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Collaborative filtering algorithms learn from the ratings of a group of users on a set of items to find person-

alized recommendations for each user. Traditionally they have been designed to work with one dimensional

ratings. With interest growing in recommending based on multiple aspects of items (Adomavicius and Kwon

2007, Adomavicius and Tuzhilin 2005) we present an algorithm for using multi-component rating data. The

presented mixture model based algorithm uses the component rating dependency structure discovered by a

structure learning algorithm. The structure is supported by the psychometric literature on the halo effect.

This algorithm is compared with a set of model based and instance based algorithms for single-component

ratings and their variations for multi-component ratings. We evaluate the algorithms using data from Yahoo!

Movies. Use of multiple components leads to significant improvements in recommendations. However, we

find that the choice of algorithm depends on the sparsity of the training data. It also depends on whether

the task of the algorithm is to accurately predict ratings or retrieve relevant items. In our experiments a

model based multi-component rating algorithm is able to better retrieve items when training data is sparse.

However, if the training data is not sparse, or if we are trying to predict the rating values accurately then the

instance based multi-component rating collaborative filtering algorithms perform better. Beyond generating

recommendations we show that the proposed model can fill-in missing rating components. Theories in psy-

chometric literature and the empirical evidence suggest that rating specific aspects of a subject is difficult.

Hence, filling in the missing component values leads to the possibility of a rater support system to facilitate

gathering of multi-component ratings.

Key words : Collaborative Filtering, Multi-component Rating, Halo Effect, Bayesian Network, Mixture

Model, Expectation Maximization, Recommender System
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Item type recommended Commercial Non Commercial

Music iTunes, Last.fm, Yahoo! Music iRATEradio.com, mystrands.com
Movies Netflix.com, blockbuster.com movielens.umn.edu, filmaffinity.com
Books StoryCode.com gnooks.com
Dating reciprodate.com

Web Sites GiveALink.org, StumbleUpon.com
Aggregated Amazon.com, half.ebay.com

Table 1 Examples of Collaborative Filtering based recommender systems

1. Introduction

Recommender systems are increasingly used in online communities, e.g., shopping sites, subscrip-

tion service sites, and online meeting places (see Table 1). The recommendations are generated

from the collection of user preferences, yet they are personalized to each user. Recommender sys-

tems are especially useful when the user has too many choices to explore—they assist the users in

discovering items that will appeal to them.

From the retailer’s perspective, recommender systems may be used to target-advertise items

to its customers. A merchant at an online marketplace can use a recommender system to induce

demand for the less-known items in the system. By using its proprietary recommender system

Netflix is able to effectively merchandise its collection of more than 100,000 movies. They are

able to create demand for older, and often less-known, movies by advertising them to users who

might like those movies. Given the constraint on the number of movies a subscriber can rent at

a time, increase in demand for older movies reduces the demand for the newer releases which

are more expensive to stock. As reported in the annual SEC filing of the company in 2006, the

success of the Netflix business model depends, to a certain extent, on effective use of and user

satisfaction in relation to their recommender system (Netflix 2006). Online storefronts are not the

only places where recommender systems can be used. There are communities of users with common

interests who use recommender systems to find new items that they might enjoy. Some examples of

such communities are Last.fm and Pandora.com (Internet radio stations with music recommender

systems), and StumbleUpon.com (a Web page recommender system). These developments suggest

that recommender systems are important tools for mining collective user preferences to help users

better navigate large choice spaces.

A key input to recommender systems is the ratings given by the users on the items in the system.

The ratings provide information about the quality of the item as well as about the taste of the

user who gave the rating. Most recommender systems have been designed for single-valued ratings,

i.e., for each (user, item) pair we have one rating indicating how much the user liked the item.

However, sometimes there are multiple components to a rating. For instance, the popular Zagat
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survey (Zagat.com) rates restaurants on four criteria: food, decor, services and cost. Similarly,

a movie could be rated for its plot, acting, visual effects, and direction. When such ratings are

available from users, it is plausible that a recommender system could be designed that makes use

of these component ratings and produces better recommendations for the users.

Contributions of this paper

In this paper we build upon a successful collaborative filtering algorithm for single component rat-

ings to design an algorithm that makes use of multi-component ratings. We do this by discovering a

dependency structure among multi-component rating data using the Chow-Liu structure discovery

algorithm. The discovered structure is validated by the literature on the halo effect. We embed

this dependency structure in a flexible mixture model (FMM) (Si and Jin 2003). FMM has been

shown to work better than the traditional mixture models for collaborative filtering. We evaluate

a set of model based and instance based one component rating collaborative filtering algorithms

and their extensions for the multi-component rating dataset. The algorithms were tested using

multi-component rating data collected from Yahoo! Movies. The test results show a significant

improvement from the use of multiple component ratings. We identify which multi-component

rating algorithm performs better in which scenario and provide some insight into the behaviors

of model based and instance based algorithms for collaborative filtering. We also show that the

proposed model can be used to fill-in the missing rating components for incomplete records. This

allows us to generate better recommendations for more users when there are incomplete ratings in

the data. This also raises the possibility of a rater support system for helping the users in rating

specific aspects of an item.

It is important to distinguish the current work from collaborative filtering in the presence of

multi-dimensional context information, such as finding a recommendation for a movie to watch

on a Sunday in the evening with children. Studies exist in the literature to incorporate multi-

dimensional context information into the recommendation generation process. Adomavicius et al.

(2005) suggest a reduction based approach where context specific recommendation is generated

by using only the ratings collected in the context of interest. In the current work we address a

different research question: how can we use the information in various components of a rating to

make better recommendations for the users?

Background

Given a user’s ratings on a subset of items and his peers’ ratings on possibly different subsets of

items, collaborative filtering algorithms predict which of the items the user would like among the
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items that he/she has not yet rated. Collaborative filtering algorithms recommend to each user

items that are popular among the group of users who are similar to him. This can be thought of

as automating the spread of information through word-of-mouth (Shardanand and Maes 1995).

Since, collaborative filtering algorithms do not use the content information of the items, they are

not limited to recommending only the items with content that the user has rated before.

The first group of collaborative filtering algorithms were primarily instance based (Resnick et al.

1994). In the training step they build a database of user ratings that is used to find similar users

and/or items while generating recommendations. These algorithms became popular because they

are simple, intuitive, and sufficient for many small datasets. However, they do not scale to large

datasets without further approximations. Also, because they do not learn any user model from the

available preferences they are of limited use as data mining tools (Hofmann 2004).

