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Bayesian Model Adequacy and Choice in Phylogenetics

Jonathan P. Bollback
Department of Biology, University of Rochester

Bayesian inference is becoming a common statistical approach to phylogenetic estimation because, among other
reasons, it allows for rapid analysis of large data sets with complex evolutionary models. Conveniently, Bayesian
phylogenetic methods use currently available stochastic models of sequence evolution. However, as with other
model-based approaches, the results of Bayesian inference are conditional on the assumed model of evolution:
inadequate models (models that poorly fit the data) may result in erroneous inferences. In this article, I present a
Bayesian phylogenetic method that evaluates the adequacy of evolutionary models using posterior predictive dis-
tributions. By evaluating a model’s posterior predictive performance, an adequate model can be selected for a
Bayesian phylogenetic study. Although I present a single test statistic that assesses the overall (global) performance
of a phylogenetic model, a variety of test statistics can be tailored to evaluate specific features (local performance)
of evolutionary models to identify sources failure. The method presented here, unlike the likelihood-ratio test and
parametric bootstrap, accounts for uncertainty in the phylogeny and model parameters.

Introduction

The results of any phylogenetic analysis are con-
ditional on the chosen model. Models that fit the data
poorly can lead to erroneous or consistently biased in-
ferences of phylogeny (Felsenstein 1978; Huelsenbeck
and Hillis 1993; Gaut and Lewis 1995; Sullivan and
Swofford 1997; Bruno and Halpern 1999). For example,
a model that assumes equal rates across sites (rate ho-
mogeneity) may result in inconsistent inferences even if
all other parameters of the model are correct (Gaut and
Lewis 1995). The tremendous increase in computational
power over the last few years has resulted in the devel-
opment of a bewildering assortment of models of se-
quence evolution for researchers to choose from (for a
review see Swofford et al. 1996; Huelsenbeck and Boll-
back 2001). Despite the potentially severe effects of
poor model fit, inadequate models were used in four out
of five recent articles in a primary systematics journal
(Posada and Crandall 2001).

The parameters of a phylogenetic model describe
the underlying process of sequence evolution. The max-
imum likelihood and Bayesian methods of statistical in-
ference both estimate these parameters (including the
topology) using the likelihood function, a quantity here-
after referred to as p(Xzu) (which should be read as the
probability of the data, X, conditioned on a specific
combination of model parameters, u; more formally, the
likelihood is proportional to the probability of observing
the data). In maximum likelihood, inferences are based
on finding the topology relating the species, branch
lengths, and parameter estimates of the phylogenetic
model that maximize the probability of observing the
data. Bayesian inferences, on the other hand, are based
on the posterior probability of the topology, branch
lengths, and parameters of the phylogenetic model con-
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ditioned on the data. Posterior probabilities can be cal-
culated using Bayes’s theorem.

Determining which model is best suited to the data
can be divided into two distinct criteria—model ade-
quacy (or assessment) and model choice (or selection).
Model adequacy is an absolute measure of how well a
model under scrutiny fits the data. Model choice, on the
other hand, is a relative measure: the best fitting model
from those available is chosen. Although a model may
be the best choice, it may be, by absolute standards,
inadequate. The likelihood-ratio test (LRT) and Bayes
factors are model choice tests: they measure relative
merits of competing models but reveal little about their
overall adequacy. (Although formally, the LRT evalu-
ates the adequacy of a model [Goldman 1993], in prac-
tice it is used as a model choice strategy.) Although
model adequacy and choice are distinct but related cri-
teria, they are often evaluated simultaneously by com-
paring nested models which differ by a single parameter
(see Goldman 1993). Ideally, we would use only ade-
quate models for a phylogenetic analysis, but in practice
we often settle for the best available model. In fact, most
models appear to be poor descriptions of sequence evo-
lution (Goldman 1993).

How does one choose an adequate phylogenetic
model? Traditional maximum likelihood approaches to
model selection employ the LRT (for hierarchically
nested models) or the parametric bootstrap (for non-
nested models) (Goldman 1993). Both methods depend
on a particular topology, often generated by a relatively
fast method such as parsimony or neighbor-joining. (See
Posada and Crandall [2001] for an analysis of the effects
of topology choice on model selection using the LRT,
the Akaike information criterion [AIC; Akaike 1974],
and the Bayesian information criterion [BIC; Schwarz
1974].) The LRT evaluates the merits of one model
against another by finding the ratio of their maximum
likelihoods. For nested models, the LRT statistic is a-
symptotically x2-distributed with q degrees of freedom
(Wilks 1938), permitting comparison with standard x2

tables to determine significance. Unfortunately, signifi-
cance cannot be evaluated in this way when models are
not nested, or the null fixes parameters of the alternative
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model at the boundary of the parameter space, because
the regularity conditions of the x2 are not satisfied.

The parametric bootstrap, alternatively, is not con-
strained by regularity conditions allowing comparison of
nonnested models but is time-intensive and may require
researchers to write computer simulations to approxi-
mate the null distribution. Unfortunately, this computa-
tionally expensive approach, the AIC, and the BIC re-
main the only current methods (apart from simple in-
spection of the log likelihood scores) to compare non-
nested likelihood models.

