

Sequence Divergence simple genetic distance, d = the proportion of sites that differ between two aligned, homologous sequences given a constant mutation/substitution rate, d should provide a measure of time since divergence but this is complicated by multiple hits (homoplasy) corrected distance metrics account for the fact that there are not an infinite number of sites in a sequence

- ✤ thus, for two diverging lineages... $k = 2T\mu$
 - ♦ where k = the number of substitutions observed between two species and T is the time since divergence
 - \Rightarrow note that T and μ can be measured either in years or generations $T = \frac{k}{m}$
- \Rightarrow solving for T... $I = \frac{1}{2\mu}$
 - ♦ note that 2µ is often expressed as the "rate of sequence divergence" (i.e., twice the per lineage rate)

Nearly Neutral Theory

 what happens in small populations when selection is weak?

♦ changes in allele frequency due to drift and selection are approximately equal $|2Ns| \approx 1$

probability of fixation for a new, "nearly neutral" allele:

$$\Pr(A \text{ fixed}) = \frac{2s}{1 - e^{-4Ns}}$$

$$w_{AA} = 1 + \underline{s}, \quad w_{Aa} = 1 + \underline{s/2}, \quad w_{aa} = 1$$

Lohmueller et al. 2007. Proportionally more deleterious genetic variation in European than in African populations. *Nature* 451: 994-997.

Table 1 | Distribution of Applera SNPs by population and functional class

Category	Shared	Private AA	Private EA	Mean derived frequency	
				AA*	EA†
Synonymous	8,056 (58.3%)	8,958 (53.0%)	3,879 (44.6%)	0.211	0.266
Non-synonymous	5,771 (41.7%)	7,950 (47.0%)	4,826 (55.4%)	0.174	0.202
Benign	4,448 (78.6%)	5,260 (67.7%)	2,928 (62.1%)	0.200	0.238
Possibly damaging	795 (14.0%)	1,572 (20.2%)	1,035 (22.0%)	0.113	0.119
Probably damaging	422 (7.4%)	942 (12.1%)	749 (15.9%)	0.099	0.108

* Average frequency from SNPs segregating in the AA sample. No correction for ancestral misidentification was used. † Average frequency from SNPs segregating in the EA sample. No correction for ancestral misidentification was used.

Nei-Gojobori (1986) Method

 calculate number of potentially synonymous and non-synonymous sites (s + n = 3 per codon), disregarding stop codons

two differences

E.g., 2 possible routes...
(1) TTT (Phe) - GTT (Val) - GTA (Val)

nonsynonymous, 1 synonymous
TTT (Phe) - TTA (Leu) - GTA (Val)

nonsynonymous

S_d = 0.5, n_d = 1.5

three differences

* * * * * * * ACG TAC GTA CGT TTG CCC AAG GAG Thr Tyr Val Arg Leu Pro Lys Glu 1 1 1 1 2/3 1 $1/3 \ 1/3 = 6.33$ \mathbf{s} ACA TAC GTT TGT CTG CCA AGG GAC Thr Tyr Val Cys Leu Pro Arg Asp 1 1 1 1/2 4/3 1 $1/3 \ 1/3 = 6.5$ \mathbf{s} 0 1 1 0 0 1 0 1 \mathbf{s}_{d} 1 0 0 0 0 0 1 1 n_d $dN = n_d/n = 3/17.585 = 0.171$ $dS = s_d/s = 4/6.415 = 0.624$ dN/dS = 0.274

dN: dS ratio

- when measured in relation to the number of synonymous and non-synonymous sites
 - dN/dS = 1 if all substitutions are neutral
 - dN/dS > 1 suggests positive, diversifying selection
 - dN/dS < 1 suggests purifying selection (i.e., constraints on protein evolution)

