
A	Hidden	Markov	Model	for	
Collaborative	Filtering	

Nachiketa Sahoo

School of Management, Boston University

iLab, Heinz College, Carnegie Mellon University

{nachi@bu.edu}

Param Vir Singh

David A. Tepper School of Business, Carnegie Mellon University

iLab, Heinz College, Carnegie Mellon University

{psidhu@cmu.edu}

Tridas Mukhopadhyay

David A. Tepper School of Business, Carnegie Mellon University

{tridas@cmu.edu}

Abstract	

We present a method to make personalized recommendations when user preferences change over time.

Most of the works in the recommender systems literature have been developed under the assumption that

user preference has a static pattern. However, this is a strong assumption especially when the user is

observed over a long period of time. With the help of a dataset on employees’ blog reading behavior, we

show that users’ product selection behaviors change over time. We propose a hidden Markov model to

correctly interpret the users’ product selection behaviors and make personalized recommendations. The

user preference is modeled as a hidden Markov sequence. A variable number of product selections of

different types by each user in each time period requires a novel observation model. We propose a

Negative Binomial mixture of Multinomial to model such observations. This allows us to identify stable

global preferences of users and to track individual users through these preferences. We evaluate our

model using three real world datasets with different characteristics. They include data on employee blog

reading behavior inside a firm, users’ movie rating behavior at Netflix, and users’ music listening

behavior collected through last.fm. We compare the recommendation performance of the proposed model

with that of a number of collaborative filtering algorithms and a recently proposed temporal link

prediction algorithm. We find that the proposed HMM based collaborative filter performs as well as the

best among the alternative algorithms when the data is sparse or static. However, it outperforms the

existing algorithms when the data is less sparse and the user preference is changing. We further examine

the performances of the algorithms using simulated data with different characteristics and highlight the

scenarios where it is beneficial to use a dynamic model to generate product recommendation.

Keywords: Recommender Systems, Collaborative Filtering, Changing Preference, Dynamic Models,

Latent class models 	

A	Hidden	Markov	Model	for	
Collaborative	Filtering	
How do we generate personalized recommendations for users when their preferences are changing?

1 Introduction	

1.1 Motivation	

Personalized recommender systems are used by online merchants to identify interesting products for their

customers. This helps customers find the products they are likely to like from the thousands of items they

would not have the resources to evaluate. It also enables merchants to focus their marketing efforts on

advertising products to only those customers who might be interested in the products. Because of this

recommender systems have been used extensively at prominent large online stores such as Amazon.com.

They also have generated tremendous interest in the research communities in information systems (Fleder

and Hosanagar 2009; Sahoo et al. 2012), marketing (Ansari et al. 2000) and computer science (Resnick

and Varian 1997).

The majority of recommender systems literature focuses on generating recommendations for users whose

preferences are assumed to have static patterns (Adomavicius and Tuzhilin 2005). However, common

experience suggests that user preferences can change over time. The changing preference is especially

evident in cases where there is repeat consumption of experience goods of a certain class, e.g., music,

news, movies, etc. Consumers’ preferences can change due to exposure to new kinds of products or due to

the natural evolution of a person’s taste (Koren 2010). This causes problems for a recommender system

that has been trained to identify customers’ preferences from their past ratings of products. Such a system

might have successfully identified consumers’ preferences in the past; however, recommendations made

based on the estimated preferences may no longer be valid if the preferences change after the training

period. In addition, there is a more serious problem encountered by the learning algorithms during the

training phase. By fitting a static model to data generated by a dynamic process one learns a mis-specified

model. Therefore, the system can produce the best average model that describes the user behavior.

However, it would have little resemblance to the actual process generating the data and poor predictive

power. Therefore, it behooves us to use a dynamic model when time-stamped user-ratings or user-

purchase information are available. This is the motivation of the current paper.

1.2 Contribution	

The key contribution of this paper is an approach to identify common patterns of change in user

preferences and use them for more effective product recommendation. We examine the challenges in

interpreting time-stamped ratings, and learning from them, when they are contributed by users whose

unobserved preferences evolve over time. To overcome these challenges we present a Hidden Markov

model with a novel emission component. The model learns the global preference patterns that can be used

to make personalized recommendations specific to particular time periods. The proposed algorithm is

compared with the existing algorithms in the literature and the value of accounting for the users’ changing

preferences is demonstrated.

2 Literature	Review	

The current work relates to several streams of work in recommender systems, concept drift, and dynamic

user behavior modeling. We review them selectively in this section to provide a context for this work.

2.1 Collaborative	filtering		

One of the popular approaches to generate recommendations is collaborative filtering (Adomavicius and

Tuzhilin 2005; Brusilovsky et al. 2007; Goldberg et al. 1992; Resnick et al. 1994a; Sarwar et al. 2001).

Collaborative filters identify from a list of items not seen by a user those items the user is likely to like by

analyzing the items other users of the system have rated. The inputs to the system are the records of data

containing user id, item id, and the rating the user has provided for the item. By providing ratings on

items, users not only give the algorithm information about the quality of the items, but also about

themselves, i.e., the types of items they like or dislike. The system outputs for each user a small set of

items that the user has not seen before but is likely to like. This is in contrast to the content based filtering

methods that recommend items with similar attributes to the items that a user has liked in the past (Lang

1995; Mooney and Roy 2000; Pazzani et al. 1996). The Collaborative filtering algorithms have simpler

data requirements. They do not need data on the properties of the items or demographic characteristics of

the users. Unlike the content based approaches, Collaborative filters are not limited to recommending

only those items with attributes matching the items a user has liked in the past. Therefore, they have been

popular in recommender systems.

The first group of collaborative filtering algorithms was primarily instance based (Resnick et al. 1994b).

In the training step these algorithms build a database of user ratings that is used to find similar users

and/or items while generating recommendations. These algorithms became popular because they are

simple, intuitive, and sufficient for many small datasets. However, they do not scale to large datasets

without further approximations. Also, because they do not learn any user model from the available

preferences, they are of limited use as data mining tools (Hofmann 2004).

A second group of collaborative filtering algorithms, known as model based algorithms, surfaced later

(Breese et al. 1998; Chien and George 1999; Getoor and Sahami 1999). They compile the available user

preferences into compact statistical models from which the recommendations are generated. Notable

model based collaborative filtering approaches include singular value decomposition to identify latent

structure in ratings (Billsus and Pazzani 1998); probabilistic clustering and Bayesian networks (Breese et

al. 1998; Chien and George 1999); repeated clustering (Ungar and Foster 1998); dependency networks

(Heckerman et al. 2001); latent class models (Hofmann and Puzicha 1999) and latent semantic models

(Hofmann 2004) to cluster the ratings; and flexible mixture models to separately cluster users and items

(Si and Jin 2003). Unlike the instance based approach the model based algorithms are slow to train, but

once trained, they can generate recommendations quickly.

In recent years the Netflix prize has provided new momentum to the research in collaborative filtering and

recommender systems (Bell and Koren 2007; Koren 2009) . The prize offered $1M for developing an

algorithm that predicts Netflix-users’ ratings on movies at least 10% more accurately than the existing

system used by Netflix (Bennett and Lanning 2007). This has led to the development of many new

algorithms. Some of the best performers among them are based on matrix factorization approaches

(Koren et al. 2009; Paterek 2007). In these algorithms the observed user-item matrix is approximated by

the product of a user factor matrix and an item factor matrix. The User factor matrix consists of columns

of user weights—one column for each factor. Similarly, the Item factor matrix consists of columns of

item weights. The weights are the degrees of memberships of the users and the items into different latent

factors.

Most of the collaborative filters are based on the assumption that a user’s preference is a static pattern.

The task of the filter is to learn this pattern so that it can predict the ratings the user will give to the items

the user has not rated yet. The static assumption is a rather strong assumption, especially in certain classes

of products that are used over a long time period. User preferences often evolve with the age of the user,

changes in the user’s work and social environments or with the availability of new products. This leads to

problems in estimating the model and predicting the items users are going to like.

The winning team of the Netflix prize, BellKor's Pragmatic Chaos, has shown that using smooth functions

to model the trends of the users’ average explicit rating on items leads to better estimation of the item

ratings (Koren 2010). In another recent paper user-specific Markov Chains have been used to model the

users’ selection of items (Rendle et al. 2010). To alleviate the extreme data sparsity problem that one

faces when estimating a transition matrix for each user, the authors use tensor factorization to isolate a

few top factors that describe the dominant transition behavior. The paper highlights the need for

recommending for a time period after the training period. However, while making the recommendation

for the training period, it makes the implicit assumption that the user’s preference is same as the

preference in the latest training period—which is inconsistent with the dynamic behavior assumption.

Xiang et al. in a recent work have proposed a User-Item-Session graph to combine the long term

preference of a user with the short term preference (Xiang et al. 2010). The algorithm recommends based

on a User/Session-to-Item proximity score on this graph. The time variable is used only to split a user’s

selection of items into different sessions. Thus, any ordering information in users’ behavior is lost. In

addition, since session definitions depend on users’ selection of items, it cannot make any temporal

recommendation for any session that has not already started.

There has been research in predicting link formation between one or more types of nodes. The techniques

for predicting link between multiple types of nodes, e.g., users and products, can be used for product

recommendation. A relatively new line of research in this area aims to use the time stamp of the links in

the dataset to make more accurate prediction of links (Dunlavy et al. 2011). However, the temporal

information is primarily used to discount the older data. There is evidence in other collaborative filtering

researches that this is not the best strategy (Koren 2010).

Despite these recent researches in incorporating various temporal elements in user ratings to make better

recommendations, dynamic models of changing preferences remain a relatively less explored topic in

collaborative filtering literature. One of the aspects of the dynamic user behavior that is not currently

modeled is the patterns of changes in user behavior from one time period to next. This prevents one from

predicting what the user preference will be at a time period after the training period. In this paper we

attempt to fill this gap by taking a model based approach that explicitly learns how user preferences

change from one time period to next. We also argue that instead of discounting the older data it is better

to recognize that the older data might have been generated from a different preference of the user,

therefore, can be used to learn about that user preference. This is beneficial for recommender systems

because data from a user’s past may not be useful for making recommendation for the user now, since,

her preference has changed, but it might be useful for making a recommendation for someone who

currently has that preference.

2.2 Context‐aware	recommendation	

Often the rating a user gives to an item depends on the context or need of the user at the time. This has led

to a stream of research that models the user preference as dependent on context variables (Adomavicius

and Tuzhilin 2010; Chen 2005; Van Setten et al. 2004). Some of the example applications include

recommending an activity to a tourist depending on the location and the temperature of the day,

recommending movies to watch depending on the day of the week, etc. Such systems can use two related

strategies to produce recommendations.

One strategy is to slice the data so that each slice contains data specific to a given context. Then a

separate system is trained for each context and the appropriate recommender system is used for the

context for which the recommendations need to be generated. This often leads to data scarcity for each

context-specific system. In a related second approach a distance measure is specified to determine the

similarity between two contexts. This is used to determine how similar a context for a test scenario is to

the contexts encountered during the training times. These distances are used to calculate a weighted

combination of predicted scores of the individual recommender systems, which is then used to make a

final context-aware recommendation.

Note that although these methods can produce two different recommendations under two different

situations they estimate the user preference as static functions of environmental variables, i.e., a user’s

preference towards items are always determined in the same way from the context variables. In the

current paper we model the internal evolution of a user’s preference over time in the absence of any

knowledge of environmental factors.