The results of the LRT and the parametric bootstrap
are conditional on the topology and model parameters
chosen to conduct the test. The assumed topology may
be chosen using a fast method, such as parsimony,
known to be inconsistent under certain conditions (Fel-
senstein 1978). The branch lengths and model parame-
ters (such as transition/transversion bias) are generally
maximum likelihood–point estimates conditional on the
assumed topology. Ideally, a statistical method should
minimize the number of assumptions made.

Bayesian methods offer an efficient means of re-
ducing this reliance on assumptions. These methods can
accommodate uncertainty in topology, branch lengths,
and model parameters. For example, Suchard, Weiss,
and Sinsheimer (2001) recently developed a Bayesian
method of model selection that uses reversible jump
Markov chain Monte Carlo (MCMC) and employs
Bayes factors for comparing models. This approach is a
Bayesian analog of the LRT: the Bayes factor indicates
relative superiority of competing models by evaluating
the ratio of their marginal likelihoods. In this approach,
prior probability distributions of the models must be
proper but allowably vague. If the information contained
in the data about model adequacy is small, then the pri-
ors will determine the outcome of the test. In this situ-
ation, most of the posterior will be placed on the more
complicated model (Carlin and Chib 1995). Although
the method of Suchard, Weiss, and Sinsheimer (2001)
allows comparison of models without strict dependence
on a particular set of assumptions, like traditional like-
lihood approaches, it does not explicitly evaluate the
absolute merits of a model. The chosen model may well
be severely inadequate.

Here, I present a Bayesian method using posterior
predictive distributions to explicitly evaluate the overall
adequacy of DNA models of sequence evolution. The
approach I use, posterior predictive check by simulation
(Rubin 1984; Gelman, Dey, and Chang 1992; Gelman
et al. 1995; Gamerman 1997), is a Bayesian analog of
classical frequentist methods such as the parametric
bootstrap or randomization tests (Rubin 1984). A similar
approach has been used recently to test molecular evo-
lution hypotheses (Huelsenbeck et al. 2001; Nielsen and
Huelsenbeck 2001; Nielsen 2002). The rationale moti-
vating this approach is that an adequate model should
perform well in predicting future observations. In the
absence of future observations, predicted observations
are simulated from the posterior distribution, under the
model in question. These predicted data are then com-
pared with the original data using a test statistic that

summarizes the differences between them. Careful eval-
uation of the model parameters permits enhancement
(addition of parameters) or simplification (elimination of
irrelevant parameters) of the model to improve its over-
all fit to the data. Here, I use the multinomial test sta-
tistic to evaluate overall adequacy of phylogenetic
models.

Materials and Methods
Models of Sequence Evolution

Models of sequence evolution used in phylogenet-
ics model nucleotide substitutions as a stochastic pro-
cess, most of which are time-homogenous, time-revers-
ible Markov processes. Reversibility of a model is sat-
isfied when the rate of forward and reverse changes are
equal, such that piqij 5 pjqji. However, general, nonre-
versible substitution models have also been developed
and explored in a variety of phylogenetic contexts (Yang
1994; Huelsenbeck, Bollback, and Levine 2002). For the
sake of brevity, this study restricts itself to reversible
models, but the method is easily extended to nonrevers-
ible, time-heterogeneous, or other classes of models.
Four models will be used in this study (1) the general-
time-reversible model (GTR; Tavaré 1986), (2) Hase-
gawa-Kishino-Yano model (HKY85; Hasegawa, Kishi-
no, and Yano 1985), (3) Kimura’s two-parameter model
(K2P; Kimura 1980), and (4) Jukes-Cantor model
(JC69; Jukes and Cantor 1969). These represent the
most commonly implemented models in the phyloge-
netic literature. The first three models are special cases
of the GTR.

The GTR is the most general model of DNA se-
quence evolution allowing for different rates for each
substitution class and accommodating unequal base fre-
quencies. The instantaneous rate matrix, Q, for this
model is:

— ap bp cp C G T

ap — dp ep A G TQ 5 {q } 5 . (1) ij bp dp — f pA C T 
cp ep f p — A C G

The diagonals of the matrix are set such that the rows
each sum to 0. When the rates in the aforementioned
matrix are constrained such that b 5 e 5 k, and a 5 c
5 d 5 f 5 1, the GTR model collapses into the HKY85
model with the following rate matrix:

— p kp p C G T

 p — p kp A G TQ 5 {q } 5 (2) ij kp p — pA C T 
p kp p — A C G

where k is a rate parameter describing a transition-trans-
version bias. If the HKY85 model is constrained such
that the base frequencies are equal (pA 5 pC 5 pG 5
pT 5 0.25), this model collapses into the K2P model
with the following rate matrix:
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— 1 k 1 

 1 — 1 k 
Q 5 {q } 5 . (3) ij k 1 — 1 

1 k 1 — 

Finally, if the K2P model is constrained such that k 5
1, it collapses into the JC69 model with equal rates be-
tween all substitution classes.

