notes of the Workshop on Recommender Systems, held in conjunction with AAAI-98,
Madison, WI. 82

Kevin R. Murphy, Douglas H. Reynolds. 1988. Does true halo affect observed halo? Journal of
Applied Psychology 73 235–238. 50, 115

Kleinberg, Jon M. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46(5)
604–632. doi:http://doi.acm.org/10.1145/324133.324140. 84, 89

Kolda, Tamara G. 2006. Multilinear operators for higher-order decompositions.
Tech. Rep. SAND2006-2081, Sandia National Laboratories, Albuquerque, NM
and Livermore, CA. URL http://www.prod.sandia.gov/cgi-bin/techlib/
access-control.pl/2006/062081.pdf. 86

Kolda, Tamara G., Brett W. Bader. 2008. Tensor decompositions and applications. SIAM Review
To appear (accepted June 2008). 86, 87

Kolda, TG, BW Bader. 2006. The TOPHITS model for higher-order web link analysis. Workshop
on Link Analysis, Counterterrorism and Security. 83, 85, 89

Koller, Daphne, Nir Friedman. 2009. Structured Probabilistic Models: Principles and Techniques.
MIT Press. To appear. 48, 54, 61

Koltuv, B. B. 1962. Some characteristics of intrajudge trait intercorrelations. Psychological Mono-
graph 76. 50, 116

Krulwich, B., C. Burkey, A. Consulting. 1996. The ContactFinder agent: Answering bulletin
board questions with referrals. Proceedings of the National Conference on Artificial Intelli-
gence. 10–15. 82

Kullback, S., R. A. Leibler. 1951. On information and sufficiency. Ann. Math. Statistics 22 79–86.
101

Landy, F. J., J. L. Farr. 1980. Performance rating. Psychological Bulletin 87 72–107. 50, 116
Lee, H.H., W.G. Teng. 2007. Incorporating Multi-Criteria Ratings in Recommendation Systems.

Information Reuse and Integration, 2007. IRI 2007. IEEE International Conference on 273–278.
50

Lewis, David D., Yiming Yang, Tony G. Rose, Fan Li. 2004. RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research 5 361–397. 35, 38

Liu, Xiaoyong, W. Bruce Croft. 2004. Cluster-based retrieval using language models. Proceed-
ings of the 27th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. Language models, 186–193. URL http://doi.acm.org/10.
1145/1008992.1009026. 12, 16

citeseer.ist.psu.edu/jain99data.html
http://www.prod.sandia.gov/cgi-bin/techlib/access-control.pl/2006/062081.pdf
http://www.prod.sandia.gov/cgi-bin/techlib/access-control.pl/2006/062081.pdf
http://doi.acm.org/10.1145/1008992.1009026
http://doi.acm.org/10.1145/1008992.1009026

REFERENCES 126

M. J. Kavanagh, L. Wolins, A. C. MacKinney. 1971. Issues oin managerial performance:
Multitrait-multimethod analyses of ratings. Pshychological Bulletin 75 34–49. 116

MacKay, D.J.C. 2003. Information theory, inference, and learning algorithms. Cambridge Univer-
sity Press New York. 55

Manning, Christopher D., Hinrich Schütze. 2000. Foundations of Statistical Natural Language
Processing. The MIT Press, Cambridge, England. 14, 15, 16, 23, 24, 25

McCallum, Andrew, Andres Corrada-Emmanuel, Xuerui Wang. 2004. The author-recipient-
topic model for topic and role discovery in social networks: Experiments with enron and
academic email. NIPS’04 Workshop on’Structured Data and Representations in Probabilistic
Models for Categorization. 82

Mitchell, Tom M. 1997. Machine Learning, chap. 3. WCB/McGraw-Hill, 67. 75

Moon, Sangkil, Gary J. Russell. 2008. Predicting Product Purchase from Inferred Customer
Similarity: An Autologistic Model Approach. MANAGEMENT SCIENCE 54(1) 71–82.
doi:10.1287/mnsc.1070.0760. URL http://mansci.journal.informs.org/cgi/
content/abstract/54/1/71. 48