A second group of collaborative filtering algorithms, known as model-based algorithms, surfaced

later (Breese et al. 1998, Chien and George 1999, Getoor and Sahami 1999). They compile the

available user preferences into compact statistical models from which the recommendations are

generated. Notable model based collaborative filtering approaches include singular value decom-

position to identify latent structure in ratings (Billsus and Pazzani 1998); probabilistic clustering

and Bayesian networks (Breese et al. 1998, Chien and George 1999); repeated clustering (Ungar

and Foster 1998); dependency networks (Heckerman et al. 2001); latent class models (Hofmann

and Puzicha 1999) and latent semantic models (Hofmann 2004) to cluster the ratings; and flex-

ible mixture models to separately cluster users and items (Si and Jin 2003). Unlike the instance

based approach the model based algorithms are slow to train, but, once trained they can generate

recommendations quickly.

The model based algorithms are often described with the help of probabilistic graphical models.

Probabilistic graphical models provide a framework based on probability theory and graph theory

to approximate complex distributions (Pearl 2000). They graphically express conditional indepen-

dencies among variables. The variables are represented as nodes and dependence among them is

expressed as edges in a graph. The assumption they encode about the distribution is: each node is

independent of the non-descendent nodes conditional on its parent nodes. This allows one to use

the chain rule of probability to factor the joint distribution over all the variables into the prod-

uct of small conditional distributions. These smaller distributions can be individually estimated.

This simplifies the operation on the joint distribution during training and inference (Koller and

Friedman 2009).

Product recommendation systems have been explored in marketing science as well. Often the

goal is to predict the purchase outcome when a customer is targeted and advertised. Recently Moon
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Figure 1 Flexible Mixture model of Luo Si, Rong Jin, 2003. Latent variable nodes are shaded and observed

variable nodes are not shaded.

and Russell have developed an Autologistic recommendation model based on tools from the spatial

statistics literature (Moon and Russell 2008). This model uses the consumers’ purchase history to

estimate the probability of a future purchase.

Most of the algorithms in the literature are designed to use unidimensional ratings. In a recent

work Adomavicius and Kwon present approaches for multi-criteria rating collaborative filtering

(Adomavicius and Kwon 2007). Their work is instance based in identifying similar users, but model

based in aggregating component ratings into one overall rating. Lee and Teng use skyline queries

to generate multi-criteria based recommendations from individual component rating predictions

where each component rating is predicted using traditional collaborative filtering algorithms (Lee

and Teng 2007).

The multi-component rating collaborative filtering has some apparent similarity with the conjoint

analysis in marketing science (Green and Srinivasan 1978). In conjoint analysis the objective is

to estimate a consumer’s preference function in terms of the weight the consumer assigns to the

attributes of a product. However, collaborative filtering is effective for experience goods for which

attributes can not be readily determined. For instance directorial style of a movie is hard to

express using an attribute-value system. It is worth noting that high rating for directorial style of

a particular movie does not mean the user puts more weight on the directorial quality. Rather, it

means that the user perceives a better match of the directorial style, which is not part of the data,

with her preference. In this regard content based filtering strategies have more similarity with the

conjoint analysis than do the collaborative filtering strategies.

The current work is built upon the Flexible Mixture Model (FMM) for collaborative filtering (Si

and Jin 2003). FMM models the user and item distribution separately by using two latent variables

(Figure 1). It has been shown to work better than other latent class models for collaborative

filtering. We extend it for multi-component ratings taking into account specific properties of these

types of data.
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User Movie story acting visuals direction overall
u1 m1 4 1 2 1 2
u2 m1 2 1 1 4 2

Table 2 An example of multi-component rating. Ratings are on a scale of 0 to 4.

Multi-component rating data exhibits high correlation among the rating components. This is

known as the halo effect (Thorndike 1920, Wells 1907). Halo occurs in part due to the failure of

the raters to evaluate each component independent of the others (Cooper 1981, Shweder 1975). In

some cases this could be a result of the design of the questionnaire that collects multi-component

ratings. If the definitions of the components are ambiguous or not sufficiently different from each

other the collected ratings are likely to be correlated (Kevin R. Murphy 1988). Although there is

some debate whether halo is entirely bad (Cooper 1981, Fisicaro 1988), it is generally considered

undesirable because correlated components provide less information than independent ones. At the

rating time Halo can be reduced by increasing the familiarity between the rater and the subject

(Heneman 1974, Koltuv 1962, Landy and Farr 1980), reducing the time between the observation

and the rating (E. F. Borgatta 1958, Shweder and D’Andrade 1980), clever questionnaire designs

that make the rater aware of the differences among the components (Rizzo and Frank 1977), and

sensitizing the raters by training them to observe and avoid halo (Borman 1979, G. P. Latham

1980, Ivancevich 1979).

Some halo is almost always present despite precautions. Holzbach suggests using a global compo-

nent in the rating to collect each rater’s overall impression of the subject and statistically remove

its effect from each component rating (Holzbach 1978). Similar approaches are taken by Landy

et al. (Steele 1980) and by Myers (Myers 1965) to arrive at more accurate component ratings.

There are some similarities of our approach described in Section 2.4 to the approach proposed by

Holzbach. To the best of our knowledge, the effect of halo has not been studied in the context

of recommender systems despite recent advances in multi-component rating collaborative filtering

algorithms.

2. Multi-component rating recommender system

By rating multiple aspects of an item users provide more information about their preferences.

The variation in different users’ component ratings while they seemingly agree on their overall

impression of the item can be informative. For instance, consider two users u1 and u2 who have

given the same overall ratings to the movie m1 (Table 2). But, they differ in how they rate the

components of the movie. The user u1 likes the plot of the movie, while the user u2 likes the

direction of the movie. Without the component ratings we would have concluded that the users
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would not particularly like any movie similar to m1. But the component ratings tell us more. They

suggest that the user u1 might like other movies that have a story similar to m1, while user u2

might like a movie that has been directed by the same director or a director with a similar style.

Therefore, if we can effectively use the information in the component ratings we should be able to

find more relevant items for the users.

Our empirical work has been motivated by the availability of extensive multi-component rating

data from the Yahoo! Movies Web site. Although, the general approach taken in this work is

applicable for any data with component ratings, for clarity we shall describe the methods of this

work with the help of the Yahoo! dataset. A description of the dataset follows.