Using instantaneous rates, substitution probabilities
for a change from nucleotide i to j over a branch of
length v can be calculated as P 5 {Pij} 5 eQv. In the
case of the JC69, K2P, and HKY85 models, closed-form
analytical solutions for the substitution probabilities are
available (Swofford et al. 1996). For the GTR model,
closed-form solutions do not exist, and standard numer-
ical linear algebra approaches are employed to exponen-
tiate the term Qv (Swofford et al. 1996). With a matrix
of substitution probabilities available, calculation of the
likelihood is straightforward using Felsenstein’s (1981)
pruning algorithm.

Posterior Predictive Simulations

In evaluating a model’s adequacy, we would like
to know how well it describes the underlying process
that generated the DNA sequence data in hand. There-
fore, an ideal model should perform well in predicting
future observations of the data. In practice, future ob-
servations are unavailable to researchers at the time of
data analysis. However, surrogate future observations
under the model being tested can be simulated by sam-
pling from the joint posterior density of trees and model
parameters (hence, posterior predictive simulations;
Rubin 1984). Because of the complexity of the phylog-
eny problem—the large number of possible combina-
tions of topology, branch lengths, and model parame-
ters—the posterior density cannot be evaluated analyti-
cally. Luckily, we can use numerical methods to obtain
an approximation of this density (p̂[uzX]) using the
MCMC technique (Li 1996; Mau 1996; Mau and New-
ton 1997; Yang and Rannala 1997; Larget and Simon
1999; Mau, Newton, and Larget 1999; Newton, Mau,
and Larget 1999; Huelsenbeck and Ronquist 2001).

Model assessment using this approach requires ap-
proximating the following predictive density:

p(X z X )obs

B(s)

5 p(X z u, v , t , X )p(u, v , t z X ) dv du.O E E k k obs k k obs k
k51 v uk

(4)

Trees are labeled t1, t2, . . . , tB(s), where B(s) 5 (2s 2
5)!/2s23(s 2 3)! is the number of unrooted trees for s
species. For all unrooted topologies, B(s), we integrate
over branch lengths (vk) and parameters of the model
(u). Evaluation of this density requires knowledge of the
joint posterior density, but once an approximation of the
joint posterior density of model parameters and topol-
ogies, p̂(u, v, tzX), has been obtained, the posterior pre-
dictive density (eq. 4) can be approximated numerically

by Monte Carlo simulation in the following way (1)
Make a random draw from the joint posterior distribu-
tion of trees and model parameters, under the model
being tested. (In practice, this can be accomplished by
sampling the posterior output of a program that approx-
imates posterior distributions, such as MrBayes [Huel-
senbeck and Ronquist 2001]). (2) Using these random
draws (which include values for the parameters of the
substitution process, topology, and branch lengths) and
the model being tested, simulate a data set, X1, of the
same size as the original data set. (3) Repeat steps 1 and
2 N times to create a collection of data sets, X1, X2, . . . ,
XN. (4) These simulated data sets are a numerical Monte
Carlo approximation of the posterior predictive density
(eq. 4):

N N1
p̂(X z X ) 5 p(X z u , v , t , X ). (5)O Oobs j k k obsN k51 j51

Test Statistics

We now have an approximation of the posterior
predictive density of the data, simulated under the phy-
logenetic model being scrutinized. But we are still left
with the following problem: how can we use this pos-
terior predictive distribution to assess the phylogenetic
model’s adequacy? This requires a descriptive test sta-
tistic (or discrepancy variable; Gelfand and Meng 1996)
that quantifies discrepancies between the observed data
and the posterior predictive distribution. The test statis-
tic is referred to as a realized value when summarizing
the observed data. An appropriate test statistic can be
defined to measure any aspect of the predictive perfor-
mance of a model (Gelman et al. 1995). I use the general
notation T(·), where · refers to the variable being tested.
To use this statistic, calculate T(·) (an example of the
proposed statistic will be shown later), for the posterior
predictive data sets to arrive at an approximation of the
predictive distribution of this test quantity. This distri-
bution can then be compared with the realized test sta-
tistic, which is calculated from the original data.

To asses how well a phylogenetic model is able to
predict future nucleotide observations (overall adequa-
cy), a test statistic that quantifies the frequency of site
patterns is appropriate. Here I use the multinomial test
statistic to summarize the difference between the ob-
served and posterior predictive frequencies of site pat-
terns (Goldman 1993). A minor limitation of the mul-
tinomial is its assumption of independence among sites,
restricting its application to phylogenetic models that
assume independence. Deviations in the posterior pre-
dictive frequency of site patterns from the observed oc-
cur because the phylogenetic model is an imperfect de-
scription of the evolutionary process. If the evolutionary
process that generated the data exhibits a GC bias, for
instance, then site patterns containing a predominance
of these bases will be overrepresented. An adequate
model should be able to predict this deviation, given the
information contained in the original sequence data.