2.3 Explicit	vs.	Implicit	Ratings	

A majority of the user feedback data used in collaborative filtering literature is in the form of user-ratings,

i.e., after experiencing the item the user tells us whether she liked the item or disliked it, and how much,

by providing a rating on a scale of, e.g., 1—5. However, there is a growing interest in developing

algorithms for situations where the feedback is available only implicitly as a user’s selection of an item

(Hu et al. 2009; Pan and Scholz 2009). One of the primary motivations for developing such methods is

that they pose virtually no cost to the user during the data collection. Since the data is simply the

observation of users selecting certain items such data is widely available, e.g., in clickstreams present in

the webserver access logs at online retailers; logs recording users’ selection of programs to watch on their

Internet Connected Television; at any brick-and-mortar store that keeps track of what its customers are

buying through a membership program; at social bookmarking sites, such as delicious.com, that collect

bookmarks shared by their members, etc. There are several limitations of using such transactional data as

implicit ratings (Hu et al. 2009). We observe a user selecting an item but we do not know if the user liked

or disliked the item. Even in the collected bookmarks where it may be assumed that the user bookmarked

a webpage because the user liked it, when the entire dataset consists of such bookmarks we do not have

any negative data points to learn from. To simplify the scenario often the selection is taken to be a

positive rating (1) and lack of selection as a neutral rating (0) so that existing algorithms for explicit

ratings could be applied. However, because of the outlined drawbacks of such a dataset the existing

algorithms that are designed for explicit ratings do not work very well with implicit rating data. In

addition, one has to be careful in how these algorithms are evaluated. Since these are not actual ratings,

rating prediction errors such as Mean Square Error and Mean Absolute Errors are not appropriate. Instead

the item retrieval performance metrics such as Precision, Recall etc. have been used to compare

algorithms that use implicit ratings (Huang et al. 2007b).

2.4 Concept	drift	

When observed data is generated from a distribution that changes over time it is known as concept drift

(Tsymbal 2004). Concept drift is observed in many phenomena of general interest, e.g., weather

prediction rules differ from one season to the next. Market conditions and moods often have yearly or

even monthly recurring patterns. The nature of spam emails has been shown to drift over time

(Cunningham et al. 2003). Statisticians and machine learning researchers have long been interested in

estimating models from data with concept-drift that can be used for making reliable predictions in the

next time period (Schlimmer and Granger 1986; Widmer and Kubat 1996). The strategies adopted can be

summarized into two groups.

The first strategy is to discount the data that are not relevant for prediction. For example old data can be

weighted less or even excluded from the dataset when estimating a predictive model. Other qualities of

the data, e.g., noise, relevance, or redundancy can also be used to weight the data (Cunningham et al.

2003).

The second strategy is to build an ensemble of models each of which is fitted to a different subset of the

data (Harries et al. 1998; Street and Kim 2001). This strategy has been applied in the topic detection and

tracking initiative for identifying new news topics and tracking stories that occur in them. Such

approaches maintain a finite number of models. The algorithms often rely on heuristics based on quality

metrics to add a new model, update the existing models, or delete the outdated concepts if the nature of

the data changes.

The key focus in most of the learning algorithms under concept-drift is to keep the learnt model current

by weighting down the outdated data and models. However, as argued and demonstrated in a recent

paper, for collaborative filtering applications the loss of information from discarding old data often

outweighs any benefit from the removal of irrelevant data (Koren 2010).

2.5 Dynamic	models	

There is a rich stream of literature on statistical dynamic models. The two most closely related are hidden

Markov models (HMM) and Markov switching models. An HMM is a model of a stochastic process that

cannot be observed directly but can only be viewed through another set of stochastic processes that

produce a set of observations (Rabiner 1989). One of the simplifying assumptions of the HMM is that the

observed variable in a given time period is assumed to only depend on the value of the hidden variable in

that time period. HMMs have been widely applied in speech recognition (Juang and Rabiner 1991),

cryptanalysis (Karlof and Wagner 2003), part-of-speech tagging (Cutting et al. 1992), machine translation

(Deng and Byrne 2008), gene finding (Lukashin and Borodovsky 1998), alignment of bio-sequences

(Notredame 2002), software developer learning (Singh et al. 2006), and customer relationship

management (Netzer et al. 2008). There have been numerous modifications to the original hidden Markov

model. Some of the notable models include the variable duration hidden Markov model in which the

number of steps the process can stay in a given state is modeled explicitly (Levinson 1986). Yet another

variation of HMM developed for automated speech recognition, known as the segment model, considers

sequences of varying length observed every time the process assumes a new state (Ostendorf et al. 1996).

A detailed survey of the literature can be found in Kevin (2002).

The Markov switching models differ from the HMM in that it relaxes the assumption that the observed

variable only depends on hidden variable of the same time period to allow possible additional dependence

on the observed variable of the previous time period. Modeling of such additional dependency makes the

Markov switching model more suitable for modeling time-series (Lu et al. 2010). This technique has been

used to model many economic phenomena including identify macroeconomic business cycles (Hamilton

1989) and modeling changing interest rates (Dahlquist and Gray 2000).

Despite this rich body of literature in dynamic models there has been little research on examining user

ratings in such a framework so that changes to user preferences can be inferred and used for generating

more relevant recommendations. This paper aims to fill this gap.

3 Problem	definition	

In this section the problem is described using an example and motivated in the context of a corporate blog

network. Later we evaluate the proposed method on two additional real world datasets, namely the Netflix

prize movie ratings and the last.fm music listening records.

3.1 Context,	dataset	and	the	task	

The motivation for this research comes from an observation in a corporate blog network. The increasing

adoption of Web 2.0 technologies and cultures within enterprises is encouraging employees in firms to be

content producers. This has resulted in large knowledge-bases created by employees in the form of

corporate blogs and wikis. This is an asset for firms because it gives employees access to the expertise of

other employees. However, it also creates an information overload. Because there could be thousands of

articles written by employees, finding the relevant article for a particular employee is not a trivial task. In

this research we have worked on the corporate blog network of a large Fortune 500 IT services firm and

have proposed a recommender system to alleviate the information overload.

We collected the log of users’ visits to blog articles from the webserver that hosts the blogs. This access

log provided us with implicit ratings of users on the blog articles. The dataset was collected over 22

months (Jan ’07—Oct ’08). There were 71.5 thousand articles posted during this period. The articles were

read by 52 thousand employees. There are 2.2 million time stamped visits by the blog readers to the blog

articles. The articles have been classified into 25 predefined topics by their authors. Some of the topics

are “Knowledge Management”, “Software Testing”, “Photography”, etc.

An examination of the blog reading behavior shows that blog readers change the amount and type of posts

they read over time. In Figure 1 we show the volume of articles read by a randomly selected user in five

different topics over the months. There seems to be a distinct change in the user’s reading behavior over

time. In addition to the increase in article reading around the center of the data collection period, the type

of posts the user reads also changes. In the months 4 and 5 the user was primarily reading blog articles

about “Books.” The user continues to read intermittently in this topic for most of the observation period.

Later, around months 10—11, the user starts reading in the topic of “Linux and Open Source Software”

and also in “Knowledge Management” and “Poetry & Stories.” Although subsequently the user reduces

reading in the topic of “Linux and Open Source Software,” the reader continues to read articles in

“Poetries and Stories” and slowly reduces reading “Knowledge Management” related posts. Around

months 12—13 the user starts reading Photography related posts, which continues to dominate most of

his/her reading activity in the subsequent months.

Figure 1. A stacked plot of the number of articles read by a sample user in five different topics over the months.

Let’s define the preference of a user to be a latent property of the user, susceptible to influence from her

environment, which leads her to select certain types and amount of posts. The observation in Figure 1

suggests that the user’s reading preference is not static but changing. Therefore, the assumption of static

user preference by collaborative filters seems rather strong.

The changing preference also suggests that the task of practical importance is to make personalized

recommendations for a given time period. This is a harder problem than the two static recommendation

tasks often undertaken in the literature. In one class of tasks the data is randomly divided into a training

set and a test set. This potentially includes data from each time period in both the sets. Thus, it provides

evidence on a user’s preferences in time periods from which the test data was collected. However, in

practice we only have data from the past to use to predict the ratings in the future, when the user’s

preferences might be different. In a second class of tasks the data is divided into those collected in two

non-overlapping time periods. The data collected during the earlier period is used for training and the data

collected from the later period is used for testing. Although this is more realistic than the previous

scenario, the task to be solved in real life is harder, i.e., predicting whether a user is going to select an

item in the next time period of certain finite length, not at any time after training. It means that during

evaluation the algorithm must successfully identify a smaller set of items that the user selects in a given

test period.

In this paper our task is to recommend articles to users for one time period following the training period.

This is closer to what a practitioner would use. We evaluate the algorithms for their performance in time

specific recommendation.

3.2 Problems	with	the	static	model	of	user	preference	

Let’s consider the user-user similarity based static collaborative filtering algorithm (Shardanand and Maes

1995). Each user’s fixed preference is represented by the ratings she has provided on a set of items. Then

the similarities between pairs of users are computed, so that items liked by similar users can be

recommended to a target user. This approach breaks down when the preferences change over time. The

rating data for each user is not generated from one fixed unknown preference, but from a series of

unknown preferences. Therefore, it is not clear if one should find other similar users and recommend the

items they have rated highly. The users are no longer identified with their changing preferences, and

preferences ultimately determine whether a user likes an item.

Figure 2. The Bayesian Network representing the Aspect Model of User-Item co-occurrence. The user (U) and item (I)
occurrences are governed by a latent class (Z). Each observation is of the form (User ID, Item ID). In this and the
remaining Bayesian Network representations of the models in this paper the observed variables are represented by a
filled-in square and latent variables are represented by an empty square.

A similar challenge exists for the static model based collaborative filtering algorithms such as the aspect

model (Hofmann and Puzicha 1999) (Figure 2). The aspect model is a probabilistic matrix factorization

approach. In this model the user preference is represented as a membership of the user in different latent

classes to different degrees. For each user this set of static class memberships uniquely defines her

preference. In addition, each item belongs to different latent classes to different degrees. This set of

memberships characterizes the item. The static model based algorithms are able to estimate the class

memberships of users and items because of the assumption that all the selections of the items by users are

generated by the same set of class memberships of the user. However, this is too strong an assumption

when the preferences of the users are changing.

 ܫ ܷ

ܼ

3.3 Research	questions	

The existing issues lead us to a set of research questions that need to be addressed to build personalized

recommender systems for changing user behavior.

1. How can the old user ratings, generated by a prior temporary user preference, be used to learn

user preference models that can be used to recommend items to users?

2. How can we learn a change in a user’s preference from her unique ratings on items?

3. How do we model the behavior of a user in terms of not only what she is reading, but how much

she is reading as well?

4 Collaborative	Filtering	for	Changing	Preferences	

There could be many reasons behind a change in a user’s preference. These reasons are rarely available to

a recommender system. One of the advantages of collaborative filters is their lack of reliance on causes of

user preferences. In the absence of data on reasons that cause user preferences to change we divide the

changes to user preferences into two groups:

1. Systematic Changes: These are the changes that a large number of users go through, not

necessarily simultaneously, as a result of their common sequence of contexts. E.g., users’ life

situations change: they move from being single teenagers to being married couples to being

parents. Or their role in a job might change. In the context of an IT services firm a typical

employee can move from being a trainee to being a software developer to being a manager. These

changing contexts can change their preferences towards different types of products.

2. Unique Changes of Individual Users: These are also changes to users’ preferences due to a

random factor. E.g. a rare illness in a user’s family might spur him/her to take interest in certain

types of treatments. Such an increase of interest in specific topics may not be observable in the

general population. In the absence of any observable cause these sudden changes in interest

would appear random.

It is difficult to learn anything from apparently random changes without access to the underlying causes.

However, it is possible to identify the systematic changes in preferences from the behavior of many users

even when we do not have information about the context that could have caused the changes. The goal of

this paper is to identify common patterns of change in user preferences. The knowledge of these patterns

will allow us to predict the preference of the user in the next time period, potentially after the training data

collection period, and make an appropriate recommendation for that time period.

4.1 A	Hidden	Markov	Model	of	User	Preference	

We design a model of changing user preference based on the probabilistic graphical modeling framework.