2.1. Data description and preliminary analysis

The rating data was collected from the Yahoo! movies Web site using a custom written pro-

gram written in the Java programming language. Each record of the rating data has seven

variables: item or movie ID (I), user ID (U), ratings on story (S), acting (A), visuals (V ),

direction (D) and overall (O) quality of the movie. The ratings are on a thirteen point

scale (A+,A,A−,B+,B,B−,C+,C,C−,D+,D,D−,F ). We recoded them to a scale of 0 to 4

({A+,A,A−} −→ 4,{B+,B,B−} −→ 3,{C+,C,C−} −→ 2,{D+,D,D−} −→ 1,{F} −→ 0), so

that there are enough data points in each rating bucket. This is especially important for the con-

ditional probability tables estimated in this paper. The models are estimating the probability of

observing certain rating values when a user and a item probabilistically belong to some latent

classes. If there are not enough data points for a rating value, the probability estimates will be

unreliable. Although, there were 691,496 (user, item) pairs in the original dataset, the user fre-

quency in the data turns out to be skewed (Figure 2). Ratings from users who have rated very few

movies are not useful for collaborative filtering, since we cannot reliably know the preferences of

a user from only a few of his ratings. Also, we need enough ratings per individual to both train

and test the model. Therefore, we have retained only those records that contain users who have at

least 20 ratings. After this filtering there were 45,892 records, 1,058 unique users, and 3,430 unique

movies.

Examining the dataset for halo effect, we find that the components are highly correlated (Table

3). One way to detect halo is by Principal Component Analysis (PCA) and Factor Analysis (Morri-

son 1967). If most of the variance in the components can be explained by one principal component

or one factor then it suggests the presence of halo (D. Kafry 1979). Principal Component Analysis

of the ratings show that there is one component that explains 84.5% variance. Factor Analysis of

the components produced a factor structure dominated by one factor (Table 5). These indicate

that there is halo error in the collected ratings.
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Figure 2 loge-loge plot of frequency of users who have rated a certain number of movies.

S A D V O
S 1.00 0.79 0.82 0.74 0.87
A 0.79 1.00 0.81 0.73 0.83
D 0.82 0.81 1.00 0.79 0.88
V 0.74 0.73 0.79 1.00 0.80
O 0.87 0.83 0.88 0.80 1.00

Table 3 Correlation among components of rating

Component One Two Three Four Five
% variance explained 84.5 5.7 4.4 3.2 2.2

Table 4 Principal components

Factor1 Factor2 Uniquenesses
S 0.91 0.23 0.11
A 0.87 −0.02 0.21
V 0.93 −0.08 0.10
D 0.84 −0.12 0.25
O 0.95 0.03 0.07

Table 5 Factor loadings after quartimax rotation

2.2. Modeling component ratings for collaborative filtering

The information contained in the multi-component rating has two parts: the overall component

captures the overall impression of the user about the item and the variation among the components

after partialling out the effect of the overall component tells us how the user evaluates aspects

of the item. Traditionally, only the overall component has been used to carry out collaborative

filtering (e.g., in Si and Jin (2003)). In this section we show how to use the additional information

in components along with the overall component.
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Figure 3 Flexible Mixture Model for component rating collaborative filtering

We use a mixture model similar to the Flexible Mixture Model (Si and Jin 2003) (Figure 1).

FMM proposes that the rating an item receives from a user is governed by a small number of

latent classes for the users and a small number of latent classes for the items. Given the latent

classes, the rating is independent of the particular user and the particular item. We can start by

embedding all five rating components in the graphical model in place of the only overall component

used in FMM. However, rating components are highly correlated as shown in Table 3. An incorrect

independence among the component ratings in the model would mislead us to believe that each

rating component provides completely new additional information about the user preferences.

Therefore, one would do well to find the dependency structure among the five components of the

rating (Figure 3). This can be posed as a search problem where the goal is to find the dependency

graph that maximizes the probability of the data. Just as during maximum likelihood estimation

the parameter that maximizes the probability of data is deemed to be closest to the true parameter,

the structure that maximizes the probability in this exercise is deemed the best approximation of

the true dependency (Koller and Friedman 2009). To estimate the number of different subgraphs

among the five components note that there are ten unique pairs, each of which can have an edge

between them in either direction or have no edge at all. Discarding structures containing cycles

we have 29,281 candidate structures to search through. This is time consuming. Another problem

with a complete model search is that the configurations with multiple parents will lead to large

conditional probability tables for which we do not have enough data to estimate the probabilities

reliably.

We strike a balance between having completely independent rating variables with no edge
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Mutual Information Chow-Liu tree

S A V D O
S − 0.61 0.72 0.51 0.88
A 0.61 − 0.68 0.47 0.73
V 0.72 0.68 − 0.64 0.92
D 0.51 0.47 0.64 − 0.66
O 0.88 0.73 0.92 0.66 −

MST
=⇒

O

A V DS

Figure 4 Discovered structure in the sub ratings

between them and accommodating fully connected rating variables that account for all possible

dependencies. We restrict ourselves to a category of structures that can capture much of the depen-

dency among the rating variables while being amenable to fast and reliable parameter estimation.

Chow and Liu have shown that if we have only discrete variables and we restrict ourselves to only

those structures in which there is at most one parent node for each node, i.e., trees, we can efficiently

search through them to find the tree that maximizes the probability of data. When the probability

distribution is factored according to a tree dependency structure the graph that maximizes the log

probability of the data is the one that maximizes the sum of pairwise mutual information1 over

each edge in the graph. Hence the tree can be found by a maximum weight spanning tree (MST)

algorithm (Chow and Liu 1968).

Such an exercise over the five component ratings leads to the structure shown in Figure 4.

The structure states that the strongest of the dependencies among the components of the ratings

is between the Overall rating and the components, as can be verified from the pairwise mutual

information table in Figure 4. This shows the strong influence of a user’s Overall impression of

a movie on the perception of the other aspects of the movie. In the data we would find evidence

of dependence between any pair of variables, but changing the parent for any of the components

from O to any other variable (under the tree structure restriction one variable can have at most

one parent) would lead to a lower probability of the data. Another way of reading this discovered

structure is: given the Overall rating the components are independent. Note that this dependency

structure says that if we do not condition on the Overall rating, then the S,A,D,V variables are

dependent or correlated, which is consistent with the expectation we started with.

2.3. Parallels

It is interesting to compare the approach taken in the psychometric literature (Holzbach 1978,

Myers 1965, Steele 1980) with the discovered Chow-Liu tree dependency structure among the movie

rating components.