The multinomial test statistic of the data, T(X), is
calculated in the following way. Let j(i) be the ith unique
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observed site pattern and Nj(i) the number of instances
this pattern is observed. For a total number of N sites,
S 5 4k possible site patterns, and n unique site patterns
observed, the multinomial test statistic (T[X]) can be
calculated as follows:

Nj(i)n Nj(i)T(X) 5 ln . (6)P1 1 2 2Ni51

This is the natural log density of the maximum likeli-
hood estimator of the multinomial. Alternatively, for
ease of computation, equation 6 can be rewritten as:

n

T(X) 5 N ln(N ) 2 N ln(N). (7)O j j1 2
j∈S

To illustrate the multinomial test statistic, let us find
the realized T(X) for k 5 4 sequences with N 5 10 sites
from the following hypothetical aligned matrix of DNA
sequences:

AAATCCAGGG 

AAACCCAACA
X 5 . 

AATCGGTTCA 
AATCGGTATT 

There are seven unique site patterns in the matrix. Site
patterns x91,2 5 {AAAA}, x93,7 5 {AATT}, and x95,6 5
{CCGG} are observed twice; the four remaining site
patterns are observed only once each. The realized test
statistic for this data, using equation 7 is then:

T(X) 5 3 · 2 ln(2) 1 4 · 1 ln(1) 2 10 ln(10) 5 218.867.

Numerous test statistics can be formulated, but to be
useful these test statistics should represent a relevant
summary of the model parameters and data.

Predictive P Values

Classical frequency statistics rely on tail-area prob-
abilities to assign statistical significance; values that lie
in the extremes of the null distribution of the test quan-
tity are considered significant. Under classical statistics,
the distributions are conditioned on point estimates for
model parameters. Predictive densities, on the other
hand, are not. Because values are sampled from the pos-
terior distribution of model parameters and trees, they
are sampled in proportion to their marginal probabilities.
This sampling scheme allows them to be treated as nui-
sance parameters—values not of direct interest—and to
be integrated out. The predictive distribution of the test
statistic allows us to evaluate the posterior predictive
probability of the model. The posterior predictive P val-
ue for the test statistic is:

N1
P 5 I(T(X ) $ T(X)), (8)OT iN i51

where I is an indicator function that takes on the value
1 when the equality is satisfied and 0 otherwise, T(Xi)
the multinomial test statistic for the ith simulated data
set, and T(X) the realized test statistic. Probabilities less

than the critical threshold, say a 5 0.05, suggest that
the model under examination is inadequate and should
be rejected or refined. Predictive P values are interpreted
as the probability that the model would produce with as
extreme a test value as that observed for the data (Gel-
man et al. 1995). For an adequate model, the predictive
distribution of T(X) should be centered around the re-
alized test statistic (i.e., PT 5 0.5). This approach eval-
uates the practical fit of the model to a data set; inclusion
of additional taxa or new sequences requires a revalu-
ation of the model and its fit.

Simulations

To determine the utility and power of this approach,
I simulated 300 data sets under a variety of models and
parameter values (see table 1 for a description of the
specifics for each analysis). For all data sets the true
(model data was simulated under) and the JC69 models
are examined. Briefly, I performed three sets of simu-
lations to examine (1) the overall model adequacy, (2)
the effects of sequence divergence, and (3) the model
sensitivity. I discuss each of these in turn subsequently.

To test overall model adequacy, I simulated data
sets of 500, 2,000, and 4,000 sites under the GTR mod-
el. The parameters of the model, for each data set, were
assigned in the following way (1) instantaneous rates
were randomly chosen from the uniform interval, U(0.0,
6.0], (2) values for the base frequencies were drawn
from a Dirichlet distribution with parameters (aA, aC,
aG, aT) randomly chosen from the interval U[1.0, 4.0],
and (3) the overall substitution rate (m) was fixed at 0.5.
Trees were simulated under the birth-death process as
described by Rannala and Yang (1996). Speciation (l),
extinction (m), and taxon sampling (r) rates were fixed
at 2.0, 1.0, and 0.75, respectively.

To test the effects of sequence divergence, I sim-
ulated data sets of 2,000 sites under the GTR model.
Parameters of the model were chosen as in the test of
overall adequacy. For all data sets the tree in figure 1
was used. The overall substitution rate was varied from
low (m 5 0.1) to high (m 5 0.75) divergence.

Finally, for the model sensitivity analyses, data sets
of 1,000 and 5,000 sites were simulated under the K2P
model. Violation of the JC69 model’s assumptions var-
ied from none (k 5 1) to extreme (k 5 12). The tree in
figure 1, with an intermediate substitution rate (m 5
0.5), was used to simulate data.