It is helpful to start by examining a static model based on this framework, such as, the Aspect Model

(Figure 2). In this model the distribution over users and items is expressed as

ܲሺܷ, ሻܫ ൌ ∑ ܲሺܼሻܲሺܷ|ܼሻܲሺܫ|ܼሻ௓ ൌ ∑ ܲሺܷሻܲሺܼ|ܷሻܲሺܫ|ܼሻ௓ , i.e., the occurrence of an item in a (user,

item) observation is independent of the occurrence of the user if we know the distribution over the latent

class for that observation. So, if we are interested in predicting the occurrence of an item in a data record1,

the information about the occurrence of the user in that record is only useful for predicting the occurrence

of the latent variable ܼ which is sufficient for computing the occurrence probability of any item ܫ. Thus,

the entire preference of a user for different items is encoded in the user’s membership to the latent

classes:	ܲሺܼ|ܷሻ.

This allows us to think about a changing user preference in terms of changing membership to latent

classes. A natural development from the static latent class model to a dynamic latent class model is the

Hidden Markov model (HMM). There are three distribution components of an HMM:

1. The starting probability distributions over the latent classes for each user	ሺ࣊ሻ.

2. The transition probability table between classes in adjacent time periods	ሺۯሻ.

3. The emission or observation model that generates the data from the latent class memberships in

each time period.

In our context the observation for each user is a sequence of visits to different blog articles in each month.

The observation for each month consists of the IDs of the articles visited by the user. By modeling this

process as an HMM we make the following assertions:

1. A user’s latent class memberships in a given period depend only on the user’s class memberships

in the previous time period (Markovian assumption). Note that we do not assume that the articles

the user visits in time period ݐ depend only on the articles the user visited in time period ݐ െ 1, or

that if we know what the user read in one time period we have all the information to predict what

the user will read in the next time period. Rather, all the observations about the user until time

period ݐ െ 1 are taken into account to compute the user’s membership in the latent classes in time

period	ݐ, which is used to predict the items the user will read in time period	ݐ. This is one of the

key advantages of HMM over a simple Markov Model.

2. Each user can have a different starting distribution over the latent classes at	ݐ ൌ 1.

1 A data records consists of one (user, item) occurrence.

3. If we know the membership of the user to different latent classes at a time period, then we have

all the information needed to predict the observations of that time period.

4. The class specific observation models are global. However, a user’s unique membership to

different latent classes allows us to model each user’s visits to blog articles in a unique way.

The starting probability and the transition probability have a lot of similarity with the ones proposed in

the HMM literature. However, the observation model is different. While in the literature one often sees

one emission from the latent class for each time period, in modeling blog reading behavior of the users we

observe the users reading a different number of articles in each month. Therefore, we have two

distributions responsible for generating the observations in each month.

1. A distribution determining how many articles will be read in a month: ௨ܰ
௧. We model this count

as a set of class specific Negative Binomial Distributions (NBD), each of which has a pair of

parameters ሺܽ௞, ܾ௞ሻ.

2. A distribution determining what articles will be visited in that month: ۷࢛࢚ . We model this item

selection distribution as a set of class specific Multinomial distribution over all the items. The

parameters of each state specific distribution are a column of ࣂ: denoted as ࢑ࣂ. Each of the ௨ܰ
௧

articles is assumed to be drawn from the class specific Multinomial distribution.

We use the formulation of NBD as a Gamma Mixture of Poisson (Minka 2002):

ேܲ஻஽ሺܰ; ܽ, ܾሻ ൌ ׬ ;ሺܰ݊݋ݏݏ݅݋ܲ ;ߣሺܽ݉݉ܽܩሻߣ ܽ, ܾሻ ߣ݀

ൌ ൬
ܽ ൅ ܰ െ 1

ܰ
൰ ൬

ܾ
ܾ ൅ 1

൰
ே

൬1 െ
ܾ

ܾ ൅ 1
൰
௔

(1)

Note that, in comparison to the two emission distributions proposed here for the HMM, only the item

selection distribution is estimated in the Aspect model and not the number of items selected. The other

point to note is that the distributions that make up the observation model are not user specific. So, their

parameters only grow with the number of latent classes and not with the number of users. The proposed

HMM is shown in Figure 3 using plate notation.

Figure 3 An HMM for the blog reading behavior of the users.

The variable ܼ௨௧ is the latent class variable representing the preference of the user ݑ at time period ݐ. The

variables ௨ܰ
௧ and ܫ௨௝

௧ are the observed variables. ௨ܰ
௧ is the number of articles the user read in time period

௨௝ܫ .ݐ
௧ is the ID of the ݆th article the user ݑ reads in time period ݐ. |ܷ| is the number of users in the dataset

and |ܫ| is the number of items in the dataset. The parameters of the model are described in Table 1:

Parameter Size Distribution Description

ܭ ࣊ ൈ 1 Discrete
distribution

Distribution of starting state of the users.

ܭ ۯ ൈ Discrete ܭ
distribution

Each row parameterizes a distribution for a state
from which the user will change state. Each
column has the probability that a user will move
to the state corresponding to that column.

,ࢇ ܭ ࢈ ൈ ܭ,1 ൈ 1 Negative
Binomial

݇’th element of ࢇ and ࢈ are the shape and scale
parameters of a Gamma distribution. The NBD
for the ݇’th state is a mixture of Poisson
distribution with this Gamma mixing
distribution. The NBD models the number of
items selected by a user in a particular time
period.

|ܫ| ࣂ ൈ Multinomial ܭ
distribution

Each column of ࣂ contains parameters of the
multinomial distributions that capture preference
of a class of users towards the items.

Table 1 Description of parameters.

ܼ௨ଵ ܼ௨௧ ܼ௨்	

௨ܰ
௧

௨௝ܫ
௧

௨ܰ
௧

࣊

 ۯ

ሺࢇ, ሻ࢈

 ࣂ

|ܷ|	

4.2 Hidden	Markov	Model	as	a	Collaborative	Filter	

One of the building blocks of Aspect model based collaborative filters is the global item selection

distributions ܲሺܫ|ܼሻ. Part of the effort in training the model involves learning these distributions from the

behavior of all the users in the system. In the proposed HMM we learn ܭ static global item selection

distributions from the behavior of all the users in all the time periods. Thus, we retain the element of

collaborative learning from collaborative filtering algorithms in the proposed HMM.

In the Aspect model, in addition to the distribution over the items we also learn the unique static

probabilities of each user behaving according to each of these distributions. However, in HMM for each

user it is a different probability distribution over the latent states in each time period is possible. As a

result of this setup, a user may have moved away from a latent class representing a past preference.

However, knowing the state the user was in in a prior time period allows us to use the user’s behavior in

that time period to learn the corresponding global distribution over items. This distribution can

subsequently be used to make recommendations for other users when they enter the state in the future.

4.3 Estimation	and	Complexity	

The parameters were estimated by the Expectation Maximization (EM) approach (Dempster et al. 1977).

In this approach the parameters are optimized via two alternating steps:

1. Expectation/E-step: The distribution over the hidden variable, ܼ௨௧ , is computed using the values

of the parameters obtained so far and the observations for the user.

2. Maximization/M-step: The parameters are calculated such that for a given distribution over the

hidden variables the expected log likelihood of the parameters is maximized.

It can be shown that each of these two steps monotonically increase the probability of the data (Dempster

et al. 1977). At the beginning of the algorithm, the parameters can be initialized to random values, or, a

strategy such as the one outlined in (Bishop 2006c) could be followed.

The expectation step amounts to performing inference on the latent state variables given the observations

and the current estimates of the parameters. From the Bayesian network in Figure 3 it follows that given

the parameters are known constants, assumption of the E-step, the distribution over the states of one user

is independent of the states of the other user. Therefore, for each user ܲሺܼ௨ଵ:்|ܫ௨ଵ:்ሻ can be separately

calculated. ܫ௨ଵ:் is the set of items selected by the user over time periods 1…ܶ. The posterior distribution

is a function of the parameters, although we do not write it explicitly to keep the notation clean.

ܲሺܼ௨௧ ,௨ଵ:்ሻ and ܲሺܼ௨௧ିଵܫ| ܼ௨௧ ௨ଵ:்ሻ are the summary statistics of the posterior distribution required for theܫ|

M-step. The Forward-Backward algorithm is an efficient algorithm to compute these statistics from

posterior distribution (Rabiner 1989). To understand how this algorithm works lets define two

expressions:

ሺܼ௨௧ߙ ሻ ൌ ܲሺܼ௨௧ ሺܼ௨௧ߚ ௨ଵ:௧ሻ andܫ| ሻ ൌ
௉൫ூೠ

೟శభ:೅ห௓ೠ
೟൯

௉൫ூೠ
೟శభ:೅หூೠ

భ:೟൯
. Each can be written recursively.

ሺܼ௨௧ߙ ሻ ൌ ቎෍ ሺܼ௨௧ିଵሻܲሺܼ௨௧ߙ |ܼ௨௧ିଵሻ
௓ೠ
೟షభ

቏	
ܲሺܫ௨௧ |ܼ௨௧ ሻ

ܲሺܫ௨
௧ ௨ܫ|

ଵ:௧ିଵሻ

ሺܼ௨௧ߚ ሻ ൌ
∑ ܲሺܼ௨௧ାଵ|ܼ௨௧ ሻߚሺܼ௨௧ାଵሻܲሺܫ௨௧ାଵ|ܼ௨௧ାଵሻ௓ೠ

೟శభ

ܲሺܫ௨
௧ାଵ|ܫ௨

ଵ:௧ሻ

The ߙሺܼ௨௧ ሻ’s can be computed via one forward pass over the data sequence. ܲሺܫ௨௧ ௨ଵ:௧ିଵሻ are theܫ|

normalizing constants that make ߙሺܼ௨௧ ሻ sum to 1. They can be collected during the forward pass. The

ሺܼ௨௧ߚ ሻ’s are computed by one more pass going in the backward direction over the data sequence. The

posterior distribution ܲሺܼ௨௧ ,்:௨ଵܫ| Θሻ is the product of the two expressions.

ሺܼ௨௧ߙ ሻߚሺܼ௨௧ ሻ ൌ ܲሺܼ௨௧ ௨ଵ:௧ሻܫ|
ܲሺܫ௨௧ାଵ:்|ܼ௨௧ ሻ

ܲሺܫ௨
௧ାଵ:்หܫ௨

ଵ:௧ሻ
ൌ
ܲሺܼ௨௧ ௨௧ାଵ:்|ܼ௨௧ܫ௨ଵ:௧ሻܲሺܫ| , ሻ	௨ଵ:௧ܫ

ܲሺܫ௨
௧ାଵ:்หܫ௨

ଵ:௧ሻ

ൌ
ܲሺܫ௨௧ାଵ:், ܼ௨௧ ௨ଵ:௧ܫ| ሻ

ܲሺܫ௨
௧ାଵ:்หܫ௨

ଵ:௧ሻ
ൌ ܲሺܼ௨௧ ௨ଵ:்ሻܫ|

(2)

Here we use the fact that ܲሺܫ௨௧ାଵ:்|ܼ௨௧ , ሻ	௨ଵ:௧ܫ ൌ ܲሺܫ௨௧ାଵ:்|ܼ௨௧ ሻ because ܫ௨ଵ:௧ ٣ ௨௧ାଵ:்|ܼ௨௧ܫ .

Using similar algebraic manipulation it can be shown that

ܲሺܼ௨௧ିଵ, ܼ௨௧ ௨ଵ:்ሻܫ| ൌ
ሺܼ௨௧ିଵሻܲሺܼ௨௧ߙ |ܼ௨௧ିଵሻܲሺܫ௨௧ |ܼ௨௧ ሻߚሺܼ௨௧ ሻ

ܲሺܫ௨
௧ ௨ܫ|

ଵ:௧ିଵሻ
 (3)

The complexity of the forward and backward passes increases linearly with the length of the sequence.

The calculation of each ߙሺܼ௨௧ ሻ and ߚሺܼ௨௧ ሻ is dominated by ܭଶ products. This leads to a complexity of

ܱሺܶܭଶሻ for completing the expectation step.