Morrison, Donald F. 1967. Multivariate Statistical Methods. McGraw-Hill Book Company. 53,
119, 120

Murphy, Rebecca L, Kevin R.; Anhalt. 1992. Is halo error a property of the rater, ratees, or the
specific behaviors observed? Journal of Applied Psychology 77(4) 494–500. 115

Myers, James H. 1965. Removing halo from job evaluation factor structure. Journal of Applied
Psychology 49 217–221. 50, 55, 56, 118

Netflix, Inc. 2006. Form 10-k annual report pursuant to section 13 or 15(d) of the securities
exchange act of 1934. UNITED STATES SECURITIES AND EXCHANGE COMMISSION,
Washington, D.C. 20549. 46

Nir Friedman, Moises Goldszmidt. 1998. Learning in Graphical Models, chap. 15. Kluwer Aca-
demic Publishers, 431–432. 61

Pearl, J. 2000. Causality: Models, Reasoning, and Inference. Cambridge University Press. 48

Qamra, Arun, Belle Tseng, Edward Y. Chang. 2006. Mining blog stories using community-
based and temporal clustering. CIKM ’06: Proceedings of the 15th ACM international con-
ference on Information and knowledge management. ACM, New York, NY, USA, 58–67. doi:
http://doi.acm.org/10.1145/1183614.1183627. 82

Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl. 1994. GroupLens: an open archi-
tecture for collaborative filtering of netnews. Proceedings of the Conference on Computer-
Supported Cooperative Work, CSCW’94. 48

Rizzo, W. A., F. D. Frank. 1977. Influence of irrelevant cues and alternate forms of graphic
rating scales on the halo effect. Personnel Psychology 30 405–417. 50, 116

Sarkar, P., A.W. Moore. 2005. Dynamic social network analysis using latent space models.
ACM SIGKDD Explorations Newsletter 7(2) 31–40. 83

Shardanand, Upendra, Pattie Maes. 1995. Social information filtering: Algorithms for au-
tomating word of mouth. CHI. 210–217. 47

Shweder, R. A. 1975. How relevant is an individual difference in personality. Journal of Person-
ality 43 455–484. 50, 115

Shweder, R. A., R. G. D’Andrade. 1980. The systematic distortion hypothesis. New directions
for methodology of behavioral science: Fallible judgment in behavioral research 37–58. 50, 117

http://mansci.journal.informs.org/cgi/content/abstract/54/1/71
http://mansci.journal.informs.org/cgi/content/abstract/54/1/71

REFERENCES 127

Si, Luo, Rong Jin. 2003. Flexible mixture model for collaborative filtering. ICML. AAAI Press,
704–711. 47, 48, 50, 53, 54, 60

Smyth, Padhraic. 1996. Clustering Using Monte Carlo Cross-Validation. Evangelos Simoudis,
Jia Wei Han, Usama Fayyad, eds., Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD-96). AAAI Press, 126. 15

Steele, F.J. Landy; R.J. Vance; J.L. Barnes-Farrell; J.W. 1980. Statistical control of halo error in
performance ratings. Journal of applied psychology 65 501–506. 50, 55, 56, 118

Streeter, L.A., K.E. Lochbaum. 1988a. An expert/expert locating system based on automatic
representation of semantic structure. Proceedings of the fourth conference on artificial intelli-
gence applications. 345–350. 82

Streeter, L.A., K.E. Lochbaum. 1988b. Who knows: A system based on automatic representa-
tion of semantic structure. RIAO, vol. 88. 380–388. 82

Swan, R., D. Jensen. 2000. Timemines: Constructing timelines with statistical models of word
usage. KDD-2000 Workshop on Text Mining. Citeseer, 73–80. 82

Thorndike, EL. 1920. A constant error in psychological ratings. Journal of Applied Psychology 4
25–29. 50, 114, 115

Ungar, L.H., D.P. Foster. 1998. Clustering methods for collaborative filtering. AAAI Workshop
on Recommendation Systems 112–125. 48