Power Analysis

Under the posterior predictive simulation approach
the null hypothesis is that the model is an adequate fit
to the data. A model is rejected if the realized test sta-
tistic is less than the critical value (a 5 0.05). Otherwise
the model was accepted. The fraction of times the null
model is accepted falsely is an estimate of Type II error
rate, b—the complement (1 2 b) is the power of a test.
The power of the multinomial test statistic to reject a
false model is determined by the analysis of all the data
sets described previously using the JC69 model.
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Table 1
Simulation Conditions

Test
True

Model
True Model
Parameters

True
Tree

Number
Taxa

Number
Characters

Substitu-
tion Rate

(m)
Models
Tested

Repli-
cates

Overall adequacy . . . . . GTR
GTR
GTR
GTR
GTR
GTR

a, b
a, b
a, b
a, b
a, b
a, b

c
c
c
c
c
c

10
10
10
10
10
10

500
2,000
4,000

500
2,000
4,000

0.50
0.50
0.50
0.50
0.50
0.50

GTR
GTR
GTR
JC69
JC69
JC69

20
20
20
20
20
20

Sequence divergence . . GTR
GTR
GTR
GTR
GTR
GTR
GTR
GTR

a, b
a, b
a, b
a, b
a, b
a, b
a, b
a, b

d
d
d
d
d
d
d
d

10
10
10
10
10
10
10
10

2,000
2,000
2,000
2,000
2,000
2,000
2,000
2,000

0.10
0.25
0.50
0.75
0.10
0.25
0.50
0.75

GTR
GTR
GTR
GTR
JC69
JC69
JC69
JC69

20
20
20
20
20
20
20
20

Model sensitivity . . . . . K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P

k 5 1.0
k 5 3.0
k 5 6.0
k 5 12.0
k 5 1.0
k 5 3.0
k 5 6.0
k 5 12.0
k 5 1.0
k 5 3.0
k 5 6.0
k 5 12.0
k 5 1.0
k 5 3.0
k 5 6.0
k 5 12.0

d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

1,000
1,000
1,000
1,000
5,000
5,000
5,000
5,000
1,000
1,000
1,000
1,000
5,000
5,000
5,000
5,000

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50

K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
JC69
JC69
JC69
JC69
JC69
JC69
JC69
JC69

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

a Rate parameters of the GTR model (a, b, c, d, e, f) are chosen for each replicate by drawing a uniform random
number from the interval, U(0.0, 6.0].

b Base frequencies of the GTR model (pApCpGpT) are drawn from a Dirichlet distribution using parameters drawn
randomly from the interval, U[1,0, 4.0].

c For each replicate a birth-death tree was simulated as described in Materials and Methods.
d Topology was kept fixed for these simulations (fig. 1). Branch lengths were multiplied by the overall rate of substi-

tution (m).

Analysis of the ch-Globin Pseudogene

To illustrate the method of model determination us-
ing posterior predictive distributions, a DNA sequence
data set was analyzed under the JC69, HKY85, and GTR
models. The data set is the primate ch-globin pseudo-
gene (Koop et al. 1986; Goldman 1993) with the addi-
tion of one species—the pygmy chimpanzee. This data
set consists of seven species—human beings (Homo sa-
piens), chimpanzee (Pan troglodytes), pygmy chimpan-
zee (Pan paniscus), gorilla (Gorilla gorilla), orangutan
(Pongo pygmaeus), rhesus monkey (Macaca mulatta),
and owl monkey (Aotus trivirgatus). The original DNA
data matrix was 2,205 sites. Indels (c 5 183 sites) were
excluded from the analyses, yielding a matrix of 2,022
sites.

Programs

MrBayes v2.0 was used to approximate the poste-
rior distribution of a model’s parameters and trees (Huel-
senbeck and Ronquist 2001). The Metropolis-coupled
MCMC algorithm was used with four chains (Huelsen-

beck and Ronquist 2001). The Markov chains were run
for 100,000 generations and sampled every 100th gen-
eration. The first 10,000 generations were discarded as
burn-in to ensure sampling of the chain at stationarity.
Convergence of the Markov chains was verified by plot-
ting the log probability of the chain as a function of
generation to verify that they had plateaued. A program
that reads the posterior output of MrBayes, simulates
predictive data sets, and evaluates the multinomial test
statistic was written in the C language. The code is
available upon request.

Results and Discussion
Overall Model Adequacy

The overall adequacy of an evolutionary model was
explored by simulating nucleotide data sets of a variety
of sequence lengths, on a birth-death tree, under the
GTR model (see table 1). The birth-death process was
used to explore the effects of different branch lengths
and branching order. A comparison of the JC69 model
with data sets simulated under the GTR, because of the
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FIG. 1.—Tree used in simulations, testing sequence divergence,
and sensitivity to model violations. The branch lengths were multiplied
by the overall rate of substitution, m. Values for m can be found in
table 1.

FIG. 2.—Illustration of the method comparing GTR versus JC69.
Data sets of c 5 500 (A, B), c 5 2,000 (C, D), and c 5 4,000 (E, F)
sites were simulated under the GTR model. Predictive distributions
were simulated under the GTR (A, C, E) and JC69 (B, D, F) models.
Arrows indicate the values for the realized statistic from the original
data. In all cases the GTR model, as expected, produced an adequate
fit to the data, whereas the JC69 did not (PT 5 0.000).

large difference in the number of parameters (eight),
represents a conservative estimate of power.