In the maximization step we maximize expected log likelihood of the parameters which is a lower bound

on the log likelihood of the parameters (Bishop 2006b)

෍෍ܲ൫ܼ௨௧ หܫ௨ଵ:்; Θ௢௟ௗ൯ log ܲሺܫ௨ଵ:், ܼ௨ଵ:்; Θሻ
்

௧ୀଵ௨

൑ log ܲሺܫ; Θሻ (4)

Where ܫ represents all the observations, i.e., all the items selected by all the users. Θ denotes the set of all

the parameters, i.e., ۯ, ,ࣂ ሺࢇ, .ሻ. Θ௢௟ௗ represents the parameter estimates after the last iteration࢈

When the probability distribution over the observed and latent variables is represented as an HMM then

the log likelihood of the parameters decomposes into sum of three components corresponding to three

distribution of the HMM. The expected log likelihood is:

(Initial state distribution) ෍෍ܲ൫ܼ௨ଵ ൌ ݇หܺ; Θ௢௟ௗ൯ log ௞ߨ
௞௨

൅෍෍෍෍ܲሺܼ௨௧ିଵ ൌ ݆,
௞௝

்

௧ୀଶ

ܼ௨௧ ൌ ݇หܺ; Θ௢௟ௗ൯ log ௝௞ܣ
௨

	

൅෍෍෍ܲ൫ܼ௨௧ ൌ ݇หܺ; Θ௢௟ௗ൯
௞

்

௧ୀଵ

log ܲሺ ௨ܰ
௧, ሼܫ௨௝

௧ ሽ| ܽ௞, ܾ௞, ࢑ሻࣂ
௨

(5)(Transition model)

(Emission model)

Note that parameters for the three models can be maximized independent of each other. Maximizing

Expression (5) leads to the Maximum Likelihood Estimates of the parameters. However, MLEs run the

risk of over fitting when the size of the training dataset is small and can have poor predictive power.

Maximum-a-Posteriori (MAP) estimates, on the other hand, are based on the assumption that the

parameters are random variables drawn from a specified prior distribution. Using Bayes’ theorem the

posterior distribution of the parameters can be calculated. MAP estimates of the parameters maximize the

posterior distribution. By specifying the prior distribution one can provide prior knowledge about how

parameters are likely to be distributed. This reduces the risk of the estimates over-fitting to the oddities of

the small training samples. When the prior distribution is conjugate to the distribution of the data

posterior distribution has the same form as the prior. This leads to tractable computation of the MAP

estimates.

The distribution of a user’s latent class at ݐ ൌ 1 and the distribution of the user’s latent class at ݐ ൐ 1

conditioning on the user’s latent class at ݐ െ 1 are multinomial distributions. The conjugate prior of the

parameters of these distributions are Dirichlet distributions. We use the following Dirichlet prior for all

the Multinomial distributions.

~:,࢐࡭,࣊ …,ଵߙ|ሺ࢞ݎ݅ܦ , ௄ሻ (6)ߙ

where, ࢐࡭,: is the ݆’th row of the transition probability matrix. Each ߙ௞is set to
ఈ

௄
. The weight of the

evidence provided by each prior is ߙ. The ߙ was set to 100 in our experiments. The MAPs of the

parameters are given by (Bishop 2006a):

௞ෞߨ ൌ
ൣ∑ ܲ൫ܼ௨ଵ ൌ ݇หܺ; Θ௢௟ௗ൯௨ ൧ ൅ ௞ߙ െ 1
ሾ∑ ∑ ܲሺܼ௨ଵ ൌ ݇|ܺ; Θ௢௟ௗሻ௞௨ ሿ ൅ ߙ െ ܭ

 (7)

ఫ௞෢ܣ ൌ
ൣ∑ ∑ ܲ൫ܼ௨௧ିଵ ൌ ݆, ܼ௨௧ ൌ ݇หܺ; Θ௢௟ௗ൯்

௧௨ ൧ ൅ ௞ߙ െ 1
ሾ∑ ∑ ∑ ܲሺܼ௨

௧ିଵ ൌ ݆, ܼ௨
௧ ൌ ݈|ܺ; Θ௢௟ௗሻ௟

்
௧௨ ሿ ൅ ߙ െ ܭ

 (8)

The emission model is novel in the context of HMMs. Each class specific emission distribution is a NBD

mixture of Multinomial distributions. From Figure 3 the observations ௨ܰ
௧, ܫ௨௝

௧ and variable ܼ௨௧ d-separates

ሺࢇ, Since in M-step the distribution over ܼ௨௧ .ࣂ ሻ from࢈ is fixed and the value of the observed variables

are constant, the parameters of the NBD and the parameters of the multinomial become conditionally

independent in the M-step. This is verified by writing out the log likelihood of the parameters for the

emission distribution. The complete data, with observed and hidden variables, log likelihood decomposes

as sum of functions of the two sets of parameters, and so does their expectation. Expected log likelihood

of the observation model is:

෍෍ܲ൫ܼ௨௧ ൌ ݇หܺ; Θ௢௟ௗ൯
௞

்

௧

log ܲሺ ௨ܰ
௧| ܽ௞, ܾ௞ሻ

൅෍෍ܲ൫ܼ௨௧ ൌ ݇หܺ; Θ௢௟ௗ൯
௞

்

௧

log ܲ൫൛ܫ௨௝
௧ ൟห࢑ࣂ, ௨ܰ

௧൯

(9)

Each summand can be maximized separately with respect to its parameters, which is a problem of

maximizing weighted log likelihood. Maximizing the posterior probability amounts to adding log prior

probability of the parameters, a function of only the parameter and not the data, to each summand and

maximizing it with respect to the parameters.

Maximizing the second summand is equivalent to computing the MAP estimate of the class specific

multinomial distribution over the items. There is a closed form solution for this (Bishop 2006a).

௜௞ߠ ൌ 	
∑ ∑ ܲ൫ܼ௨௧ ൌ ݇หܺ; Θ௢௟ௗ൯∑ 1௜ሺܫ௨௝ሻ

|ூ|
௝

்
௧ୀଵ௨ ൅ ௜ߙ െ 1

∑ ∑ ܲሺܼ௨
௧ ൌ ݇|ܺ; Θ௢௟ௗሻ ௨ܰ

௧்
௧ୀଵ௨ ൅ ߙ െ ܭ

 (10)

Where, 1௜ሺܫ௨௝ሻ is an indicator function that takes value 1 when ܫ௨௝ ൌ ݅ and 0 otherwise. ࢑ࣂ is drawn from

a Dirichlet prior ݎ݅ܦሺ࢞|ߙଵ, … , ௜ߙ ூ|ሻ, where each|ߙ ൌ
ఈ

|ூ|
. Again in our experiments ߙ was set to 100.

There is no closed form solution for calculating the MAP estimate of the weighted NBD. We use an

iterative algorithm similar to the one presented in Section 2.1 of (Minka 2002) for obtaining the MLE of a

NBD.

4.4 Prediction	

The task of the time sensitive recommender systems is to predict the articles a user will read in time

period ݐ ൅ 1 given all the articles all the users have read in each time period up to ݐ.

The estimated HMM with data observed up to ݐ can be used to compute the latent class distribution for

each user in time period ݐ ൅ 1 and then compute the distribution over the observation of articles in time

period ݐ ൅ 1. The probability that the item ݅ will be observed in ݐ ൅ 1 can be computed as:

ܲሺ݅ ∈ ௨௧ାଵሻܫ ൌ ෍ܲሺܼ௨௧ାଵ ൌ ݇ሻ ܲሺ݅ ∈ ;௨௧ାଵܫ ܽ௞, ܾ௞, ࢑ሻࣂ
௞

 (11)

Then the items that are most likely to be observed in period ݐ ൅ 1 can be recommended to the user. For

each user ݑ the order of the items by Expression (10) is equivalent to their order by the following

quantity:

ܴሺ݅, ሻݑ ൌ െ෍ܲሺܼ௨௧ାଵ ൌ ݇ሻሺ1 ൅ ܾ௞ߠ௞௜ሻି௔ೖ

௞

 (12)

Please see Appendix A for the derivation.

Algorithm Control Parameters

1. Use data collected over time period 1… ௧௥௡ for trainingݐ

2. Initialize ࣊,ۯ, ሺࢇ, ,ሻ࢈ to small random values ࣂ

3. E-step: compute ܲሺܼ௨௧ ,௨ଵ:்ሻ and ܲሺܼ௨௧ିଵܫ| ܼ௨௧ ௨ଵ:்ሻ usingܫ|

Equations (2) and (3).

4. M-step: estimate ࣊,ۯ, .using Equations (7), (8) and (10) ࣂ

Estimate ሺࢇ, ሻ using Section 2.1 of (Minka 2002)࢈

5. If expected log likelihood has not converged go to step 2

6. For each user ݑ compute ܴሺ݅, ሻ of each item ݅ for timeݑ

period ݐ௧௥௡ ൅ 1 using Equation (12)

a. Recommend top N items with highest ܴሺ݅, ሻݑ

1. Set ܭ to a value that maximizes the

AIC score

2. Set length of the time period to 1

month

a. Smaller if user preferences

change quickly

b. Larger if constrained by

computing resource

Table 2 Summary of the HMM algorithm for collaborative filtering

4.5 Comparison	with	Existing	Methods	

We compare the proposed dynamic model with three static algorithms and one dynamic algorithm that

has been recently proposed for temporal link prediction. Each algorithm specifies a way to calculate the

score for each user ݑ and item ݅ pair. An item ݅ may be recommended to a user ݑ based on this score. The

score is denoted as ܴሺ݅, .ሻ and formulae to calculate it are described below for each algorithmݑ

4.5.1 User‐user	similarity	based	collaborative	filter	

The algorithms based on the similarity between users rely on the users’ prior rating on items. Since we

have implicit ratings, we treat the prior visit of a user to an article as rating 1 and lack of prior visit as

rating 0. This convention is often seen in the literature (Das et al. 2007). We use the framework proposed

by (Breese et al. 1998) to compute the scores over the items for each user.

ܴሺ݅, ሻݑ ൌ ܴ௨തതതത ൅
1

∑ ,ݑሺ݉݅ݏሺݏܾܽ |ሻሻ|௎ݒ
௩ୀଵ

෍݉݅ݏሺݑ, ሻሺܴ௩௜ݒ െ ܴ௩തതതሻ

|௎|

௩ୀଵ

 (13)

The expected rating a target user ݑ would give to item ݅ is computed by the sum of ratings of the other

users ሺݒሻ weighted by the similarity of those users to the target user	ݑ. ܴ௩௜ is the rating given to item ݅ by

user ݒ. ܴ௩തതത is the average rating of the user ݒ. One of several metrics can be used for computing the

similarity between two users who are represented by the vectors of ratings they have given. Some choices

are cosine, correlation, inverse Euclidian distance etc. We use correlation coefficient since it has often

been used in the literature (Breese et al. 1998; Herlocker et al. 1999).

4.5.2 Aspect	model	

The parameters of the Aspect model are the conditional probability tables	ܲሺܼሻ, ܲሺܷ|ܼሻ, and	ܲሺܫ|ܼሻ.

They can be estimated using an Expectation Maximization algorithm. For a user ݑ the items can be

recommended in the decreasing order of the probability of ݑ selecting a particular item:

ܴሺ݅, ሻݑ ൌ ܲሺ݅|ݑሻ ൌ෍ܲሺܼሻܲሺݑ|ܼሻܲሺ݅|ܼሻ
௓

 (14)

4.5.3 Link	analysis	

The link-analysis algorithm has been specifically developed for transactional data (Huang et al. 2007a). It

represents the product selection by users as a bipartite graph. On this graph the algorithm generalizes the

popular Hub-Authority score calculation to compute a set of product and consumer “representative”

matrices. If there are ܯ users and ܰ products, then the product representative matrix, ܴܲ, is ܰ ൈܯ and

the consumer representation matrix, ܴܥ, is ܯ ൈܯ. Each cell of the product representative matrix

contains the degree to which each product is represented by each user. Each cell of the consumer

representative matrix contains the degree to which one user is represented by another. Let the user-

product adjacency matrix be an ܯ ൈܰ matrix called ܣ. Then it is shown that the ܴܲ and ܴܥ matrices can

be defined to be

ܴܲ ൌ ்ܣ ⋅ (15) ܴܥ

ܴܥ ൌ ሻܣሺܤ ⋅ ܴܲ ൅ ଴ (16)ܴܥ

Where, ܤሺܣሻ is a normalized adjacency matrix such that ܾ௜௝ ൌ
௔೔ೕ

൫∑ ௔೔ೕೕ ൯
ം. ܴܥ଴is a diagonal matrix with

weight ߟ that assigns an additional representation score by each user to self. Before adding ܴܥ଴ to it the

product ܤሺܣሻ ⋅ ܴܲ is normalized so that each column sums to 1. At the start of the algorithm, ܴܥ is set to

 ଴. Iterating over Equations (15) and (16) converges to the product and consumer representativeܴܥ

matrices. Once the product representative matrix is estimated it can be used for making recommendation.