1 Mutual information is a metric to measure the strength of the dependence between two variables (MacKay 2003)



Sahoo et al.: The Halo Effect in Multi-component Ratings and its Implications for Recommender Systems
Information Systems Research 00(0), pp. 000–000, c© 0000 INFORMS 11

rRiRj .O S A D V
S 1.00 0.25 0.26 0.15
A 0.25 1.00 0.32 0.22
D 0.26 0.32 1.00 0.33
V 0.15 0.22 0.33 1.00

Table 6 Partial correlations controlling for Overall rating

Following a procedure like Holzbach’s when we statistically remove the halo effect of the Overall

component on the other components through partial correlation, the average inter-component cor-

relation among variables S,A,D,V reduces from 0.78 to 0.26. As all correlations are positive some

reduction in correlation is expected when computing partial correlations. However, the average

partial correlation among the variables is the least when we control for the variable O among the

possible five variables. The average partial correlations when we control for S,A,D,V are 0.47,

0.53, 0.35 and 0.60 respectively. These observations are in accordance with Holzbach’s proposition

that by controlling for Overall rating we can peer beyond the halo effect at the more accurate

component ratings.

The dependency structure given in Figure 4 says that if we condition on the Overall rating (O),

then the components should be independent of each other. Strictly speaking, this assertion of the

Chow-Liu tree is correct only if the assumption that the dependency among the rating components

can be described by a tree structure is correct. However, a weaker assertion that states that among

all possible variables that we might have conditioned on, conditioning on O leads to least residual

dependency among the remaining components, is still true. We found that the discovered structure

persists over different random subsets of the data, suggesting that it is robust.

This result empirically validates the approach taken by (Holzbach 1978), (Myers 1965) and

(Steele 1980) using a much larger dataset. It is interesting to note that the Chow-Liu tree struc-

ture discovery method, which is agnostic to the meaning of the rating components, arrives at a

conclusion based on the empirical distribution of the data that agrees with the what researchers

in psychometric literature arrived at based on the general impression theory of the halo effect. We

believe this agreement adds to the validity of both the approaches.

2.4. Model estimation using the Expectation-Maximization (EM) algorithm

Using the discovered structure between the components of the ratings we construct the model

shown in Figure 5 for collaborative filtering. As we have hidden variables, the parameters need

to be estimated using an indirect method. We propose an algorithm based on the EM framework

(Dempster et al. 1977). The algorithms based on the EM framework have two alternating steps

that monotonically increase probability of the data or the likelihood of the parameters. They are:
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Figure 5 Flexible Mixture Model with component rating dependency structure

E (expectation) step where one computes the distribution of the unobserved variable given all the

observed variables. This is same as doing an inference on the graphical model for the hidden

variables. It can be shown that among all distributions over the hidden variables the posterior dis-

tribution given the observed data maximizes the expected log-probability. Intuitively, the posterior

distribution over the hidden variables given the observation is our best guess about the values of

the hidden variables.

M (maximization) step where one estimates the parameters of the complete distribution (consists

of observed and unobserved variables) using the standard maximum likelihood estimation. This

operation maximizes the expected log probability given the posterior distribution of the unobserved

variables.

The E and the M steps in our case are:

E-step

P (Zu,Zi| ~X) =
P (Zu)P (Zi)P (I|Zi)P (U |Zu)

∏5

j=1P
(
Rj|Zu,Zi,PaRj

)∑
Zu

∑
Zi
P (Zu)P (Zi)P (I|Zi)P (U |Zu)

∏5

j=1P
(
Rj|Zu,Zi,PaRj

) (1)

M-step

P (Zu) =
1

L

∑
l

∑
Zi

P (Zu,Zi|
−−→
X(l)) (2)

P (Zi) =
1

L

∑
l

∑
Zu

P (Zu,Zi|
−−→
X(l)) (3)

P (U |Zu) =

∑
l:U(l)=U

∑
Zi
P (Zu,Zi|

−−→
X(l))∑

l

∑
Zi
P (Zu,Zi|Xl)

(4)
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P (I|Zi) =

∑
l:I(l)=I

∑
Zu
P
(
Zu,Zi|

−−→
X(l)

)
∑

l

∑
Zu
P
(
Zu,Zi|

−−→
X(l)

) (5)

P
(
Rj|Zu,Zi,PaRj

)
=

∑
l:Rj(l)=Rj&PaRj(l)=PaRj

P
(
Zu,Zi|

−−→
X(l)

)
∑

l:PaRj(l)=PaRj
P
(
Zu,Zi|

−−→
X(l)

) (6)

where,

Zu = Latent class variable to cluster the users

Zi = Latent class variable to cluster the items

Rj = jth rating node. Rj ∈ {S,A,V,D,O}

PaRj
= parent rating node of Rj

L= number of records in the dataset

l= record index
−−→
X(l) = record numbered l. It consists of observations for U, I,S,A,V,D,O

U(l) = variable U in the record numbered l

I(l) = variable I in the record numbered l

Rj(l) = rating variable Rj in the record numbered l

PaRj(l) = rating variable PaRj
in the record numbered l

The E-step shown above is the conditional distribution computed by dividing joint distribution

of all variables, factored using the conditional independencies, by the joint distribution of only the

observed variables, obtained by marginalizing out the hidden variables. The M-step in the EM

algorithm estimates the Maximum Likelihood Estimate (MLE) of the parameters using both the

observed and the unobserved variables. If we could observe all variables, we could find the MLE of

parameters of each conditional probability table by dividing the number of records with matching

values for all the variables in the conditional probability table by the total number of records

with matching values of the conditioning variables. But we do not observe the hidden variables.

Therefore, we have to use our best guess about their number of occurrences or their expected

occurrence counts at a record given the observations of other variables in the same record. This is

obtained from the posterior distribution of the hidden variable. Since this conditional distribution

is multinomial the expected number of times a hidden variable takes a certain value in one record

is same as the probability of the hidden variable taking that value given the value of the observed

variables. All equations of the M-step can be obtained by tabulating the values of the observed

variables and, for the hidden variables, using the expected number of times the hidden variables

take a certain value.
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Figure 6 Flexible mixture model with independent component ratings

We compare this model with discovered dependency structure with the model that assumes

independence among the component ratings conditional on the latent classes (Figure 6). The E

and the M steps for the case when all components are assumed independent are derived in a similar

manner.