An illustration of the predictive distribution of the
multinomial test statistic for three data sets of 500,
2,000, and 4,000 sites is presented in figure 2. As ex-
pected the true (GTR) model centers the simulated dis-
tributions around the realized test statistic (fig. 2A, C,
and E). The false (JC69) model performed poorly (PT

5 0.000; fig. 2B, D, and F). Increasing the number of
sites in the data set increased the power of the test to
reject the JC69 model: the predictive distributions under
the JC69 model moved farther from the realized test
statistic. This is because of the higher number of unique
site patterns: increasing the number of sites increases
the probability of observing rare patterns.

The effect of an increasing number of sites was
measured in two ways: (1) using the mean posterior pre-
dictive P value (P̄T; table 2), and (2) using the power
of the test (table 3). The first measure, mean P value,
decreases below the critical value as the number of sites
increases. For the true (GTR) model, the mean P value
was close to the expected value of 0.5 for data sets of
all sizes. For the false (JC69) model, the mean P value
decreased as expected, as the number of sites increased,
dropping below 0.05.

The second measure, the power of the test, increas-
es as the number of sites increases. The true (GTR)
model was accepted 100% of the time for data sets of
all sizes. Interestingly, the false (JC69) model was often
accepted for small data sets (table 3). The low power
(or high Type II error rate) of the multinomial test sta-
tistic to reject a model, with small amounts of data,
could be attributed to a number of causes. First, the

small number simulations performed result in fairly
large 95% confidence intervals (CI) for the Type II error
rate (24%–68%). Second, the test statistic might not rep-
resent a complete summary of the underlying process of
sequence evolution. Third, the approximation of the
joint posterior distribution from small amounts of data
may result in a large amount of uncertainty and in-
creased Type II error rates.

Sequence Divergence

The effect of an increase in sequence divergence
on power was explored by varying the overall rate of
substitution across the tree shown in figure 1 (m 5 0.10,
0.25, 0.50, and 0.75). Test data sets were simulated un-
der the GTR model (table 1). The results of sequence
divergence are shown in tables 2 and 3. As previously
done, two measurements to evaluate the method are pre-
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Table 2
Mean Posterior Predictive P Values for Simulations

Test True Model
Number

Characters

Substitu-
tion Rate

(m) Kappa (k)
Model
Tested P̃T

a
Standard
Deviation

Overall adequacy . . . . . . . GTR
GTR
GTR
GTR
GTR
GTR

500
2,000
4,000

500
2,000
4,000

0.50
0.50
0.50
0.50
0.50
0.50

NA
NA
NA
NA
NA
NA

GTR
GTR
GTR
JC69
JC69
JC69

0.457
0.490
0.439
0.087
0.007
0.000

0.131
0.177
0.123
0.107
0.013
0.000

Sequence divergence . . . . GTR
GTR
GTR
GTR
GTR
GTR
GTR
GTR

2,000
2,000
2,000
2,000
2,000
2,000
2,000
2,000

0.10
0.25
0.50
0.75
0.10
0.25
0.50
0.75

NA
NA
NA
NA
NA
NA
NA
NA

GTR
GTR
GTR
GTR
JC69
JC69
JC69
JC69

0.411
0.466
0.457
0.486
0.094
0.030
0.049
0.006

0.082
0.095
0.142
0.137
0.090
0.041
0.091
0.013

Model sensitivity . . . . . . . K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P

1,000
1,000
1,000
1,000
5,000
5,000
5,000
5,000
1,000
1,000
1,000
1,000
5,000
5,000
5,000
5,000

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50

1.0
3.0
6.0

12.0
1.0
3.0
6.0

12.0
1.0
3.0
6.0

12.0
1.0
3.0
6.0

12.0

K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P
JC69
JC69
JC69
JC69
JC69
JC69
JC69
JC69

0.433
0.416
0.426
0.414
0.470
0.473
0.472
0.495
0.426
0.175
0.018
0.000
0.471
0.019
0.000
0.000

0.185
0.151
0.138
0.150
0.120
0.160
0.077
0.081
0.192
0.088
0.018
0.000
0.128
0.027
0.000
0.000

a Values in bold are significant at the a 5 0.05 level.

Table 3
Power of Test Statistic for Simulations

Test True Model
Number

Characters
Substitution

Rate (m) Kappa (k)
Model
Tested

Power
(1 2 b) (%)

Overall adequacy . . . . . . GTR
GTR
GTR

500
2,000
4,000

0.50
0.50
0.50

NA
NA
NA

JC69
JC69
JC69

55
95

100

Sequence divergence. . . . GTR
GTR
GTR
GTR

2,000
2,000
2,000
2,000

0.10
0.25
0.50
0.75

NA
NA
NA
NA

JC69
JC69
JC69
JC69

50
80
70

100

Model sensitivity. . . . . . . K2P
K2P
K2P
K2P
K2P
K2P
K2P
K2P

1,000
1,000
1,000
1,000
5,000
5,000
5,000
5,000

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50

1.0
3.0
6.0

12.0
1.0
3.0
6.0

12.0

JC69
JC69
JC69
JC69
JC69
JC69
JC69
JC69

0
5

95
100

0
90

100
100

sented: the mean predictive P value (P̄T) and the power
of the test. Using the first, the GTR model performed
well, approaching a mean predictive P value of 0.5 as
m increased. An increase in the standard deviation of
the predictive P value, from 0.082 to 0.137, was ob-
served with an increase in divergence. This may be the
result of a decrease in the diversity of site patterns as
sites experience multiple hits and states begin to con-

verge. The JC69 model, on the other hand, performed
poorly at all values of m. At divergence levels of m $
0.25, the mean posterior predictive P value (P̄T; table 2)
was below the critical level of a 5 0.05.