Under the link analysis algorithm the suitability score of a product, ݅, for a user, ݑ is

ܴሺ݅, ሻݑ ൌ ܴܲሺ݅, ሻ (17)ݑ

Following (Huang et al. 2007a) ߛ was set to 0.9. In our experiments the results were not very sensitive to

the value of ߟ. It was set to 1 in the reported results.

4.5.4 Katz‐CWT	

Predicting a user’s selection of a product can be formulated as a link prediction problem: predicting

whether a link occurs between a user and a product. Many link prediction methods have been proposed in

the literature. Among them the Katz method has been shown to be one of the best methods (Liben Nowell

and Kleinberg 2007). This algorithm has been extended to temporal link prediction, i.e., predicting

occurrence of a link at a particular time (Dunlavy et al. 2011). It has been shown to be one of the best

performing algorithms for predicting occurrence of a link in a particular time period.

The Katz method computes a score indicating the potential of a future direct link between two nodes that

currently do not have a direct link or edge. It is calculated for a link between ݅ and ݆ as

,෠ሺ݅܁ ݆ሻ ൌ෍ߚ௟ห݄ݐܽ݌௜,௝ ሺ௟ሻห

ஶ

௟ୀଵ

 (18)

Where ห݄ݐܽ݌ሺ௟ሻห is the number of paths of length ݈ between node ݅ and node ݆. ߚ is a parameter that

controls the extent to which longer paths are discounted.

Let ܣ be the adjacency matrix of a bipartite graph, such as a user-item graph. (Dunlavy et al. 2011) have

shown that for bipartite graphs መܵ can be approximated as

መܵ ൌ ܷ௄Ψ௄ ௄ܸ
் (19)

Where ܷ௄ is a matrix whose columns are the first ܭ left singular vectors of ܣ. ௄ܸ is a matrix whose

columns are the first ܭ right singular vectors of ܣ. Ψ௄ is a diagonal matrix with whose ݌’th element ߰௣ is

a modified singular value of ܣ

߰௣ ൌ
௣ߪߚ

1 െ ௣ଶߪଶߚ
 (20)

Where ߪ௣ is the ݌’th singular value of ܣ.

These scores are calculated from an adjacency matrix that is devoid of any temporal information. To

convert a dataset that contains time-stamped links to adjacency it has been shown that a time discounting

strategy works well (Dunlavy et al. 2011). Thus, if the dataset contains links formed over ܶ time periods

the adjacency matrix ܣ is computed as

ܣ ൌ෍ሺ1 െ ௧ܣሻ்ି௧ߠ

்

௧

 (21)

Where ߠ ∈ ሺ0,1ሻ is a parameter that controls how quickly older links are discounted. ܣ௧ is an adjacency

matrix that contains links formed in period ݐ. This is called the collapsed weighted tensor (CWT). The

Katz score computed using Equation (19) on an adjacency matrix constructed according to Equation (21)

leads to the Katz-CWT algorithm.

In our experiments ߠ and ߚ were set to best performing values for each dataset after evaluating them on a

validation set. The optimal value for ߚ ൌ 0.001, where as ߠ was different for each dataset.

Since መܵ contains scores indicating the potential of a link between a user and an item it can be directly used

for selecting potential items to recommend. The recommendation score of the item ݅ for user ݑ is:

ܴሺ݅, ሻݑ ൌ መܵሺݑ, ݅ሻ (22)

4.5.5 Recommending	popular	items	

This is a popular non-personalized recommendation strategy being used by many prominent online

retailers in conjunction with personalized recommender systems. It is also a popular choice for baseline

performance in the collaborative filtering literature (Rashid et al. 2002). In this strategy the

recommendation score of the items is calculated as

ܴሺ݅, ሻݑ ൌ ෍ܴ௩௜

௎

௩ୀଵ

 (23)

In addition to these five algorithms a recently proposed dynamic collaborative filter for explicit rating

data, known as timeSVD++, was extended to the implicit rating scenario. Although timeSVD++ has been

very successful on explicit rating data, its extension to the implicit rating scenario by treating each

selection as a rating 1 and lack of selection as a rating 0 was ineffective for making recommendations.

Therefore, it is excluded from the set of reported comparisons.

5 Experiments	with	Real	World	Data	

Each algorithm is trained on data up to a certain time period ݐ. The trained algorithm is then used to

predict what each user will select in period	ݐ ൅ 1. Using the convention in the literature the dataset was

limited to only those users who have read at least a certain number of articles and only those articles that

have been read at least a certain number of times. First we present the performances of the algorithms on

blog reading data by setting both these thresholds at 400. Later we present the results of sensitivity

analysis where the threshold is varied as well as the results on two other datasets.

5.1 Model	Selection	

The optimal number of latent classes is determined using AIC criterion2. We find that using 5 latent

classes for the static model and 25 latent classes for the HMM model are optimal. The relatively higher

number of latent classes that the dynamic model requires has practical implications. The complexity of

the algorithm grows as a square of the number of classes. Despite this, as the complexity of the EM

algorithm grows only linearly with the size of the dataset we are able to complete the task relatively

quickly (within 10—20 minutes using commodity hardware).

5.2 Recommendation	Performance	

The performances of the six recommender systems are measured by their precision and recall scores.

Each algorithm is used to calculate the recommendation score of all the articles for a user. Then the top 5

or top 10 highest scoring articles are recommended for the user. Only the articles that the user is observed

to visit in time period	ݐ ൅ 1, the test set, are considered the correct recommendations. Precision, ܲ, of the

algorithm is the fraction of the recommended set that is correct. Recall, ܴ, is the fraction of the correct

articles that is recommended. If more items are recommended the precision will decrease, but recall will

increase. The harmonic mean, ܨ, of the precision and recall is often used to summarize the two numbers

(Herlocker et al. 2004).

1
ܨ
ൌ
1
2
൬
1
ܲ
൅
1
ܴ
൰ (24)

The dynamic model requires sequences of adequate length to learn the transition probabilities. We use

data collected over time period 1… ݐ	to train the algorithms, where ݐ ൌ 15…21, i.e., we make sure that at

least two thirds of the data is available for training. The test set consists of the articles each user visited at

time period ݐ ൅ 1. The precision, recall and their harmonic means of each algorithm are computed for

2 We find that the BIC criterion penalizes the models too aggressively for their complexity and suggests very small
number of classes (൏ 5) as optimal. Such small number of classes does not lead to the best performance.

each train-test set and averaged. We find that the HMM based dynamic model often performs as well as

the best among the alternative algorithms we evaluated, and sometimes has an advantage over them that is

statistically significant. Among the algorithms it is compared to, the Katz-CWT algorithm comes closest.

Length of the time period = 30
days

Top 5 Top 10

ܲ ܴ ܨ ܲ ܴ	 ܨ
Dynamic Model 0.0667 0.1748** 0.0956* 0.0552 0.2665* 0.0907

Aspect Model 0.0368 0.0631 0.0460 0.0343 0.1115 0.0519

User-User Similarity 0.0408 0.0796 0.0534 0.0376 0.1381 0.0588

Popular 0.0194 0.0407 0.0262 0.0164 0.0678 0.0263

Link analysis 0.0351 0.0692 0.0462 0.0292 0.1041 0.0453

Katz-CWT 0.0645 0.1518 0.0900 0.0514 0.2262 0.0835

Table 3 Precision (P), Recall (R), and F-scores of the six algorithms. Following the example of statistical comparison of
performances of multiple algorithms in the literature(Huang et al. 2007b), we perform a paired t-test between the scores
of the top-2 algorithms. The cells with * have an advantage that is statistically significant at 0.10 level. The cells with **
have an advantage that is statistically significant at 0.05 level.

The Aspect model is close to the proposed HMM with one key difference. In the HMM users are allowed

to change their preferences from one time period to next whereas in the Aspect model they are not.

Therefore, the improvement in the performance of the HMM over the Aspect model can be attributed to

the explicit modeling of changes in user preferences.

For each train-test split each algorithm produces an ordered list of items. Precision and Recall measures at

the top-5 or top-10 level examine the recommendation quality of the algorithms if we are to recommend

only the first 5 or first 10 of the items in this ordered list. However, if we are interested in the quality of

the algorithms over the entire ordered list, then a Receiver Operating Characteristic (ROC) curve is an

intuitive way to compare multiple algorithms (Swets 1963).

To draw an ROC curve one recommends items from the top of the ordered list while comparing the

recommended items with the correct list of items that should be recommended. Two quantities are

calculated in the process: the fraction of incorrect items recommended (False Positive Rate or FP) and the

fraction of correct items that are recommended (True Positive Rate or TP). Thus, for each item in the list

we generate a pair of numbers (FP, TP), which are used as the X and Y coordinates, respectively, to draw

a curve. It is easy to note that when there are no items recommended all the methods will produce (FP=0,

TP=0). As more items are recommended both these numbers monotonically increase. When all the items

are recommended from the list every algorithm would have (FP=1, TP=1). A perfect recommender

system would retrieve all the relevant items before retrieving any non-relevant items, i.e., it would obtain

a True Positive Rate of 1 while having a False Positive Rate of 0. Only after this, retrieving any more

items would increase the False Positive Rate. Therefore, a perfect recommender system would have the

highest possible ROC curve. When comparing two algorithms, the one with a higher ROC curve is a

better performing algorithm. A convenient, albeit less informative, summary of the ROC curve of two

algorithms is the Area-Under-the-Curve (AUC). The algorithm with higher AUC is the better performing

algorithm.

For each algorithm, we compute the ROC curves for each user and each train-test split. We calculate the

average ROC curve for each algorithm by following the vertical averaging strategy proposed by

(Macskassy and Provost 2004), where the True Positive Rates are extracted from each ROC curve at

predetermined False Positive Rates and averaged. The AUCs for all the ROCs of an algorithm are also

averaged to arrive at the average AUC for the algorithm. The average ROCs and the AUCs are shown in

Figure 4.

It is evident that the HMM outperforms the static models. Often the quality of interest is the performance

of the algorithms at the top of the recommendation list (Järvelin and Kekäläinen 2002). As we can see in

this portion of the recommended list, which translates to the initial half of the ROC curves, the HMM

outperforms the static models by a significant margin. The confidence bands of the curves are also

calculated following (Macskassy and Provost 2004). In the first half of the graph the difference between

the ROC curve for the HMM and the other static model is significant at the 95% level. However, the

confidence bands are omitted from Figure 4 for the sake of clarity.

Figure 4 Average ROC curves and AUC values of each algorithm

5.3 Sensitivity	Analyses	

The results shown thus far are obtained from a subset of data that contains only those users who have read

more than 400 blog articles and only those blog articles that have been read by more than 400 users.

These thresholds affect the density of the user-article matrix. In addition, all results were obtained by

using 25 latent classes in the HMM and 5 latent classes for the Aspect model. These were the models that

produced the best results for each method. In a subsequent set of experiments we varied the thresholds of

the user and item selection. For each threshold we evaluated the methods over a range of latent classes.

We found that the performance of the HMM generally improves with the number of latent classes and

with the density of the data (Appendix B, Figure 2).