E-step

P (Zu,Zi| ~X) =
P (Zu)P (Zi)P (I|Zi)P (U |Zu)

∏5

j=1P (Rj|Zu,Zi)∑
Zu

∑
Zi
P (Zu)P (Zi)P (I|Zi)P (U |Zu)

∏5

j=1P (Rj|Zu,Zi)
(7)

M-step

P (Zu) =
1

L

∑
l

∑
Zi

P (Zu,Zi|
−−→
X(l)) (8)

P (Zi) =
1

L

∑
l

∑
Zu

P (Zu,Zi|
−−→
X(l)) (9)

P (U |Zu) =

∑
l:U(l)=U

∑
Zi
P (Zu,Zi|

−−→
X(l))∑

l

∑
Zi
P (Zu,Zi|Xl)

(10)

P (I|Zi) =

∑
l:I(l)=I

∑
Zu
P
(
Zu,Zi|

−−→
X(l)

)
∑

l

∑
Zu
P
(
Zu,Zi|

−−→
X(l)

) (11)

P (Rj|Zu,Zi) =

∑
l:Rj(l)=Rj

P
(
Zu,Zi|

−−→
X(l)

)
∑

lP
(
Zu,Zi|

−−→
X(l)

) (12)

Note that the key difference between these two sets of expressions is the absence of any parent

node in the conditioning part of the conditional probability of the component ratings (Expressions

6 and 12). The intuitions behind these equation are similar to those described for the previous set.
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We also compare these approaches with the baseline case where there is only one rating: the

Overall rating on the movie. The E and the M steps can be borrowed from (Si and Jin 2003) or

derived following the approach used to arrive at Equation 1–12.

E-step

P (Zu,Zi|U, I,O) =
P (Zu)P (Zi)P (I|Zi)P (U |Zu)P (O|Zu,Zi)∑

Zu

∑
Zi
P (Zu)P (Zi)P (I|Zi)P (U |Zu)P (O|Zu,Zi)

(13)

M-step

P (Zu) =
1

L

∑
l

∑
Zi

P
(
Zu,Zi|U(l), I(l),O(l)

)
(14)

P (Zi) =
1

L

∑
l

∑
Zu

P
(
Zu,Zi|U(l), I(l),O(l)

)
(15)

P (U |Zu) =

∑
l:U(l)=U

∑
Zi
P
(
Zu,Zi|U(l), I(l),O(l)

)
L×P (Zu)

(16)

P (I|Zi) =

∑
l:I(l)=I

∑
Zu
P
(
Zu,Zi|U(l), I(l),O(l)

)
L×P (Zi)

(17)

P (O|Zu,Zi) =

∑
l:O(l)=O

∑
Zu
P
(
Zu,Zi|U(l), I(l),O(l)

)∑
lP
(
Zu,Zi|U(l), I(l),O(l)

) (18)

In each of these approaches the number of the classes (levels of Zu and Zi) is a user specified

parameter. The greater the number of classes, the better will be the fit of the model to the training

data, resulting in larger probability of data, but, that will increase the risk of overfitting the model

to the training data. Another factor to keep in mind is that increasing the number of classes by

n times leads to n2 times more multiplications in the E− step and n times more additions in the

M − step. In our experiments the times taken to complete with higher levels of classes has been

the bottleneck. We have experimented with 4, 8, 16, and 32 classes. The time taken to complete

the experiments were approximately 2.5 hours, 17 hours, 92 hours, and 670 hours respectively

on a 3.0GHz pentium processor computer. This leads to some interesting findings. The model

with only an Overall rating performs best with 4 hidden classes. The more complex model with 5

independent components performs best at 8 hidden classes and almost as well with 16. The model

with 5 dependent components performs best with 16 hidden classes. The reported results contain

the best results for each model.

All models perform poorly when we used 32 classes because of too many parameters to estimate.

It causes at least two problems.

1. Small number of data points for each parameter leads to unreliable estimations

2. Overfitting of the model to the training data

A method that adaptively determines the number of classes given the size of the dataset at hand

would be most appropriate in a real life setting. However, we leave that for a future study.
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Smoothing of parameter estimates using BDe prior (Koller and Friedman 2009)

To guard against over-fitting to the training data we smooth the parameter estimates in the

M-step using a Dirichlet prior, which is the multivariate generalization of the Beta distribution

and conjugate prior for the Multinomial distribution. A parameter (θ1, . . . , θK) following Dirichlet

distribution with the hyper-parameters (α1, . . . , αK) has the probability distribution

P (θ1, . . . , θK) ∼
∏
k

θ
αk−1
k

The expected value of θk = αk∑k=K
k=1 αk

. If we update this prior using multinomial data with counts

M1, . . . ,MK , then we obtain the posterior that is another Dirichlet distribution with hyper param-

eters (α1 +M1, . . . , αK +MK). Thus the expected values of the components can be obtained by

adding the counts to the numerator and denominator of the original formula.

E(θk) =
Mk +αk

(
∑

kMk) + (
∑

k αk)
(19)

Therefore the α’s can be thought of as pseudocounts and the sum of α’s is a measure of the weight

of the prior. Note that for each combination of values of the parent nodes there is a different set of

parameters and priors. If the same Dirichlet prior is used for each conditional distribution the nodes

with more parent configurations would have larger weights of the priors. BDe prior is a Dirichlet

prior constructed so that the weight of the prior would be the same for each node irrespective of

how many parent configurations, and thus conditional probability tables, there are for each of them

(Nir Friedman 1998). We use a BDe prior to smooth the parameter estimates during the model

training phase.

2.5. Predicting the Overall rating

The goal is to predict the rating a user would give to an item he has not yet rated. Hence, the

partial observation consists of the user and the item from which we are trying to predict the

Overall rating.

The joint distribution over all variables (observed and latent) is the product of the conditional

probability table estimated in Section 2.4 from which we need to marginalize away those variables

that we are not interested in. In this section we focus on our ability to predict the overall rating.

Therefore, we need to marginalize all variables except U, I andO. For the three models discussed

in the previous section the distribution over the variables U, I and O is:

P (U, I,O) =
∑
Zu

P (Zu)P (U |Zu)
∑
Zi

P (O|Zu,Zi)P (Zi)P (I|Zi) (20)
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Although the expression for all three models is the same the parameters estimated are different

due to different conditional independence assumptions.

For user ua and item i we are interested in the conditional distribution of the overall rating,

namely,

P (O|ua, i) =
P (ua, i,O)∑
O P (ua, i,O)

(21)

The mode of this distribution of O is predicted as the output2.