Vivacqua, A. 1999. Agents for expertise location. Proc. 1999 AAAI Spring Symposium Workshop
on Intelligent Agents in Cyberspace. 9–13. 82

Wang, Xuerui, Andrew McCallum. 2006. Topics over time: a non-markov continuous-time
model of topical trends. KDD ’06: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, New York, NY, USA, 424–433.
doi:http://doi.acm.org/10.1145/1150402.1150450. 82

Wang, Xuerui, Natasha Mohanty, Andrew McCallum. 2005. Group and topic discovery from
relations and text. LinkKDD ’05: Proceedings of the 3rd international workshop on Link
discovery. ACM, New York, NY, USA, 28–35. doi:http://doi.acm.org/10.1145/1134271.
1134276. 83

Wasserman, S., K. Faust. 1994. Social network analysis: Methods and applications. Cambridge
Univ Pr. 84

Wells, F. L. 1907. A statistical study of literary merit. Archives of psychology 1. 50, 114, 115
William T. Hoyt, Michael-David Kerns. 1999. Magnitude and moderators of bias in observer

ratings a meta-analysis. Psychological Methods 4 403–424. 120
Yang, Yiming, Tom Pierce, Jaime Carbonell. 1998. A study of retrospective and on-line event

detection. SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval. ACM Press, 28–36. doi:http://doi.acm.
org/10.1145/290941.290953. 13, 16, 82

Yimam, D. 2000. Expert Finding Systems for Organizations: Domain Analysis and the
DEMOIR approach. ECSCW 99 Beyond Knowledge Management: Management Expertise
Workshop. MIT Press, 276–283. 82

Zhang, Ya-Jun, Zhi-Qiang Liu. 2004. Refining web search engine results using incremental
clustering. International journal of intelligent systems 19 191–199. 17

Zhu, Shenghuo, Kai Yu, Yun Chi, Yihong Gong. 2007. Combining content and link for clas-
sification using matrix factorization. SIGIR ’07: Proceedings of the 30th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval. ACM,
New York, NY, USA, 487–494. doi:http://doi.acm.org/10.1145/1277741.1277825. 83

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Discovering topic hierarchy in document streams
	Introduction
	Contribution of this research

	Literature review
	Text Documents and word distributions
	Models based on Poisson distribution
	Katz's K-mixture model
	Fitness comparison

	Algorithms for text
	Cobweb: when attribute values follow Katz's distribution
	Cobweb: when attribute values follow Negative Binomial distribution

	Cluster Evaluation Methods
	Evaluating the clusters
	Evaluating the hierarchy

	Experiment setup and results
	Reuters-RCV1
	Ohsumed (88-91)

	Conclusion

	Multi-component Rating Collaborative Filtering
	Introduction
	Multi-component rating recommender system
	Data description and preliminary analysis
	Modeling component ratings for collaborative filtering
	Parallels
	Model estimation using EM algorithm
	Predicting the Overall rating
	Instance based approaches

	Results and discussion
	Experiments with Random Training Sample
	Experiments with time ordered data
	Filling-in missing component ratings

	Conclusions

	Socio-temporal analysis of conversations in intra-organizational blogs
	Introduction
	Importance of entities in intra-organizational blogs
	Summary of notations
	Importance definition for multi-modal data
	Blog post developments
	Blog conversation development
	Comparison with the existing methods

	Dataset
	Application of tensor factorization
	Data preparation
	Illustrative results
	Comparison with content independent hub and authority
	``On topic'' quality of the top hubs' response
	Community discovery

	Conclusion

	Conclusion
	Document Clustering
	MLE of Katz's distribution parameters

	Multi-component Rating Collaborative Filtering
	Derivation of marginal distributions
	P(U, I, O) for the model with dependency among the ratings
	P(U, I, O) for the model with independent component ratings
	P(U, I, O) for the model with only the overall ratings
	P(U, I, S, O) from the complete joint distribution

	Halo in multi-criteria movie rating
	Halo Effect
	Halo in movie rating data

	References