In the first set of experiments the length of each time period was fixed at 1 month. This seems to be a

reasonable choice because the firm uses a non-personalized method that recommends to everyone the

most popular articles of the previous month. This suggests that for blog article recommendation the firm

considers it appropriate to generate new recommendations each month to keep up with the changes in the

blogosphere and user interests. In a second set of experiments we vary the length of the time period for

the dynamic model. The advantages of the dynamic model are more pronounced when the length of the

time period is shorter, e.g., 1 week. However, when the length of the time period is much longer, e.g., 2

months, the dynamic model does not have an advantage.

Figure 5 ROC curves with length of the time period set to 1 week and to 2 months.

There are several factors that would guide one’s choice of time period length. Users’ interest in different

products might change at different rates. Therefore, we should use time units that best capture the changes

in users’ interests. E.g., if we are interested in tracking users’ interests in news or blog articles we might

want to use a shorter period than if we are interested in tracking users’ interests in movies. The reason is

that the interest in movies might change slowly over time as a function of the person’s age, whereas the

interest in certain news topics might last only a few days. In such a situation if we use too long time

periods we might miss any change in the users’ behavior within that time period.

The other factor to consider is that longer time periods would lead to fewer sequences to learn the state

switching behavior from. This would reduce the reliability of the learnt transition probability matrix and

can hurt the performance when the time periods are coarse. However, the complexity of the dynamic

algorithm grows linearly with the length of training sequence. Therefore, using shorter time periods

would require a longer training period for the dynamic algorithm.

5.4 Evaluation	on	the	Netflix	prize	dataset	

Netflix has made available a dataset containing over 100 million ratings, containing 17,770 movies and

approximately 480 thousand users (Bennett and Lanning 2007). The dataset consists of users’ ratings on

movies along with the timestamp of the rating. Using this dataset we predict which movies a target user

will rate in a given test period. To the extent that users rate all the movies they watch predicting which

movies the user will rate is equivalent to predicting which movies they will watch.

In the first set of evaluations we use data from users who have rated at least 2000 movies. This results in a

dataset with 1,212 users and 5,264 movies. The set of algorithms described in Section 4.4 are evaluated

on this resulting dataset. The number of states used for the HMM and the Aspect model were decided

using AIC criteria—as was done in the previous section. The parameters of Katz-CWT were set based on

the performance on validation dataset.

The precision and recall values at the top 5 and top 10 levels are shown in Table 4. The comparison is not

affected if we increase the sparsity of the data. However, two of the algorithms: user-user similarity based

collaborative filter and the Link analysis method could not be completed because of their memory

requirements. To keep the dataset size manageable we randomly sampled 30,000 users to use in our

experiments.

Algorithms
Top 5 Top 10

ܲ	 ܴ ܨ ܲ ܴ	 	ܨ
User and movies occurring > 2000 times included 1,212 users and 5,264 items

Dynamic Model 0.1621 0.0310 0.0503* 0.1452 0.0529* 0.0748**

Aspect Model 0.0652 0.0052 0.0093 0.0636 0.0100 0.0166
User-User Similarity 0.0798 0.0067 0.0121 0.0762 0.0125 0.0210
Popular 0.0770 0.0061 0.0110 0.0731 0.0111 0.0189
Link analysis 0.0780 0.0062 0.0113 0.0742 0.0114 0.0194

Katz-CWT 0.1563 0.0281 0.0458 0.1397 0.0465 0.0665
User and movies occurring > 500 times included 30,000 users and 9,284 items

Dynamic Model 0.1184** 0.0344* 0.0523** 0.1045** 0.0587 0.0738**

Aspect Model 0.0571 0.0072 0.0126 0.0543 0.0137 0.0216
Popular 0.0645 0.0081 0.0142 0.0612 0.0152 0.0240
Katz-CWT 0.0894 0.0311 0.0452 0.0805 0.0543 0.0634

User and movies occurring > 20 times selected 30,000 users and 17,753 items
Dynamic Model 0.0731** 0.0334 0.0457 0.0663** 0.0606 0.0631
Aspect Model 0.0362 0.0078 0.0128 0.0344 0.0151 0.0209
Popular 0.0392 0.0082 0.0134 0.0374 0.0158 0.0221
Katz-CWT 0.0622 0.0360 0.0454 0.0559 0.0624 0.0587

Table 4 The precision and recall on the Netflix prize dataset for new movie recommendations. Users and items that occur
at least 1000 times were included. User-user similarity based collaborative filter and the Link analysis method could not
be completed on this subset of the data due to their memory requirement. We perform a paired t-test between the scores
of the top-2 algorithms. The cells with * have an advantage that is statistically significant at 0.10 level. The cells with **
have an advantage that is statistically significant at 0.05 level.

We can see an advantage of the dynamic algorithm over the static algorithms. The best among the

algorithms compared to the proposed HMM based algorithm is the Katz-CWT algorithm. The HMM

outperforms the Katz-CWT when the dataset is dense. We suspect the advantage of the HMM over Katz-

CWT is because Katz-CWT method relies on a time discounting strategy that does not use the old data as

effectively as the HMM does. This behavior of the Katz-CWT algorithm is further explored in Section 6

with the help of a simulation study. However, we find that when the dataset is sparse the difference

between the HMM and the Katz-CWT narrows to a level that is statistically insignificant.

5.5 Evaluation	on	a	Last.fm	dataset	

Last.fm is an Internet based personalized radio station and music recommender system. When the users of

the service listen to music through a supported music player, last.fm collects data on their music listening

behavior. This data is used by last.fm to make personalized music recommendation at their online radio

station. A part of this data has been collected and made available3 by Òscar Celma4 with permission from

last.fm5 (Celma 2010). This dataset contains time stamped records of users’ music listening activity. It has

992 users and 177 thousand artists who were listened to. The data spans 53 months.

The algorithms were evaluated on this dataset on the task of predicting the artists a user will listen to in a

particular time period. To keep the evaluations of all three datasets consistent only the new artists the

users listened to in the test period were used for evaluation. The length of the time period was set to 1

month. The precision and recall scores at top 5 and top 10 levels are shown in

3 http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
4 http://www.dtic.upf.edu/~ocelma/
5 http://www.last.fm/

Algorithms
Top 5 Top 10

ܲ ܴ ܨ ܲ ܴ	 ܨ
Artists listened to by > 20 users included 978 users and 7,150 artists

Dynamic Model (K=20) 0.0389 0.0135 0.0200 0.0340 0.0245 0.0285

Aspect Model 0.0282 0.0080 0.0122 0.0259 0.0152 0.0186

User-User Similarity 0.0409 0.0137 0.0201 0.0361 0.0240 0.0283

Popular 0.0292 0.0097 0.0140 0.0262 0.0168 0.0199

Link analysis 0.0374 0.0124 0.0182 0.0329 0.0209 0.0250

Katz-CWT 0.0371 0.0134 0.0189 0.0329 0.0229 0.0263

Artists listened to by > 100 users included 924 users and 1,342 artists

Dynamic Model (K=30) 0.0473 0.0314 0.0369 0.0423 0.0525 0.0469

Aspect Model 0.0308 0.0172 0.0217 0.0282 0.0310 0.0290

User-User Similarity 0.0482 0.0297 0.0357 0.0434 0.0526 0.0470

Popular 0.0326 0.0190 0.0234 0.0295 0.0326 0.0303

Link analysis 0.0424 0.0247 0.0307 0.0374 0.0436 0.0397

Katz-CWT 0.0437 0.0289 0.0337 0.0393 0.0501 0.0430

Table 5 The precision and recall scores on last.fm dataset for artists recommendations using two sparsity levels of data.
The parameters of Katz-CWT were set based on the performance on validation dataset. The number of states of the
dynamic model was determined for the two datasets using AIC criterion. A t-test to compare the HMM and the user-user
algorithm reveals that the difference in their performances is not statistically significant.

On this dataset the simple user-user similarity based collaborative filtering algorithm performs as well as

the proposed HMM based algorithm. In addition the gaps between the dynamic algorithm and the other

algorithms are narrower than they were on the blog reading dataset and the movie watching dataset. The

comparisons do not change much when we increase or decrease the sparsity of the data. To understand

why this is the case, note that the music listening data has a different characteristic than the previous two

datasets. People often listen to the same music they like multiple times. This is recorded in the last.fm

dataset. They are less likely to do so with movies and blog articles. In addition as the last.fm

recommender system learns about a user’s taste in music it is likely to recommend to the users more and

more music that is created by the artists they like. This increases the homogeneity in the artists the users

select. Thus the change in users’ music listening could be less than the change in their movie watching or

blog reading. This becomes apparent when we examine the state transition matrices of the HMMs learnt

from the three different datasets. The average probability of a user leaving a state, i.e., average of the off

diagonal elements of the transition probability matrix, at the default experiment settings are 0.87, 0.59,

and 0.18 for the blog reading dataset, Netflix dataset, and last.fm dataset respectively. This suggests that

user preferences are changing most in the blog reading and changing least in the music listening dataset.

6 Simulation	of	Changing	Preferences	

Further insight into the performance of the algorithms is obtained by analyses of simulated datasets

generated from changing preferences of different types. The datasets have the following attributes.

There are ௨ܰ users, ܭ different preference states, and ௜ܰ distinct items that users in a particular state

prefer. So, there are ܭ ൈ ௜ܰ distinct items in the simulated dataset. Each user is observed over ܶ time

periods. In the first time period each user starts at a state randomly chosen from the ܭ states. The states

are numbered from 1…ܭ. In each time period the user moves to a state according to a transition model

that is described below. When a user assumes a given state the user prefers a particular set of ௜ܰ items

over the other ሺܭ െ 1ሻ ൈ ௜ܰ items. This is modeled via a state specific multinomial distribution over the

items. This distribution contains a higher probability of selecting each of the ௜ܰ preferred items and lower

probability of selecting the other items. Each user selects ௢ܰ௕௦ items in each time period.

The algorithms presented in Section 5 are evaluated on this simulated dataset as described in Section 5.

6.1 Transition	Models	

To understand the behavior of different algorithms when different types of dynamics are present in the

user-preferences we implement three different types of state transitions.

6.1.1 Random	walk	among	states	with	different	step	sizes	

In this transition model a user is simulated to draw a random number from a normal distribution ܰሺ0, .ሻߪ

The state of the user in the next time period is obtained by adding this number to the current state and

rounding the result to the nearest integer between 1 to ܭ. The advantage of this strategy is that by

changing the standard deviation, ߪ, of the normal distribution one can control the amount of change of the

users’ preference. For small values of ߪ the users will stay in or move to a state close to their current

states. When ߪ is large the users are likely to explore further away from their current state.

In Figure 6 the results of the six algorithms are reported for the following values of the simulation

parameters: ௨ܰ ൌ 50, ܭ ൌ 10, ௜ܰ ൌ 50, ܶ ൌ 50, ௢ܰ௕௦ ൌ 50 and ߪ ൌ ሼ0,0.25,0.5,1ሽ.

The left subplots of the Figure show the empirical state transition probability matrix computed from the

simulated states. The random walk strategy results in empirical transition probability matrices that are

centered on a diagonal matrix. This might seem more restrictive than it actually is. The state numbers

could be shuffled to obtain a more random looking transition probability matrix without affecting the

dynamics of the model.

The right subplots show the ROC curves of the six algorithms. When the model is static (diagonal

transition probability matrix), some of the static models, such as Link analysis and User-user similarity

based model, perform as well as the HMM. However, as we introduce dynamics into the user preferences

the HMM begins to outperform the other models. When the user preference changes a lot the Katz-CWT

algorithm is the second best performing algorithm. It out-performs other algorithms that do not consider

the temporal nature of the preferences at all.

In this setup, performances of all the algorithms, even the HMM that is designed to handle changing

preferences, suffer when user preferences change. This is because even when an HMM obtains the

transition probability matrix, similar to the one in the bottom row of Figure 6, there is inherent uncertainty

regarding which state the user will go to in the next time period. HMM is able to put most of the

probability mass over a few of the states, but, it is not able to predict every time the state the user will be

in. This is a harder scenario than the transition behavior shown in the top row of Figure 6, where HMM,

and other algorithms, know precisely which state the user is in and will be in at the test time period.