Using the second measurement, the GTR model
again performed well—it was accepted 100% of the
time at all levels of divergence. The JC69 model per-
formed poorly at low levels of sequence divergence (m



1178 Bollback

5 0.10); the power of the test was relatively low (50)
but rapidly increased to 100 at larger divergences (m 5
0.75). For m 5 0.50, the power of the test was consid-
erably lower than in data sets with identical simulation
conditions in the test of overall model adequacy (95%;
see Overall Model Adequacy).

This reduction in power may be the result of a
number of factors. The first, and most likely, explanation
is sampling error; the small number of replicates leads
to large confidence intervals (CI) around the Type II
error rate (95% CI, 14%–53%). Second, the JC69 model
may be robust to minor violations of its assumptions.
For example, in replicates for which the JC69 model
was accepted, assumptions were not severely violated.
Analyses of model sensitivity support this explanation
(see later). Third, the simulation tree for these analyses
had a smaller sum of branch lengths than in the analysis
of overall adequacy—branch lengths are in terms of the
expected number of substitutions per site. When m 5
0.5, figure 1 has a tree length of 2.266, whereas the
mean tree length in the adequacy analysis was 2.601 (15
of 20 overall adequacy replicates had longer tree
lengths, some as much as 36% longer). Therefore, the
effects of divergence on power should be interpreted as
a function of the total number of expected substitutions
per site across the phylogeny—not simply the rate from
the root to the tips of the tree (m). Finally, the statistic
may be sensitive to the shape of the topology or varia-
tions in branch lengths across the tree.

Sensitivity to Model Violations

The sensitivity of the multinomial test statistic to
reject inadequate models was explored by simulating
data sets under the K2P model, varying k from 1 to 12,
followed by analysis with both the K2P (true) and JC69
models. When k 5 1, the K2P model collapses into the
JC69 model. Under these conditions, the JC69 model is
not violated and is expected to perform as well as the
K2P model. As k increases, reflecting an increase in the
transition-transversion bias, the JC69 model becomes
more severely violated and is expected to perform more
poorly.

The effects of model violations were explored on
data sets of two sizes: 1,000, and 5,000 sites (tables 2
and 3). Both the K2P and JC69 models performed well
for data sets of 1,000 sites simulated with a k value of
1. The mean posterior predictive P values for the K2P
and JC69 models were 0.433 and 0.426, respectively.
Both models were accepted in 100% of the replicates.
For the JC69 model, as k increased the mean P values
declined, whereas the K2P model continued to perform
well. The probability of accepting the K2P model was
100% for all replicates except one (k 5 12, 95%). The
JC69 model performed well at k 5 3 (95% accepted),
but as the model became increasingly violated, the pow-
er increased to 95% and 100%, at k values of 6 and 12,
respectively.

A fivefold increase in the number of sites moved
the mean posterior predictive P values for the K2P mod-
el toward 0.5 (table 2), and all replicates analyzed under

the K2P model were accepted 100% of the time. As the
number of sites increased from 1,000 to 5,000, the dis-
criminating power of the test statistic increased, as
shown by the rapid decline in the mean predictive P
values with increasing k (table 2) and by the increased
power to reject the JC69 model (table 3). For example,
there was a nearly 10-fold drop in the mean predictive
P value between 1,000 and 5,000 sites under the JC69
model with moderate violation—for k 5 3 the mean P
value decreased from 0.175 to 0.019 (table 2). In addi-
tion, the variance across the replicate data sets decreased
markedly. The JC69 model was accepted 100% of the
time when k was 1 but declined with an increase in k
compared with the 1,000 site data sets. This pattern is
most dramatically demonstrated in a comparison of data
sets simulated with k 5 3. For 1,000 sites there was a
Type II error rate of 95% as compared with a Type II
error rate of 10% with 5,000 sites under the JC69 model.