2.6. Instance based approaches

We compare the performance of these proposed algorithms with several of the existing one compo-

nent and multi-component instance based methods. As a baseline we use the framework proposed

by Breese et al. (1998):

R̂tj = R̄t +
1∑Nu

i abs(sim(t, i))

Nu∑
i

sim(t, i)(Rij − R̄i) (22)

where the expected rating a user t would give to item j is computed by ratings of the other users

weighted by similarity of those users to the target user t. One of several metrics can be used for

computing the similarity between two users who are represented by the vectors of ratings they have

given. Some choices are cosine, correlation, inverse Eucledian distance, etc. We use the correlation

coefficient for obtaining baseline results since it has often been used in the literature.

Adomavicius and Kwon (2007) has generalized the similarity measure in Equation 22 to the case

of ratings with multiple components. Their predicted rating can be summarized as

sim(t, i) =
1

1 + distu(t, i)
(23)

distu(t, i) =
1

|Ut ∩Ui|
∑

l∈Ut∩Ui

distr(Rtl,Ril) (24)

where, Ui is the set of ratings given by the user i.

Several distance metrics are explored for distr between two multi-component ratings, such as :

1. Manhattan distance ∑
k

|Ri(k)−Rj(k)|

2. Euclidean distance √∑
k

(Ri(k)−Rj(k))
2

2 Use of expectation of O to predict did not change the conclusions of the experiments.
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Model based Instance based
Multi-component

1. 5 dependent subratings
2. 5 independent subratings

3. Chebyshev
4. Mahalanobis
5. PCA

One component
6. Flexible Mixture Model 7. User-User correlation

Table 7 Set of algorithms compared

3. Chebyshev distance

maxk|Ri(k)−Rj(k)|

They found that the Chebyshev distance based approach performs best among the distance

based approaches considered. The distance metrics proposed in (Adomavicius and Kwon 2007)

for multi-component rating collaborative filtering do not take into account correlation between

rating components. One multi-dimensional distance measure that takes into account correlation

between dimensions is Mahalanobis distance (Mahalanobis 1936). Mahalanobis distance between

two random vectors ~x and ~y, that are assumed to be drawn from one common distribution, is:

distmaha(~x,~y) =
√

(~x− ~y)TS−1(~x− ~y) (25)

where S is the covariance of the distribution. In one set of experiments we use Mahalanobis

distance to compute recommendations. This is done by using Equation 25 in Equations 23 and

24 to compute recommendations. We compute the covariance matrix from the ratings used in the

training data.

Because of the correlation among the component ratings, it is worth considering if it would suffice

to isolate the principal rating component through a principal component analysis and use that in

a single component rating collaborative filtering algorithm. We obtain the principal component of

the multi-component rating through a PCA rotation and compute the correlation between pairs of

users based on their thus identified principal component ratings on movies. After computing the

similarity between the users we use original ratings in Equation 22 to compute the predicted value

of a user’s rating on a movie.

The set of collaborative filtering methods compared are summarized in Table 7.

3. Results and discussion
3.1. Experiments with Random Training Samples

To compare the effectiveness of the three models we use a fraction of the user ratings to train our

models (training set) and use the remaining to test the prediction (test set). A certain fraction of
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each user’s records was randomly selected to include in the training data to make sure that there

is some training data for each user in the test set. For each user-item pair in the test data we

predict their overall rating (O) using each model. We calculate the Mean Absolute Error (MAE)

of the predictions with the help of the known ratings. We also evaluate the algorithms’ ability to

retrieve the highest rated items. These two results need not be correlated (Herlocker et al. 2004).

Appropriateness of each depends on the application environment.

In an application where the user is recommended the items along with the predicted ratings for

the user it is important to be able to predict the numerical values of these ratings accurately. One

example of such an application environment can be found in the movie recommender system of

Netflix. The rating prediction accuracy can be measured using Mean Absolute Error (MAE) of the

predictions.

MAE =
1

Ltest

Ltest∑
l=1

|ol− ôl|

where, Ltest = the number of records in the test data

ol = the true rating

ôl = the predicted rating

However, in many other applications the user is only presented the top few items that he is likely

to rate highly. The numerical values of the items are deemed of no interest. One example of such

an application environment can be found at Amazon.com. Here, if the recommender system can

identify the top few items for the user with little noise then it can be considered to have fulfilled

the requirement. It does not matter if all the predicted ratings are biased up or down, as long as

the predicted ratings order the items in the same way as the user would, i.e., assign a relatively

higher rating for items that the user would rate A followed by lower ratings to items that the user

would rate B and so on. This correctness of such ordering of items for users can be evaluated using

Precision-Recall plots, precision at top-5, or Mean Reciprocal Rank.

To describe them briefly, let’s assume for a moment that the user would be only interested in

the items rated A. Consider the top-N item predictions. Precision is the fraction of the N items

that the user would have given rating A. Recall is the fraction of items that the user would have

rated A that are in the top-N . With increasing N more A-rated items are fetched, improving

recall. But, at the same time, more of those items that are rated less than A are also retrieved,

damaging the precision score. A good recommender system should be able to retrieve many of the

A-rated items while maintaining high precision. Hence, a plot of precision at 11 standard recall
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Figure 7 Plot of errors by amount of training data used, for different models.

levels (0%,10%,20%, . . . ,100%) is commonly used to compare the performance of different systems

(Baeza-Yates and Ribeiro-Neto 1999).

Often in retrieval and recommendation tasks the quality of only the top few recommendations is

of interest, because, users typically don’t look beyond the first few items. We measure the quality

of top items recommended using two metrics:

1. Mean precision of the top-5 items recommended

2. Mean reciprocal rank of the first relevant item recommended (Voorhees 2000)

MRR=
1

#users

#users∑
i

1

rankfirstrelevant

Mean reciprocal rank measures how soon a person gets a relevant recommendation from the

algorithm.