Figure 6: Effect of users changing their preference according to a random walk with varying step sizes. The left plot in
each row shows the transition probability matrix and the right plot shows the ROC curves of the compared algorithms. In
the first row the users do not change their states. In this case some of the static models methods perform as well as the
proposed dynamic model. However, as soon as we introduce some dynamics, i.e., users start switching their preference
states we start to observe the advantage of the dynamic model. This advantage grows as the amount of dynamics
increases.

Figure 7 Performances of the algorithms when the state changes are unidirectional. When the user takes longer to
converge to the final stationary state the advantages of the dynamic model is larger. The users can take longer to converge
to the final stationary state either due to a lower probability of moving to the next state or due to a larger number of
states. ઢ࡯ࢁ࡭ is the difference in performance of the HMM and the best among the other algorithms.

6.1.2 State	changes	predominantly	in	one	direction	

In this transition model a user moves to the next state with a high probability ݌ு and all other states with a

low probability ݌௅. This models the phenomenon where over time users grow out of a particular type of

product and move to the next level of product more or less permanently, i.e., the probability of them

revisiting a state is low. Since there is a finite number of states, after certain number of time periods the

users will remain in a final state from which they do not move. Once the users are in the final state their

behavior mimics that of a user whose preference does not change.

As the ݌ு increases users will converge to the final state quicker, because from each state they move to

the next state with a higher probability. In addition when the number of states ܭ is small users will reach

the final state quickly. The gap between static algorithms and dynamic algorithms should be narrower

when users reach the final stationary state quickly. The gap should be wider when they travel over more

states and take longer to reach the final state. This is found and illustrated in Figure 7.

6.1.3 Repeating	state	changes	

Using the insight obtained so far it is easy to create a transition probability matrix that has such dynamic

behavior that the static models perform rather poorly. One example is shown in Figure 8, where users

cycle through the states. As this set of transitions does not allow the user to stay in any one state for long,

the static algorithms perform rather poorly.

Figure 8 Static algorithms perform poorly when preferences change cyclically.

Note that in this case the Katz-CWT algorithm, that applies a decaying weight to the older data, performs

worse than other algorithms. To understand this better let’s calculate the scores each algorithm assigns to

the items for a set of test periods (Figure 9). Consider the last period in Figure 9 corresponding to T=72.

Here we see how the reader selects the items to read—she picks heavily from the first 100 items (some

items multiple times) and sparsely from the rest of the 400 items. The HMM plot shows that it is able to

approximate this pattern by placing the reader in a state where the weights given to the items closely

mimic the observed behavior. Unfortunately, the competing models fail to discern this pattern.

The data relevant for making a recommendation occurred ܭ time periods ago. By discounting this data

heavily, the Katz-CWT algorithm performs worse than other static algorithms. In Figure 9 we can see that

the Katz algorithm assigns a lower score to the relevant items that occurred ܭ time periods ago than to the

other less relevant items that were selected by the user more recently. On the other hand, HMM is able to

assign more appropriate weight to the items. This is because HMM infers the state in which data in each

time period was generated (in the E-step) and is able to selectively use the data to estimate the parameters

of the generating state.

The static models project a much diffused score over all the items for each of the test periods. This is

because static models fit one model to all the data generated by a user in all time periods in the training

data and use the same model to make prediction for the test period. On the other hand, the HMM creates a

much more focused distribution over the items for each test period. This is because it predicts the state of

the user in the test period and estimates the user’s preference score towards the items when the user is in

the predicted state.

Figure 9: The scores assigned by various algorithms to the items for one randomly selected user over five consecutive time periods. The dataset was generated using
ࢀ ൌ ૚૙૙,࢛ࡺ ൌ ૚૙૙,࢏ࡺ ൌ ૚૙૙,࢙࢈࢕ࡺ ൌ ૚૙૙, and ࡷ ൌ ૞. The transition probability matrix is described in Figure 8. The five sets of scores are obtained for the first five
time periods where the algorithms were evaluated: 68, 69, 70, 71, and 72. Data generated prior to each of these periods are used to train the algorithms for the
corresponding test period. There is a drop in scores by the Katz-CWT algorithm for the items that should be scored high. Due to the cyclical nature of state transition
the relevant data for the test period occurs ࡷ time periods prior to the test period. The discounting strategy used in the Katz-CWT algorithm gives more weight to the
recent data than older data. This raises the scores for the products selected by the user in the recent time periods while reducing weights for the products selected by the
user ࡷ periods ago that would have been relevant for the test period.

Drop in item-

scores when

they should

be higher.

ݐ ൌ 68

ݐ ൌ 69

ݐ ൌ 70

ݐ ൌ 71

ݐ ൌ 72

7 Conclusion	

7.1 Summary		

We present a hidden Markov model for Collaborative Filtering that accounts for changing user

preferences. The presented algorithm is designed for implicit ratings or transactional data. Despite

evidence from the literature that a user’s preference can change over time, there has been very little work

in the collaborative filtering literature that attempts to account for this phenomenon. We present one of

the first attempts to fill this gap.

There are several challenges in recommending items to a user when the users’ preferences are changing.

These include the challenge that the user preferences might be different during the test period than they

were in the training period, uncertainty about which of many possible preferences of a user generated the

data at any time period, etc. In addition one usually does not observe multiple ratings from a user on an

item. Therefore, a collaborative filter must learn changes in a user’s preference from her rating on distinct

items over time.

We propose an HMM to address these challenges. The preference of each user is represented as degree of

memberships in a set of latent classes. Each latent class represents a global preference pattern that

governs the number of items selected in each month and the selection of those items. This dual purpose of

the latent classes requires a novel observation model of the HMM. We model the observations as a

Negative Binomial Mixture of Multinomial distribution. We also use an estimation procedure based on

the forward-backward algorithm that scales to large datasets.

The proposed algorithm is evaluated on three real world datasets. The first dataset is collected from a

large IT services firm over 22 months. The dataset consists of time stamped record of employees’ visits to

blog articles on the corporate blog network. The second dataset is the Netflix prize data. The time

stamped events of users’ rating of movies are used in our study. The rating values are ignored. The third

dataset contains music listening history of users of last.fm online radio. The proposed algorithm is

compared with five other algorithms. They include the user-user similarity based collaborative filter, link-

analysis method for recommending using transactional data, and the Katz-CWT method for temporal link

prediction applied to user-item data.

We find that the proposed HMM based algorithm performs as well as the best of the algorithms we

evaluated on the blog reading dataset and on the Netflix prize dataset. In some specific conditions of the

dataset, when the sparsity is low, we find that the HMM outperforms the other algorithms on these two

datasets. On last.fm dataset the user-user similarity based collaborative filter performs as well as the

HMM based algorithm. The strong performance of the user-user similarity based static collaborative

filtering algorithm is traced to the static nature of the music listening dataset.

Upon examining the methods using time units of different lengths we find that when the time units are

rather coarse, e.g., several months, the performance of the dynamic algorithm suffers. However, when the

time units are shorter, e.g., a month or less, the dynamic algorithm outperforms the static algorithm. The

improved performance of the algorithm with shorter time periods is achieved at a higher computational

cost. The time to complete one EM iteration of the HMM increases linearly with the length of the

sequences. We expect that the optimal length of the time unit will depend on the type of product to be

recommended. For the products for which the preference of a user can change quickly one would need to

use a shorter time period to capture any change in user preference. A more detailed examination of the

effect of the time unit on algorithm performance for different types of products is left as a topic for future

research.

The properties of the algorithms are further examined by conducting a simulation study. Different degrees

of dynamism in the user preference are simulated and the resulting data is used to evaluate the algorithms.

It is observed that when the user preferences are static the proposed HMM based algorithm performs as

well as the static algorithms. As we make them less static and increase the rate of change of the users’

preferences the advantage of the dynamic model increases. In addition, if the user exhibits a repeating

pattern of change the performances of the static models can be much worse than the proposed dynamic

model. We also observe that the HMM does a much better job of tracking the users’ changing preferences

through the test period than the static models.

7.2 Implications		

Due to the information overload faced by the users of modern information systems, users and firms are

increasingly relying on information filtering systems such as collaborative filters. There are several

classes of products that are consumed by users repeatedly over a long period of time, e.g., movies, music,

news stories, etc. Evidence from the literature and our own examination of blog reading data suggests that

user preference changes over time. This work shows that by taking into account the changes in the user’s

preferences one can make more effective recommendations when 1) the data is generating from changing

user preferences, and 2) adequate training data is available.

Training the dynamic model takes more computing resources than training the static models we

compared. Therefore, this should probably be done at off peak hours. However, generating the

recommendation for individual users using HMM is just as quick as the other model based collaborative

filters. Therefore, it is suitable for use, for example, at any Internet retailer’s website.

7.3 Limitations	and	Directions	for	Future	Research	

Since collaborative filtering in the context of changing user preferences is a relatively new area of

research there are several open research directions.

We have presented a method to carry out collaborative filtering of transactional data or implicit rating

data. This model can be extended to perform collaborative filtering of explicit rating data. We have done

limited examination of the effect of time period length on the performance of dynamic model. More study

is needed to understand the relation between type of product and optimal length of the time period. A

continuous time hidden Markov model might be learnt to avoid the problem of selecting the length of the

time period, at the cost of additional computation complexity.

Although not specific to dynamic models, using user and item attributes to improve recommender

systems performance is an open research problem. Intuition suggests that using additional information in

the form of such attributes should improve the recommendation quality. However, advantages of such

additional data remains to be shown (Pilászy and Tikk 2009). In a separate study we find that user and

item attributes have a very interesting correlation with the class switching behavior of the users. However,

deriving improved recommendations from this observation is another open research problem.

Bibliography	

Adomavicius, G., and Tuzhilin, A. 2005. "Toward the Next Generation of Recommender Systems: A
Survey of the State‐of‐the‐Art and Possible Extensions," IEEE transactions on knowledge and
data engineering), pp 734‐749.

Adomavicius, G., and Tuzhilin, A. 2010. "Context‐Aware Recommender Systems," in: Recommender
Systems Handbook: A Complete Guide for Research Scientists and Practitioners. Springer, pp.
335–336.

Ansari, A., Essegaier, S., and Kohli, R. 2000. "Internet Recommendation Systems," Journal of Marketing
Research (37:3), pp 363‐375.

Bell, R., and Koren, Y. 2007. "Lessons from the Netflix Prize Challenge," ACM SIGKDD Explorations
Newsletter (9:2), pp 75‐79.

Bennett, J., and Lanning, S. 2007. "The Netflix Prize," KDDCup: Citeseer.
Billsus, D., and Pazzani, M.J. 1998. "Learning Collaborative Information Filters," in: Proceedings of the

Fifteenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers.

Bishop, C. 2006a. "Pattern Recognition and Machine Learning." Springer New York, p. 618.
Bishop, C. 2006b. Pattern Recognition and Machine Learning. Springer New York.
Bishop, C. 2006c. "Pattern Recognition and Machine Learning." Springer New York, p. 623.

Breese, J.S., Heckerman, D., and Kadie, C. 1998. "Empirical Analysis of Predictive Algorithms for
Collaborative Filtering," Microsoft Research.

Brusilovsky, P., Kobsa, A., and Nejdl, W. 2007. The Adaptive Web: Methods and Strategies of Web
Personalization. Springer‐Verlag New York Inc.