Analysis of the ch-Globin Pseudogene

The primate ch-globin pseudogene data set was an-
alyzed under the GTR, HKY85, and JC69 models. Pseu-
dogenes are nonfunctional copies in which mutations are
not constrained by selection, and thus substitution biases
should reflect mutational biases. Biases in the mutational
spectrum will give rise to biases in the observed fre-
quency of site patterns. The analysis of the mean base
frequencies for the ch-globin pseudogene indicates an
AT bias (pA 5 0.296, pC 5 0.190, pG 5 0.238, pT 5
0.277). Consequently, models that assume equal base
frequencies (i.e., JC69) are not expected to perform as
well as models that allow for unequal frequencies (i.e.,
HKY85 and GTR). The HKY85 and GTR models are
adequate summaries of the true underlying process
(GTR, PT 5 0.199; HKY85, PT 5 0.303), although the
HKY85 represents a better fit to the data—the HKY85
model was better able to center the predictive distribu-
tion of the test statistic around the realized value (fig.
3). This difference may be because of a better model fit
or stochastic error. The JC69 model represents a poor fit
to the data (fig. 3, PT 5 0.053), even though it cannot
be explicitly rejected at the 0.05 level.

Interestingly, Goldman (1993), using the paramet-
ric bootstrap, rejected the JC69 model for a similar data
set that excluded the pygmy chimpanzee. The JC69
model performed less poorly with the method presented
here. What can we attribute this apparent discrepancy
to? One possible explanation is that with small numbers
of taxa, and subsequently a smaller number of possible
site patterns, there is low power—assuming that the
JC69 model is inadequate, which, of course, may not be
the case. Removal of the pygmy chimpanzee sequence
and reanalysis of the model results in an increase in the
predictive P value (JC69, PT 5 0.123). For the six-spe-
cies data set, the JC69 model performs better at pre-
dicting the data than in the seven-species data set. This
is not surprising because with fewer taxa there are fewer
possible site patterns and the JC69 model, even with
minor violations, should perform well. Another expla-
nation is that accommodating uncertainty in the topol-
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FIG. 3.—Analysis of the ch-globin pseudogene under the JC69 (A), HKY85 (B) and GTR (C) models. The data set consisted of seven
taxa and 2,022 nucleotides (see Materials and Methods). The MCMC analysis, performed using MrBayes v2.0, was used to approximate the
joint posterior distribution of model parameters and topologies. The chain was run for 100,000 generations, sampling every 100th generation.
The first 10,000 generations were discarded as burn-in. A total of 1,000 samples was randomly drawn from the joint posterior distribution of
model parameters, and topologies and simulated data sets of 2,022 sites were generated under each of the models. The arrows above the
distributions are the realized test statistic for the original data set (24,651.32). Posterior predictive P values for JC69 (A), HKY85 (B), and
GTR (C) are PT 5 0.053, PT 5 0.303, and PT 5 0.199, respectively.

ogy, using the present method, more accurately de-
scribes model variance. The JC69 model performed less
poorly at predicting the observations than the parametric
bootstrap when uncertainty was accommodated. The
parametric bootstrap, by not accounting for uncertainty,
may be more liberal in rejecting models. Analysis of the
posterior distribution of trees for this data set suggests
a high degree of uncertainty in the relationships between
humans, gorillas, and chimpanzees—there was equal
posterior support for the three possible subtrees of these
species. This uncertainty was recognized in Goldman’s
(1993) analysis as a polytomy. Therefore, accounting for
uncertainty in the topology, branch lengths, and model
parameters appears to be important in determining mod-
el adequacy.

When we are confronted with two models that ap-
pear to perform equally well, how do we proceed in
choosing between them? One approach would be to sim-
ply choose the less complex model, thus favoring a re-
duction in the number of free parameters to be estimat-
ed. Another alternative would be to use the method pre-
sented here, with a test statistic that summarizes local
features of the models. In this way, identification of par-
ticular features of a model that do not contribute ex-
planatory power can be identified and eliminated. Con-
versely, testing the addition of new parameters to a sim-
pler model could lead to a better fit to the data using an
expanded model. In these ways, we can identify the best
model and arrive at a sound statistical choice.

Conclusions

The method I present here permits explicit evalu-
ation of a phylogenetic model’s adequacy using poste-
rior predictive simulations. An adequate model should
perform well in predicting future observations of the
data; in the absence of such observations, simulations
from the posterior distribution are used as surrogate ob-
servations. This approach differs, most importantly,
from the traditional likelihood-based approaches by tak-
ing into account uncertainty in topology, branch lengths,
and model parameters. Therefore, model choice has

been freed from conditioning on these parameters and
results in a more accurate estimate of model variance.

The multinomial test statistic is presented to eval-
uate the global (or overall) performance of a model
through the posterior predictive distribution. The power
of the multinomial test statistic was explored under a
wide range of conditions. A number of factors have been
shown here to increase power (1) increasing the number
of sites, (2) increasing sequence divergence (expected
number of substitutions per site), and (3) the degree of
violation to a model’s assumptions.

An appealing aspect of posterior predictive distri-
butions, when used for model checking, is that a wide
variety of test statistics can be formulated to check var-
ious aspects of phylogenetic models. For example, pos-
terior predictive distributions can be used to detect var-
iation in rates across data partitions, allowing models to
be expanded to accommodate rate heterogeneity. The
generality of the posterior predictive approach, and the
development of new test statistics, will permit further
exploration and development of more complex and re-
alistic phylogenetic models.
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