Accuracy in rating prediction The average MAE scores using 30 different random train/test

partitions are shown in Figure 7. As expected, the overall error for each model decreases with

increasing amounts of training data. However, we see that in this set of results using Chebyshev

and Mahalanobis distance metrics in an instance based multi-component framework does best

in predicting the rating values. Using the principal component after a PCA rotation of the 5

component ratings, does not do any better or worse than simply using the overall rating in a

correlation based single component rating algorithm.
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However, one of the advantages of model based approaches is that after training the models,

the rating prediction step is quick. Therefore, they are more suitable for online recommendation

generations. If one is interested in using a model based recommender system we have the following

insights. Naively extending the existing Flexible Mixture Model for collaborative filtering with

component ratings without considering the existing correlation among the component ratings does

not lead to any improvement in the prediction of overall ratings over using only one component

rating. As discussed in Section 2.2, components of the ratings are correlated and assuming inde-

pendence among them given latent class leads to over counting of evidence. When we capture

the dependence among the rating components through the Overall rating and explicitly model for

it, the prediction accuracy improves. Error-plots of the two model based algorithms, one using

only the overall rating and the other using 5 components with dependency, show that there is an

advantage of using multi-component ratings when the training set is small—up to about 30% of

the available dataset for training in this case. But, when there is enough training data, using only

the overall rating leads to more accurate prediction of Overall rating. This suggests that when we

have a user’s Overall rating over a large number of items adding component ratings does not lead

to any further improvement in the ability to predict the Overall rating the user might place on a

new item.

To verify that the differences in the average MAE seen in Figure 7 are significant and not a

result of chance, we performed a pairwise t− test using MAE obtained at the 30 different train/test

splits. We found that the differences are indeed significant except where the error lines in Figure 7

cross.

Accuracy in retrieving top-N items The seven algorithms were trained as described in

Section 2.4 at different training set sizes. Then the ratings for each user-item pair in the test set

were computed using the prediction function of each method. This creates an ordering over the test

item set for each user. A recommender system would recommend items from this list in decreasing

order of predicted rating. The goal of the precision-recall curve is to find out how the precision of

the recommendation is affected as more items are included from this list in the pursuit of retrieving

all the relevant items. In this set of experiments we treat movies with rating 4 in the test set as

relevant. The precision vs recall curve is given in the Figure 8. A separate experiment that treats

movies with rating 3 or higher in the test set as relevant returns similar results albeit with a higher

precision value at each recall level due to the presence of more relevant items.

When the training fraction is low the model with discovered structure gives the highest pre-

cision at each recall level. However, when we have more training data the instance based multi-

component rating algorithms using Chebyshev or Mahalanobis distance do better. The instance
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Figure 8 Typical Precision-Recall curves with sparse training data
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Figure 9 Typical Precision-Recall curves with less sparse training data. Instance based algorithms using Chebyshev

distance and Mahalanobis distance do best when we use 80% of the data for training.

based approaches using only the overall component or the principal component have the worst

precision. The model with independence assumption among the component ratings returns the

lowest precision among the model based approaches.

We also compute the mean precision after top-5 retrievals and mean reciprocal ranks of each

algorithm at these training fractions. The results shown in Figure 10 agree with the general observa-

tion made in the precision-recall curves in Figure 8. Among the model based approaches the model
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Figure 10 Mean precision at top-5 and Mean reciprocal rank

with dependency structure performs best. However, as we use more training data instance based

multi-component rating approaches that use Chebyshev or Mahalanobis distances out-perform the

model based approaches.

One possible reason for better performance of model based approaches over the instance based

approaches when the training fractions are low is that instance based approaches are based on

pairwise similarity computations. When the training data is sparse the pairwise comparisons of

users are unreliable. However, the model based approaches suffer less from these problems because

each user is effectively compared with a model of a group of users that is less sparse. Thus the users

are classified into the correct class more accurately. However, when there is more training data the

pairwise user-to-user comparisons can be done more reliably. This leads to improved performance

of the instance based multi-component approaches.

Hence, the takeaway from these tests is that we can improve the rating prediction accuracy by

using multi-component rating, although, the right algorithm to use depends on the sparsity of the

training data. It also depends on whether the recommender system is being used to predict the

ratings accurately or to retrieve the most relevant items quickly.

3.2. Filling-in missing component ratings

Raters find it easier to form an overall impression about their subject than to objectively evaluate

specific aspects of it (Feeley 2002). This leads to two kinds of problems while collecting multi-

component rating data:
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Complete 66% Some components 2%

Only Overall 32%

Available Ratings

Complete
Some components
Only Overall

Figure 11 Records with partial information

With unfilled components Filled-in components % Increase
Number of User 1058 1680 59%
Number of Item 3430 3926 14%

Number of Records 45892 74110 61%
Table 8 Increase in dataset size after filling in missing components

1. Halo Effect If they choose to rate the components without deliberating enough to evaluate

them objectively, rating values get biased by their overall impression of the subject. This, known

as the halo error, is treated in Sections 1, 2.1, and 2.3.

2. Missing Values If the raters choose to skip rating the components, we have a missing data

problem for rating components. In our dataset 34% of the records (235,659 out of 691,495) had

incomplete rating information and thus needed to be discarded for the experiments described in

the previous sections. Of those 235,695 incomplete records 225,515 (95%) have only the Overall

rating. This indicates the difficulty in obtaining component ratings from the users.

There are two opportunities for contribution here:

1. If we can predict the harder aspect ratings for a user for an item taking the user’s Overall

rating into account, then we can design a rating support system. One use case is: the user gives his

Overall rating on the item and the system pre-fills the component ratings. Then the user confirms

them or modifies them if he feels they are different from how he would rate.

2. If we can fill in the missing values in the dataset we can generate recommendations for more

users. Since we need a minimum number of ratings per user in the dataset, discarding incomplete

records eliminates many users, and consequently many of their records even with complete ratings.

Table 8 shows the difference between sizes of the dataset when we discard the incomplete records

and when we fill-in the missing values using the method described in this section.

We showed in Section 2 that the probability distribution over all the variables can be factored

as:
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Method MAE
Multi-component FMM 0.353

SPSS EM 0.368
SPSS Regression 0.569

CF predicting Components 0.701
Table 9 Comparison of different methods filling in missing rating components.
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Figure 12 Error distributions while filling-in missing rating components.

P (U, ~R, I) =
∑
Zu,Zi

P (Zu)P (Zi)P (I|Zi)P (U |Zu)
5∏
j=1

P
(
Rj|Zu,Zi,PaRj

)
(26)

Since we always have Overall ratings in our data we focus on predicting missing component ratings.