Celma, O. 2010. "Music Recommendation and Discovery in the Long Tail." Springer.
Chen, A. 2005. "Context‐Aware Collaborative Filtering System: Predicting the User’s Preference in the

Ubiquitous Computing Environment," Location‐and Context‐Awareness), pp 244‐253.
Chien, Y.H., and George, E.I. 1999. "A Bayesian Model for Collaborative Filtering," Proceedings of the 7

thInternational Workshop on Artificial Intelligence and Statistics).
Cunningham, P., Nowlan, N., Delany, S., and Haahr, M. 2003. "A Case‐Based Approach to Spam Filtering

That Can Track Concept Drift," Citeseer, pp. 2003‐2016.
Cutting, D., Kupiec, J., Pedersen, J., and Sibun, P. 1992. "A Practical Part‐of‐Speech Tagger," Association

for Computational Linguistics, pp. 133‐140.
Dahlquist, M., and Gray, S.F. 2000. "Regime‐Switching and Interest Rates in the European Monetary

System," Journal of International Economics (50:2), pp 399‐419.
Das, A.S., Datar, M., Garg, A., and Rajaram, S. 2007. "Google News Personalization: Scalable Online

Collaborative Filtering," in: Proceedings of the 16th international conference on World Wide
Web. Banff, Alberta, Canada: ACM, pp. 271‐280.

Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. "Maximum Likelihood from Incomplete Data Via the
Em Algorithm," Journal of the Royal Statistical Society (39), pp 1‐38.

Deng, Y., and Byrne, W. 2008. "Hmm Word and Phrase Alignment for Statistical Machine Translation,"
IEEE Transactions on Audio, Speech, and Language Processing (16:3), pp 494‐507.

Dunlavy, D.M., Kolda, T.G., and Acar, E. 2011. "Temporal Link Prediction Using Matrix and Tensor
Factorizations," ACM Transactions on Knowledge Discovery from Data (TKDD) (5:2), p 10.

Fleder, D., and Hosanagar, K. 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender
Systems on Sales Diversity," Management Science (55:5), pp 697‐712.

Getoor, L., and Sahami, M. 1999. "Using Probabilistic Relational Models for Collaborative Filtering,"
Workshop on Web Usage Analysis and User Profiling (WEBKDD'99)).

Goldberg, D., Nichols, D., Oki, B., and Terry, D. 1992. "Using Collaborative Filtering to Weave an
Information Tapestry," Communications of the ACM (35:12), p 70.

Hamilton, J.D. 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the
Business Cycle," Econometrica: Journal of the Econometric Society), pp 357‐384.

Harries, M., Sammut, C., and Horn, K. 1998. "Extracting Hidden Context," Machine learning (32:2), pp
101‐126.

Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., and Kadie, C. 2001. "Dependency Networks
for Inference, Collaborative Filtering, and Data Visualization," The Journal of Machine Learning
Research (1), pp 49‐75.

Herlocker, J., Konstan, J., Borchers, A., and Riedl, J. 1999. "An Algorithmic Framework for Performing
Collaborative Filtering," ACM, pp. 230‐237.

Herlocker, J.L., Konstan, J.A., Terveen, L.G., and Riedl, J.T. 2004. "Evaluating Collaborative Filtering
Recommender Systems," ACM Trans. Inf. Syst. (22:1), pp 5‐53.

Hofmann, T. 2004. "Latent Semantic Models for Collaborative Filtering," ACM Transactions on
Information Systems (TOIS) (22:1), pp 89‐115.

Hofmann, T., and Puzicha, J. 1999. "Latent Class Models for Collaborative Filtering," in: Proceedings of
the 16th International Joint Conference on Artificial Intelligence (IJCAI‐99‐Vol2). S.F.: Morgan
Kaufmann Publishers, pp. 688‐693.

Hu, Y., Koren, Y., and Volinsky, C. 2009. "Collaborative Filtering for Implicit Feedback Datasets," IEEE, pp.
263‐272.

Huang, Z., Zeng, D., and Chen, H. 2007a. "A Comparison of Collaborative‐Filtering Recommendation
Algorithms for E‐Commerce," Intelligent Systems, IEEE (22:5), pp 68‐78.

Huang, Z., Zeng, D.D., and Chen, H. 2007b. "Analyzing Consumer‐Product Graphs: Empirical Findings and
Applications in Recommender Systems," MANAGEMENT SCIENCE (53:7), July 1, 2007, pp 1146‐
1164.

Järvelin, K., and Kekäläinen, J. 2002. "Cumulated Gain‐Based Evaluation of Ir Techniques," ACM
Transactions on Information Systems (TOIS) (20:4), pp 422‐446.

Juang, B., and Rabiner, L. 1991. "Hidden Markov Models for Speech Recognition," Technometrics (33:3),
pp 251‐272.

Karlof, C., and Wagner, D. 2003. "Hidden Markov Model Cryptanalysis," Cryptographic Hardware and
Embedded Systems‐CHES 2003), pp 17‐34.

Kevin, M. 2002. "Dynamic Bayesian Networks: Representation, Inference and Learning." PhD thesis,
University of California, Berkley, USA www. ai. mit. edu/~ murphyk/Thesis/thesis. pdf.

Koren, Y. 2009. "The Bellkor Solution to the Netflix Grand Prize." Citeseer.
Koren, Y. 2010. "Collaborative Filtering with Temporal Dynamics," Commun. ACM (53:4), pp 89‐97.
Koren, Y., Bell, R., and Volinsky, C. 2009. "Matrix Factorization Techniques for Recommender Systems,"

IEEE Computer (42:8), pp 30‐37.
Lang, K. 1995. "Newsweeder: Learning to Filter Netnews," Citeseer.
Levinson, S. 1986. "Continuously Variable Duration Hidden Markov Models for Automatic Speech

Recognition," Computer Speech & Language (1:1), pp 29‐45.
Liben Nowell, D., and Kleinberg, J. 2007. "The Link Prediction Problem for Social Networks," Journal of

the American Society for Information Science and Technology (58:7), pp 1019‐1031.
Lu, H.M., Zeng, D., and Chen, H. 2010. "Prospective Infectious Disease Outbreak Detection Using Markov

Switching Models," Knowledge and Data Engineering, IEEE Transactions on (22:4), pp 565‐577.
Lukashin, A., and Borodovsky, M. 1998. "Genemark. Hmm: New Solutions for Gene Finding," Nucleic

Acids Research (26:4), p 1107.
Macskassy, S., and Provost, F. 2004. "Confidence Bands for Roc Curves: Methods and an Empirical

Study," Citeseer, pp. 61–70.
Minka, T.P. 2002. "Estimating a Gamma Distribution." from http://research.microsoft.com/en‐

us/um/people/minka/papers/minka‐gamma.pdf
Mooney, R.J., and Roy, L. 2000. "Content‐Based Book Recommending Using Learning for Text

Categorization," in: Proceedings of the fifth ACM conference on Digital libraries. San Antonio,
Texas, United States: ACM, pp. 195‐204.

Netzer, O., Lattin, J., and Srinivasan, V. 2008. "A Hidden Markov Model of Customer Relationship
Dynamics," Marketing Science (27:2), p 185.

Notredame, C. 2002. "Recent Progress in Multiple Sequence Alignment: A Survey," pgs (3:1), pp 131‐
144.

Ostendorf, M., Digalakis, V., and Kimball, O. 1996. "From Hmm's to Segment Models: A Uni Ed View of
Stochastic Modeling for Speech Recognition," IEEE Trans. on Speech and Audio Processing (4:5),
pp 360‐378.

Pan, R., and Scholz, M. 2009. "Mind the Gaps: Weighting the Unknown in Large‐Scale One‐Class
Collaborative Filtering," in: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. Paris, France: ACM, pp. 667‐676.

Paterek, A. 2007. "Improving Regularized Singular Value Decomposition for Collaborative Filtering,"
Citeseer.

Pazzani, M., Muramatsu, J., and Billsus, D. 1996. "Syskill & Webert: Identifying Interesting Web Sites."
Pilászy, I., and Tikk, D. 2009. "Recommending New Movies: Even a Few Ratings Are More Valuable Than

Metadata," ACM, pp. 93‐100.

Rabiner, L. 1989. "A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition," Proceedings of the IEEE (77:2), pp 257‐286.

Rashid, A., Albert, I., Cosley, D., Lam, S., McNee, S., Konstan, J., and Riedl, J. 2002. "Getting to Know You:
Learning New User Preferences in Recommender Systems," ACM, pp. 127‐134.

Rendle, S., Freudenthaler, C., and Schmidt‐Thieme, L. 2010. "Factorizing Personalized Markov Chains for
Next‐Basket Recommendation," ACM, pp. 811‐820.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. 1994a. "Grouplens: An Open
Architecture for Collaborative Filtering of Netnews," ACM, pp. 175‐186.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. 1994b. "Grouplens: An Open
Architecture for Collaborative Filtering of Netnews," in: Proceedings of the Conference on
Computer‐Supported Cooperative Work, CSCW'94.

Resnick, P., and Varian, H.R. 1997. "Recommender Systems," Commun. ACM (40:3), pp 56‐58.
Sahoo, N., Krishnan, R., Duncan, G., and Callan, J. 2012. "The Halo Effect in Multicomponent Ratings and

Its Implications for Recommender Systems: The Case of Yahoo! Movies," Information Systems
Research (23:1), March 2012, pp 231‐246.

Sarwar, B., Karypis, G., Konstan, J., and Reidl, J. 2001. "Item‐Based Collaborative Filtering
Recommendation Algorithms," ACM, p. 295.

Schlimmer, J., and Granger, R. 1986. "Beyond Incremental Processing: Tracking Concept Drift," pp. 502–
507.

Shardanand, U., and Maes, P. 1995. "Social Information Filtering: Algorithms for Automating \"Word of
Mouth\"," in: CHI. pp. 210‐217.

Si, L., and Jin, R. 2003. "Flexible Mixture Model for Collaborative Filtering," in: ICML. AAAI Press, pp. 704‐
711.

Singh, P., Youn, N., and Tan, Y. 2006. "Developer Learning Dynamics in Open Source Software Projects: A
Hidden Markov Model Analysis." Citeseer.

Street, W., and Kim, Y. 2001. "A Streaming Ensemble Algorithm (Sea) for Large‐Scale Classification,"
ACM, pp. 377‐382.

Swets, J.A. 1963. "Information Retrieval Systems," Science (141:3577), July 19, 1963, pp 245‐250.
Tsymbal, A. 2004. "The Problem of Concept Drift: Definitions and Related Work," Computer Science

Department, Trinity College Dublin).
Ungar, L.H., and Foster, D.P. 1998. "Clustering Methods for Collaborative Filtering," AAAI Workshop on

Recommendation Systems), pp 112‐125.
Van Setten, M., Pokraev, S., and Koolwaaij, J. 2004. "Context‐Aware Recommendations in the Mobile

Tourist Application Compass," Springer, pp. 515‐548.
Widmer, G., and Kubat, M. 1996. "Learning in the Presence of Concept Drift and Hidden Contexts,"

Machine learning (23:1), pp 69‐101.
Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., and Sun, J. 2010. "Temporal Recommendation

on Graphs Via Long‐and Short‐Term Preference Fusion," ACM, pp. 723‐732.

About	the	Authors	

Nachiketa Sahoo is Assistant Professor of Information Systems at the School of Management in Boston

University. His research interest lies at the intersection of statistical machine learning and social sciences.

He is currently doing research on personalized recommender systems and expertise discovery strategies

on social media. His research has been published at Information Systems Research as well as conferences

in computer science and information systems.

Param Vir Singh is Assistant Professor of Information Systems at the David A Tepper School of

Business, Carnegie Mellon University. Professor Singh's research interests entail understanding the

underlying micro foundations of the online communities (both within and outside firms) formed around

web 2.0/social media technologies. His research goals are to provide policy and design implications for

these communities to help them achieve the goals for which were created. To address design and policy

questions, he builds dynamic structural models of individual behavior and conducts counterfactuals and

policy simulations to analyze the impacts of interventions on measures of economic interest. His papers

have been published in various journals in Information Systems area including MIS Quarterly and

Information Systems Research.

Tridas Mukhopadhyay is Deloitte Consulting Professor of e-Business at Carnegie Mellon University.

He received his Ph.D. in Computer and Information systems from the University of Michigan in 1987.

His research interests include strategic use of IT, electronic commerce, business value of information

technology, and software development productivity.