Hughes & Nei 1988 Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167-170.									
examined dN / dS in human MHC class 1 genes HLA-A, B & C (n = 12 sequences)									
Table 1 wean numbers of nucleotide substitutions per 100 synonymous sites (a_s) and per 100 nonsynonymous sites (a_N)									
Locus (No.	o. Comparisons s) (No.)		Antigen recognition site (ARS) ($N = 57$) $d_{\rm S}$ $d_{\rm N}$		Remaining exons 2 & 3 (Remaining codons in exons 2 & 3 $(N = 124, 125)^{\dagger}$		Exon 4 (N = 92)	
sequences)					d _s d _N		ds	d _N	
Human A (5)	vs A vs B vs C	(10) (20) (15)	3.5 ± 2.0 9.1 ± 3.3 7.1 ± 3.4	$13.3 \pm 2.2^{***}$ $25.1 \pm 3.4^{***}$ $21.9 \pm 3.5^{***}$	2.5 ± 1.2 11.9 ± 3.0 17.1 ± 4.0	1.6 ± 0.5 $5.8 \pm 0.7^*$ $7.5 \pm 1.4^*$	9.5 ± 3.0 35.1 ± 8.1 34.9 ± 7.8	$1.6 \pm 0.7^{**}$ $2.2 \pm 0.7^{***}$ $2.1 \pm 1.2^{***}$	
B (4)	vs B	(6)	7.1 ± 3.1 6.0 ± 2.2	$18.1 \pm 2.8^{**}$ 22 9 + 3 4***	6.9 ± 2.0 143 ± 32	$2.4 \pm 0.7^{*}$ 5.7 ± 1.1*	1.5 ± 1.1 106 ± 40	0.5 ± 0.4 3.1 ± 1.2	
C (3) Overall means	vs C	(3)	3.8 ± 2.5	8.8 ± 2.2	10.4 ± 2.8	4.8 ± 1.1	2.1 ± 1.5	1.0 ± 0.6	
Intralocus		(19)	4.7 ± 2.6	$14.1 \pm 2.4^{***}$	5.1 ± 2.1	2.4 ± 0.8	5.8 ± 2.0	$1.1 \pm 0.6^{**}$	
Interlocus		(47)	7.7	23.5	14.2	6.3	28.8	2.4	
$d_{\rm s} > d_{\rm N}$: $d_{\rm N} > d_{\rm s}$		(00)	0.8±2.3	:66	11.0±2.1 63	5.2 ± 0.8**	22.1±4.4 61	:3‡	
dN / dS > 1: evidence of positive, diversifying selection									

Positive Selection

testing at the gene level is a "dull tool"

- > positive selection will usually affect one or a few codons, while the rest of the gene remains constrained (dN/dS << 1)</p>
- A nonetheless, genes associated with immune function and reproduction (self-recognition, sperm competition, sexual conflict) often have dN/dS > 1
- more sophisticated methods are available to identify individual sites under selection

But wait, are synonymous substitutions really neutral?

codon-bias

- * "favored" codons (corresponding to more abundant tRNAs) are present at higher frequency in highly expressed genes than in genes with lower expression levels
- base composition bias
 - significant and sometimes substantial differences between lineages
 - ♦ e.g., birds have > GC content than mammals

Berglund et al. 2009 Hotspots of biased nucleotide substitutions in human genes. *PLoS Biology* 7: e1000026

the fastest-changing genes in terms of amino acid substitutions show a biased pattern of fixation for AT-to-GC mutations

tegory	Significance Level	Number of Genes	Ancestral GC Content	S→S	W→W	S→W	W→S	W→S Bia
nes	**-sig	20	0.51	6	9	74	66	0.47
	*-sig	124	0.50	67	30	388	297	0.43
	non-sig	3,754	0.51	1,220	482	8,533	5,417	0.39
	Total	3,878	0.51	1,287	512	8,921	5,714	0.39
ost diverged exons	**-sig	20	0.51	2	1	21	34	0.62
	*-sig	124	0.50	22	10	167	138	0.45
	non-sig	3,754	0.51	535	208	3,533	2,281	0.39
	Total	3,878	0.51	557	218	3,700	2,422	0.40
	AT→G	C = v	veak —	—>st	rona			
	AT→G	C = v	veak—	s†	rong			