To make an inference about one of the component ratings such as S using the values of U , I and

O variables we need to carry out two operations on distribution given in Equation 26:

1. Marginalize away the variables we do not need, i.e., Rj ∈A,D,V

2. Plug-in the values of the variable we have. Let’s denote them as u, iando.

The operations result in the following

P (U, I,S,O) =
∑
Zu

P (Zu)
∑
Zi

P (Zi)P (O|Zu,Zi)P (I|Zi)P (U |Zu)P (S|Zu,Zi,O)

⇒ P (u, i,S, o) =
∑
Zu

P (Zu)
∑
Zi

P (Zi)P (o|Zu,Zi)P (i|Zi)P (u|Zu)P (S|Zu,Zi, o)

∝ P (S|u, i, o)

The result is a function of S that is proportional to its posterior distribution given the variable

values u, iando. The mode of this distribution is output as the predicted value of S.

Experiments and Results First we use only the complete records in this experiment to be

able to predict the missing components and verify the predictions. The component ratings are

hidden in the test data. Only the U, I andO variable values were used from the test data to predict
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the hidden component ratings. We predicted each of the component ratings (S,A,V,D) for every

record in the test set and computed Mean Absolute Error. 10-fold 3 cross validation was used

to generate the training and testing samples (Mitchell 1997). We compared our results with the

performance of the Missing Value Analysis (MVA) routines of SPSS. The Error values are given

in Table 9.

MAEs in predicted missing values are close to 0.36 on a scale of length 4. When we predict the

component ratings using only the U and I values as done with traditional collaborative filtering the

MAE values are between 0.6− 0.7. This suggests that our method is able to extract considerable

benefit from the additional available information in the Overall rating. The regression approach

to predict missing values, part of the SPSS MVA module, was not very successful at an error of

about 0.6. However, the EM algorithm used in the SPSS MVA module produced results almost as

good as ours. The algorithm takes an iterative approach that alternates between the following two

steps until convergence. Starting with random initialization of the missing values,

1. Regress each variable in turn against all other remaining variables and estimate the co-

efficients,

2. Predict missing variable values of the incomplete records using a linear regression model with

the help of the co-efficients estimated so far and the other variables in the record.

Examining the error distribution of our method we found that the errors are well behaved with

very few predictions off by a large margin (Figure 12). In about 70% of the cases we were accurate

in our prediction of the missing value and in about 96% of the cases the prediction was within one

rating of the true value.

4. Conclusions

We started this study with the following question:

Can the recommendations by collaborative filtering algorithms be improved by using multiple

component ratings?

To answer this question we collected multi-component movie rating data from Yahoo! Movies.

Since component ratings are correlated due to halo effect a structure discovery exercise was carried

out to find the dependency tree that captures most of the dependencies among the components.

The discovered structure is interesting in itself. It says that the component ratings provided by

the users are more correlated to the Overall ratings than they are to other component ratings.

This suggests the possible relation between the Overall impression of the user and the ratings

3 Experiments with 2, 3 and 5 fold cross validations yield similar results
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given to the components. In this context we draw a connection to the work on the halo effect in

the psychometric literature. The body of work on halo effect indicates that component ratings are

influenced by the presence of other strong factors and by the overall impression.

We develop a mixture model based collaborative filtering algorithm incorporating the discovered

dependency structure. In addition several one component algorithms and their variations for multi-

component ratings were evaluated on the collected dataset. The multi-component rating algorithms

lead to better performance than the one component rating algorithms in both predicting the

rating values accurately and in retrieving the most relevant movies quickly. The model based

algorithm using dependency structure leads to better retrieval performance when the training data

is sparse. However, when more training data is available, using instance based multi-component

rating approaches, that use Chebyshev or Mahalanobis distance to measure distance between two

ratings, perform better. In addition these two instance based multi-component rating algorithms

are able to predict the ratings more accurately than other algorithms that we tested.

One of the advantages of the model based approaches is that after the model is calibrated, it can

be used to quickly generate recommendations. This makes them suitable for scenarios like shopping

Web sites where real time recommendation generation is important. When the training data is

sparse, a common problem faced by real world scenarios, there is an advantage of using multi-

component ratings in a model that accounts for the halo effect among the components. However, if

we have more training data, one component rating flexible mixture model is able to better predict

the ratings than other model based approaches.

The proposed multi-component model can be used to predict values of the missing component

ratings. This is useful because in the current dataset approximately one third of the records have

one or more of the component ratings missing. We show that the missing values can be filled in

reliably. This allows us to generate recommendations for 59% more users and recommend 14%

more items.

Multi-component rating collaborative filtering algorithms can suffer because of poor data. One

can argue that objectively rating aspects of an item requires deliberation that can only be expected

from professional critiques. This can cause halo and reduce the information in the components. In

this work we provide an approach to use the limited but important information in the components

to make better recommendations. However, with increased emphasis on user generated contents

and on valuable services using them we expect the quality of such data to improve. The proposed

algorithm will be even more valuable in such a scenario.

Our work suggests several future research directions. One of foremost importance is the eval-

uation of the proposed method in other multi-component rating datasets. Also, in the presence
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of adequate numbers of ratings a more complete dependency graph among the ratings might be

discovered and used as it will better capture the dependency among the rating components. We

have shown that the proposed model can be used to fill in the missing rating components. Such

an approach can be used to design a rater support system that predicts a user’s component rat-

ings using his overall rating. But, such a system might bias the rater. The implementation and

evaluation of such a rater support system is an interesting topic to explore.
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moutḧ. CHI . 210–217.

Shweder, R. A. 1975. How relevant is an individual difference in personality. Journal of Personality 43

455–484.

Shweder, R. A., R. G. D’Andrade. 1980. The systematic distortion hypothesis. New directions for methodology

of behavioral science: Fallible judgment in behavioral research 37–58.

Si, Luo, Rong Jin. 2003. Flexible mixture model for collaborative filtering. ICML. AAAI Press, 704–711.

Steele, F.J. Landy; R.J. Vance; J.L. Barnes-Farrell; J.W. 1980. Statistical control of halo error in performance

ratings. Journal of applied psychology 65 501–506.

Thorndike, EL. 1920. A constant error in psychological ratings. Journal of Applied Psychology 4 25–29.



Sahoo et al.: The Halo Effect in Multi-component Ratings and its Implications for Recommender Systems
Information Systems Research 00(0), pp. 000–000, c© 0000 INFORMS 31

Ungar, L.H., D.P. Foster. 1998. Clustering methods for collaborative filtering. AAAI Workshop on Recom-

mendation Systems 112–125.

Voorhees, E.M. 2000. The TREC-8 question answering track report. NIST SPECIAL PUBLICATION SP

77–82.

Wells, F. L. 1907. A statistical study of literary merit. Archives of psychology 1.


